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Chebyshev’s Theorem

Recall that π(x) is the number of primes less than or equal to x. The goal
of this lecture is to prove:

Theorem 1 (Chebyshev’s Theorem).

π(x) = Θ

(
x

ln(x)

)
(1)

there exist c1, c2 > 0 such that for all x ≥ 2, we have c1
x

ln(x)
< π(x) < c2

x
ln(x)

.

This is a weakened version of the prime number theorem and it follows
from results about binomial coefficients.

1.
(
2n
n

)
< 4n = 22n

The number of subsets of size n in a set with 2n elements is
(
2n
n

)
. The

number of subsets of a set with 2n elements is 22n. Since the subsets
of size n are contained in all of the subsets of the set with 2n elements
we see that

(
2n
n

)
< 4n = 22n.

This same reasoning shows that

n∑
k=0

(
n

k

)
= 2n (2)
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since both sides are the number of subsets of a set with n elements.
Therefore,

(
2n

n

)
<

2n∑
k=0

(
2n

k

)
= 22n (3)

2. 4n

2n+1
<
(
2n
n

)
The maximum of

(
2n
k

)
as a function of k is

(
2n
n

)
, so

(
2n
n

)
is the largest

element in
∑2n

k=0

(
2n
k

)
= 22n. Taking the average of the elements in this

sum we have
22n

2n + 1
=

∑(
2n
k

)
2n + 1

<

(
2n

n

)
(4)

since the average is always smaller than the largest value.

3.
(
2n+1

n

)
< 4n = 22n

The maximum of
(
2n+1

k

)
as a function of k is

(
2n+1

n

)
=
(
2n+1
n+1

)
(recall(

n
k

)
=
(

n
n−k

)
). Then

2

(
2n + 1

n

)
=

(
2n + 1

n

)
+

(
2n + 1

n + 1

)
<

2n+1∑
k=1

(
2n + 1

k

)
= 22n+1 (5)

and so
(
2n+1

n

)
< 4n.

What is the largest power of 7 that divided (1000!)? How many multiples
of 7 appear in 1, 2, 3, . . . , 1000?

More generally, find the largest ` such that p`
∣∣n!. The number of multiples

of p among 1, . . . n is bn
p
c. So

` =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ . . . (6)

since we added 1 for each multiple of p, and another 1 for each multiple of
p2, . . . Writing this in summation notation,

` =
∞∑

s=1

⌊
n

ps

⌋
=

blogp nc∑
s=1

⌊
n

ps

⌋
. (7)
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We can replace ∞ by blogp nc since s > blogp nc implies
⌊

n
ps

⌋
= 0. We can

also find an upper bound for `:

` <
n

p
+

n

p2
+

n

p3
+ . . . =

n

p
· 1

1− 1
p

=
n

p− 1
. (8)

Digression: b1000000
7

c = 142857.

142857× 2 = 285714
142857× 3 = 428571
142857× 4 = 571428
142857× 7 = 999999

The last equality means that 1
7

= 0.1̇42857̇.
Multiplying 142857 by 2, 3, 4, 5, or 6 gives a cyclic permutation of the

digits. Something similar happens for 17, but not for 3, 5, 11, or 13.

Exercise 2. If p is a prime 6= 2 or 5, then the length of the period of 1
p

divides p− 1.

Exercise 3. If the period of 1
p

is p−1 then multiplying the first p−1 elements

of the decimal expansion of 1
p

by 1, 2, . . . p − 1 gives all cyclic permutations
of that number.

Exercise 4. If A is a 6 digit number and A, 2A, 3A, . . . , 6A have the same
digits as A, then A = 142857.

End of Digression

Theorem 5. If pt
∣∣(n

k

)
then pt ≤ n.

If p
∣∣(n

k

)
then p ≤ n since

(
n
k

)
= n!

k!(n−k!)
and no prime larger than n divides

n!.

Proof of the Theorem. If t is the largest integer such that pt
∣∣(n

k

)
then from

formula (7) we get

t =
∞∑

s=1

(⌊
n

ps

⌋
−
⌊

k

ps

⌋
−
⌊

n− k

ps

⌋)
. (9)
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Some sample calculations of b n
ps c − b k

ps c − bn−k
ps c with n = 1000, k = 73,

p = 5:
s b n

ps c − b k
ps c − bn−k

ps c
1 200− 14− 185 = 1
2 40− 2− 37 = 1
3 8− 0− 7 = 1
4 1− 0− 1 = 0

Exercise 6. Show that ⌊
bn

p
c

p

⌋
=

⌊
n

p2

⌋
(10)

Exercise 7. For all x, y ∈ R, 0 ≤ bx + yc − bxc − byc ≤ 1.

Exercise 7 implies that 0 ≤ b n
ps c − b k

ps c − bn−k
ps c ≤ 1. So t is less than or

equal to the number of terms in the sum, t ≤ blogp nc, and

pt ≤ pblogp nc ≤ plogp n = n. (11)

Theorem 8. For all positive real numbers x,
∏

p≤x p ≤ 4x.

Observation: It suffices to prove this for positive integers x, then it holds
for all positive reals.

Proof. This proof is by induction on x.
Base case: x = 0,

∏
p≤0 p = 1 ≤ 40 = 1 (empty products); x = 1,∏

p≤1 p = 1 ≤ 41 = 4; x = 2,
∏

p≤2 p = 2 ≤ 42 = 16
Induction step: Assume x ≥ 3. Assume

∏
p≤y p ≤ 4y for all y < x. If x is

even
∏

p≤x p =
∏

p≤x−1 ≤ 4x−1 < 4x.
If x is odd, say x = 2y + 1,

∏
p≤2y+1

p =

( ∏
p≤y+1

p

)( ∏
y+2≤p≤2y+1

p

)
. (12)

Let A =
∏

y+2≤p≤2y+1 p.

Lemma 9. A
∣∣(2y+1

y

)
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Then A
∣∣(2y+1

y

)
< 4y. By the induction hypothesis

∏
p≤y+1 p ≤ 4y+1 so∏

p≤2y+1

p ≤ 4y+14y = 42y+1 = 4y. (13)

Proof of the Lemma.
(
2y+1

y

)
= (2y+1)!

y!(y+1)!
The primes in A divide the numerator

and not the denominator of (2y+1)!
y!(y+1)!

and so they divide
(
2y+1

y

)
.

This completes the proof of Theorem 8:
∏

p≤x p ≤ 4x.
Since p ≥ 2 for every prime p, it follows that

2π(x) ≤
∏
p≤x

p ≤ 4x, (14)

which gives the bound π(x) ≤ 2x. This bound is not very good, because
replacing p with 2 is not a very good estimate. Instead, let’s try using

√
x:

4x ≥
∏
p≤x

p ≥
∏

√
x≤p≤x

p ≥
√

x
π(x)−π(

√
x)

. (15)

Taking base-2 logarithms yields

2x ≥
(
π(x)− π(

√
x)
)
· 1

2
log2 x, (16)

which implies

π(x) ≤ π(
√

x) +
4x

log2 x
≤
√

x +
4x

log2 x
. (17)

But
√

x is small compared to x/ log x:

Exercise 10. Use calculus to show that
√

x = o(x/ log x).

Thus, equation (17) yields

π(x) ≤
√

x +
4x

log2 x
∼ 4x

log2 x
, (18)

so we obtain the asymptotic inequality

π(x) . c
x

ln x
, (19)

for the value c = 4 ln 2. This implies
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Theorem 11 (Chebyshev’s upper bound).

π(x) < c′
x

ln x
(20)

for any c′ > 4 ln 2 and all sufficiently large x.

We next want to prove:

Theorem 12 (Chebyshev’s lower bound). There exists c > 0 such that
π(x) & c x

ln x
.

To prove this, consider the prime factorization(
2n

n

)
=
∏
p≤2n

pkp , (21)

for some integers kp ≥ 0. Then

4n

2n + 1
<

(
2n

n

)
=
∏
p≤2n

pkp ≤ (2n)π(2n), (22)

where the first inequality follows from equation (4) and the second follows
from the fact that pkp ≤ 2n. Taking logarithms yields

π(2n) · log2(2n) > n log2 4− log2(2n + 1) ∼ n log2 4 = 2n, (23)

which implies

π(2n) &
2n

log2(2n)
. (24)

This proves Theorem 12 for even n.

Exercise 13. Finish the proof by extending the result to all n.

This proof of Chebyshev’s estimate is due to Paul Erdös, who used the
same ideas to give an elementary proof of Bertrand’s Postulate: for every n,
there is a prime p such that n ≤ p < 2n. It is an open question whether,
for every n, there is a prime p such that n2 < p < (n + 1)2. An affirmative
answer to this question would imply the famous Riemann Hypothesis, which
we now briefly discuss.
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Consider the zeta function defined by the series

ζ(s) =
∞∑

n=1

1

ns
, (25)

which converges for s > 1. In fact, this converges for all complex numbers
s ∈ C such that Re s > 1. Using techniques from complex analysis, we can
then extend the function ζ to the entire complex plane C, with the exception
of s = 1. Riemann’s hypothesis says that if 0 < Re s < 1 and ζ(s) = 0 then
Re s = 1

2
. A proof of the Riemann hypothesis would give us better estimates

of π(x).
The Prime Number Theorem says π(x) ∼ x

ln x
. In fact, a better approxi-

mation (known to Gauss) is

π(x) ∼ li(x) =

∫ x

2

dt

ln t
, (26)

and we would like to estimate the error term |π(x)− li(x)|. For example, we
have ∣∣∣ x

ln x
− li(x)

∣∣∣ = Θ

(
x

(ln x)2

)
. (27)

The Riemann hypothesis is equivalent to the error estimate

|π(x)− li(x)| = O(
√

x). (28)

It is known that there exists an ε > 0 such that |π(x)− li(x)| < x1−ε.

Quadratic residues

Our goal is to prove the following:

Theorem 14. If p is prime and p ≡ 1 (mod 4) then p = a2 + b2 for some
integers a, b.

Recall that a is a quadratic residue (mod p) if x2 ≡ a (mod p) for some
x. If no such x exists then a is a quadratic non-residue. By convention, if
a ≡ 0 (mod p) then a is neither a quadratic residue nor a non-residue.

Proposition 15. If p is an odd prime then the number of quadratic residues
in {1, 2, . . . , p− 1} is p−1

2
.
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As a corollary, we see that there are also p−1
2

quadratic non-residues.

Proof. Notice that (p − x)2 ≡ (−x)2 ≡ x2 (mod p), so the number of
quadratic residues is at most p−1

2
. Next, suppose x2 ≡ y2 (mod p). Then

p
∣∣(x2−y2) = (x+y)(x−y), which implies that p

∣∣(x+y) or p
∣∣(x−y), hence

x ≡ −y (mod p) or x ≡ y (mod p). Thus, we have shown that x2 ≡ y2

(mod p) iff x ≡ ±y (mod p), which proves our claim.

Observe that we can find a quadratic residue of p simply by squaring an
integer mod p, but finding a quadratic non-residue is more difficult. However,
the proposition tells us that an integer chosen at random from {1, 2, . . . , p}
will be a quadratic non-residue with probability 1/2. Thus, the probability
that k random choices produces no quadratic non-residue is 2−k, and the
expected number of choices needed to find a non-residue is 2.

Question: when is −1 a quadratic residue mod p? In other words, for
which p does there exist x such that x2 ≡ −1 (mod p). Well, p

∣∣(x2 + 1)
implies p ≡ 1 (mod 4). We will see that the converse also holds: if p ≡ 1
(mod 4) then −1 is a quadratic residue mod p.

Notation: the Legendre symbol is defined by

(
a

p

)
=


1 , a is a quadratic residue,

−1 , a is a quadratic nonresidue,

0 , p
∣∣a.

(29)

Exercise 16. Prove that the Legendre symbol is multiplicative: for every
prime p and integers a, b, (

ab

p

)
=

(
a

p

)(
b

p

)
. (30)

Exercise 17. If p 6
∣∣ a then a

p−1
2 ≡ ±1 (mod p).

Exercise 18. If a
p−1
2 ≡ −1 (mod p) then

(
a
p

)
= −1.

Theorem 19. If
(

a
p

)
= −1 then a

p−1
2 ≡ −1 (mod p).

The above exercises and the previous theorem imply the following result:

Theorem 20 (Euler).
(

a
p

)
≡ a

p−1
2 (mod p).

8



Definition 21. g is a primitive root mod p if {1, g, g2, . . . , gp−2} are all
nonzero residues mod p. In other words, for all b, if p 6

∣∣ b then b ≡ gj (mod p)
for some j.

Exercise 22. Check that 10 is a primitive root mod 7, but 2 is not.

Theorem 23. For all primes p, there is a primitive root mod p.

Exercise 24. Use Theorem 23 to prove Euler’s formula for the Legendre
symbol (Theorem 20).
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