
REU 2006 Apprentice

Instructor: László Babai
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Recall that Euler’s φ function is defined so that φ(n) is the number of integers between
1 and n that are relatively prime to n. Note that if p is prime then φ(p) = p− 1 because all
integers from 1 to p− 1 are relatively prime to p.

So for example, what would be φ(p7)? A number is not relatively prime to p7 if and
only if it is a multiple of p. So the numbers at most p7 which are not relatively prime to p7

are p, 2p, 3p, . . . , p · p6. So there are p6 such numbers. Hence, φ(p7) = p7 − p6 = p7(1 − 1
p
).

Another way of looking at this is that one out of every p numbers is divisible by p, and so
out of the first p7 integers, the probability that an element is relatively prime to p7 is (1− 1

p
).

Now let’s consider∑
d|p7

φ(d) = φ(p) + φ(p2) + . . . φ(p7) = 1 + (p− 1) + (p2 − p) + . . . + (p7 − p6)

Note that this is a telescoping sum, and so the result is p7. This leads us to wonder if we
get a similar result for all numbers.

Conjecture 1.0.1.
∑

d|n φ(n) = n

Now, consider pq where p and q are primes. There are q multiples of p that are at most pq
and there are p multiples of q that are at most pq. The only number ≤ pq that is a multiple
of both is pq itself. So we get that φ(pq) = pq− p− q +1 where adding the 1 back is because
pq is both a multiple of p and a multiple of q and so was counted twice. Note that we can
factor this as φ(pq) = (p− 1) · (q − 1). So φ(pq)

pq
= p−1

p
· q−1

q
= (1− 1

p
) · (1− 1

q
).

Exercise 1.0.2 (The Chinese Remainder Theorem). If we have integers m1, . . . ,mn

such that each mi is relatively prime to mj for i 6= j then system of congruences

x ≡ a1(modm1) (1.0.1)

x ≡ a2(modm2) (1.0.2)
... (1.0.3)

x ≡ ak(modmk) (1.0.4)

has a solution which is unique mod
∏

1≤i≤k mi
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Now note that∑
d|pq

φ(d) = φ(1) + φ(p) + φ(q) + φ(pq) = 1 + (p− 1) + (q − 1) + (pq − p− q + 1) = pq.

So that’s more evidence for our conjecture.
It would be good to get an explicit formula for φ(n).

Theorem 1.0.3. If n = pa1
1 · · · pak

k , where pi are distinct primes, then φ(n) = n(1− 1
p1

) · · · (1−
1
pk

).

Proof. Let Ω = {1, . . . , n} and j be a random number in Ω. Let Ai be the subset of Ω of
numbers which are not divisible by pi. The events j ∈ Ai are independent of each other
(which can be seen from the Chinese Remainder Theorem).

Note that the probability that a random number in Ω is relatively prime to n is just φ(n)
n

.
But also note that a number in Ω is relatively prime to n if and only if it is not divisible by
any of the pi (and that the probability of not being divisible by a particular pi is (1− 1

pi
)).

Since these events are independent, we get the desired formula

φ(n)

n
=

∏
1≤i≤k

(1− pi).

Let G be a group and a ∈ G.

Definition 1.0.4. The order of a, ord(a), is the smallest k ≥ 1 such that ak = 1.

Exercise 1.0.5. al = 1 if and only if ord(a)|l.
Consider the complex nth roots of unity (i.e. the complex numbers z such that zn = 1).

They are evenly spaced on the unit circle in the complex plane. Call them z0, . . . zn−1 where
we have zk = cos(2kπ

n
) + isin(2kπ

n
).

Observation 1.0.6. z is an nth root of unity if and only if ord(z)|n.

Definition 1.0.7. If ord(z) = n, then z is a primitive nth root of unity.

Exercise 1.0.8. Show zk is a primitive nth root of unity if and only if gcd(k, n) = 1.

Therefore the number of primitive nth roots of unity is φ(n).
Let Un = {z0, . . . , zn−1}. How many of the zi have order d where d|n (i.e. the number

of primitive dth roots of unity)? Let Pd be the set of primitive dth roots of unity. Then
Un =

⋃
d|n Pd and the Pd are disjoint. So

n = |Un| =
∑
d|n

|Pd| =
∑
d|n

φ(n)

and we have proven the conjecture given earlier in the class.
For another proof, take the numbers 1

n
, 2

n
, . . . n

n
. Put each of these fractions in their lowest

terms and look at the denominators d that you get (which are exactly the numbers which
divide n).
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Exercise 1.0.9. Show that the number of occurences of the denominator d in this list is
φ(d) and finish the proof.

As a reminder, we restate

Theorem 1.0.10 (Fermat’s Little Theorem). If p is prime and gcd(a, p) = 1, then
ap−1 ≡ 1 (mod p).

Definition 1.0.11. The order of a mod p, ordp(a), is the smallest k ≥ 1 such that ak ≡ 1
(mod p).

So Fermat’s Little Theorem can be restated as ordp(a)|(p− 1).

Definition 1.0.12. If p is prime then we say a is a primitive root mod p if ordp(a) = p− 1.

Theorem 1.0.13. For all primes p there is a primitive root mod p.

Before preparing for the proof, here’s a nice exercise.

Exercise 1.0.14. Find infinitely many 2x2 matrices A such that A2 = I where I is the
identity matrix.

Let F be a field (for example it could be C, R, Fp, Q, or Q[
√

2] = {a + b
√

2|a, b ∈ Q}).

Definition 1.0.15. A multiplicative inverse of a mod m is a number x such that ax ≡ 1
mod m.

For example, since 3 · 5 = 15 ≡ 1 (mod 7), we have that 5 = 3−1 (mod 7)

Exercise 1.0.16. Show that a has a multiplicative inverse mod m if and only if gcd(a, m) =
1.

Definition 1.0.17. Let f(x) = a0 + a1x + . . . anx
n where ai ∈ F and an 6= 0. Then we say

that the degree of f, deg(f), is n. A root of f is an element z ∈ F such that f(z) = 0.

Exercise 1.0.18. Find a quadratic polynomial with coefficients in F2 which does not have
a root in F2.

Theorem 1.0.19. For f as above, f has at most n roots in F.

Lemma 1.0.20. If f(a) = 0, then f(x) = (x− a) · g(x) for some polynomial g(x) over F.

This is a special case of the following lemma.

Lemma 1.0.21. f(x)− f(a) = (x− a) · g(x) for some polynomial g(x) over F.

Example 1.0.22. Let f(x) = xn. Then f(x)− f(a) = xn − an = (x− a) · (xn−1 + axn−2 +
a2xn−3 + · · · + an−2x + an−1). One can see this by expanding out the right hand side and
noticing that it is a telescoping sum.
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For the general case, it is not that much different from the example.

Proof of Lemma. Let f(x) =
∑

cix
i. Then

f(x)− f(a) =
∑

ci(x
i − ai) =

∑
ci(x− a) · gi(x) = (x− a) ·

∑
gi(x)

where the gi are polynomials.

Exercise 1.0.23. If F is a field and a, b ∈ F, then a · b = 0 if and only if either a or b is 0.

Proof of the previous theorem. Let a1, . . . , an be the distinct roots of f. So since f(a1) = 0,
we have that f(x) = (x − a1)f1(x). But we also have that f(a2) = 0, so we have that
(a2 − a1)f1(a2) = 0. Since a1 6= a2, we have that a1 − a2 6= 0 and hence f1(a2) = 0.
So we have that f(x) = (x − a1)(x − a2)f2(x). Continuing this argument we get f(x) =
(x− a1) · · · (x− al)fl(x). By looking at the degree of f, we see that l can be no greater than
the degree of f, as desired.

Now, in Fp, Fermat’s little theorem tells us that all a 6= 0 are roots of f(x) = xp−1 − 1.
So we get that f(x) = (

∏
a∈Fp−{0}(x − a)) · g(x). Looking at degrees, we see that g(x) is a

constant polynomial, and looking at the coefficient of xp−1 on the left and right gives us that
g(x) = 1. So we have just proven

Theorem 1.0.24. In Fp,

xp−1 − 1 = (
∏

a∈Fp−{0}

(x− a)).

Now, Fermat’s Little Theorem tells us that the order of every nonzero element in Fp is a
divisor of p− 1.

Question 1.0.25. How many elements of Fp−{0} have order that divides d (where d|p−1)?

In other words, how many a ∈ Fp − {0} are such that ad = 1? Call this number kd. Now
we know that kd ≤ d because these are the roots of xd − 1 in Fp.

Lemma 1.0.26. kd = d.

Proof. We need only show that kd ≥ d by the above. Consider the map g(x) = x
p−1

d . How
many elements can have the same (p−1

d
)th power? No more than the number of solutions to

the polynomial x
p−1

d − a where a is their common power. So no more than p−1
d

. Hence, if we

group the p− 1 elements of Fp −{0} by their (p−1
d

)th power, we are grouping p− 1 elements

into groups of no more than p−1
d

. Hence, we have at least d groups. So there are at least d

different (p−1
d

)th powers.

And if b = a
p−1

d , bd = ap−1 = 1 by Fermat’s Little Theorem. So since there are at least
d different (p−1

d
)th powers, there are at least d distinct dth roots of unity. Hence kd ≥ d and

we are done.
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Theorem 1.0.27. Let d|p− 1. Then the number of primitive dth roots of unity in Fp − {0}
is φ(d).

Corollary 1.0.28. There exists a primitive root mod p.

The corollary follows by noting tht a primitive root mod p is just a primitive (p − 1)st

root of unity and φ(p− 1) ≥ 1.

Proof of theorem by induction on d. For the base case, we take d = 1 and note that a1 = 1
has the unique solution of a = 1 and φ(1) = 1.

Now assume the d > 1. Our inductive hypothesis is that our theorem is true for all d′ < d
where d′|d. So we need to count the elements which have order d. So let Pd be the set of such
elements and let Ud be the set of solutions of xd − 1. Now Ud =

⋃
d′|d Pd′ where the Pd′ are

disjoint. So we have

d = kd = |Ud| =
∑
d′|d

|P ′
d| = |Pd|+

∑
d′|d,d′ 6=d

φ(d′)

The last equality comes from our inductive hypothesis that for the d′ < d, |Pd| = φ(d).
By our earlier theorem the summation on the right is equal to d − φ(d). So we have that
d = |Pd|+ d− φ(d) and hence |Pd| = φ(d) as desired.

Definition 1.0.29. An element a ∈ Fp is a quadratic residue mod p if a 6= 0 and there is a
b such that a = b2.

Example 1.0.30. 2 is a quadratic residue mod 7 because 2 = 32 in F7.

Definition 1.0.31. An element a ∈ Fp is a quadratic nondesidue mod p if there is no b ∈ Fp

such that a = b2.

Definition 1.0.32 (The Legendre Symbol).

(
a

p

)
=


1 if a is a quadratic residue
−1 if a is a quadratic nonresidue
0 if a = 0

Theorem 1.0.33 (Euler). For odd primes p,
(

a
p

)
≡ a

p−1
2 (mod p).

Proof. Let b = a
p−1
2 . If a = 0, then b = 0 and the theorem holds. If a 6= 0, then b2 = ap−1 = 1.

So 0 = b2 − 1 = (b + 1)(b− 1) which implies that b− 1 = 0 or b + 1 = 0 and hence b = ±1.

If a is a quadratic residue mod p, then there is a c such that c2 = a and hence a
p−1
2 =

cp−1 = 1 by Fermat’s Little Theorem and the desired result holds.
Now consider the case where a is a quadratic nonresidue mod p. Now by the corollary

above, there is a primitive root mod p. Call it g. So ordp(g) = p−1 which implies that there
is an l such that gl = a. We call l the discrete log of a in Fp with base g.
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Lemma 1.0.34. a = gl is a quadratic residue mod p if and only if l is even.

If we can show the lemma, then we would know that for a a quadratic nonresidue, l

would be odd. So a
p−1
2 = g

l·(p−1)
2 . Since l is odd, it cannot cancel the 2 in the denominator

and hence l·(p−1)
2

would not be divisible by p − 1. Hence since the order of g is p − 1, this

means that a
p−1
2 = g

l·(p−1)
2 6= 1. By the above, this means that a

p−1
2 = −1 as desired.

Proof of Lemma. If l is even, then a = gl = (g
l
2 )2 and hence a is a quadratic residue.

Now assume that a is a quadratic residue. Then a = b2 for some b 6= 0. But then b = gs

for some s and hence gl = a = b2 = g2s and so g2s−l = 1. But g has order p − 1. Hence
(p− 1)|(2s− l). Since p is odd, p− 1 is even and hence 2|(p− 1). So 2|(2s− l). Since 2|2s,
this means that 2|l whence l is even.

Corollary 1.0.35. −1 is a quadratic residue mod p if and only if p ≡ 1 (mod 4) or p = 2.

Proof. For p = 2, 1 = −1 and so 12 = 1 = −1. So let p ≥ 3. So(
−1

p

)
= (−1)

p−1
2 =

{
1 if 4|p− 1
−1 if 4 6 |p− 1

Corollary 1.0.36. If p ≡ 1 (mod 4) then there is an a such that p|(a2 + 1) (i.e. a2 ≡ −1
(mod p)).

Experiment 1.0.37. Evaluate
(

2
p

)
experimentally.
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