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Recall that Euler’s ¢ function is defined so that ¢(n) is the number of integers between
1 and n that are relatively prime to n. Note that if p is prime then ¢(p) = p — 1 because all
integers from 1 to p — 1 are relatively prime to p.

So for example, what would be ¢(p”)? A number is not relatively prime to p” if and
only if it is a multiple of p. So the numbers at most p” which are not relatively prime to p”
are p,2p,3p,...,p - p°. So there are p% such numbers. Hence, ¢(p’) = p” — p® = p"(1 — 1%)
Another way of looking at this is that one out of every p numbers is divisible by p, and so
out of the first p” integers, the probability that an element is relatively prime to p” is (1 — %)

Now let’s consider

> o(d) =)+ o) + ... 0 =1+ @ -1+ @ —p)+...+ @ —1°

dlp”

Note that this is a telescoping sum, and so the result is p”. This leads us to wonder if we
get a similar result for all numbers.

Conjecture 1.0.1. >, ¢(n) =n

Now, consider pg where p and ¢ are primes. There are ¢ multiples of p that are at most pg
and there are p multiples of ¢ that are at most pq. The only number < pq that is a multiple
of both is pq itself. So we get that ¢(pq) = pg —p — ¢+ 1 where adding the 1 back is because
pq is both a multiple of p and a multiple of ¢ and so was counted twice. Note that we can

factorthisasgb(pq):(p—l)-(q—l)_So%:%.%:(l_%).(l_%)_

Exercise 1.0.2 (The Chinese Remainder Theorem). If we have integers my, ..., m,
such that each m; is relatively prime to m; for ¢ # j then system of congruences

r= aj(modm;) (1.0.1)
= as(modmy) (1.0.2)

: (1.0.3)

r=  ag(modmy) (1.0.4)

has a solution which is unique mod [[, ..., m;
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Now note that
> o(d) = 6(1) + ¢(p) + ¢lq) + d(pg) =1+ (p— 1)+ (¢ = 1)+ (pg—p—q+ 1) = pqg.

d|pq

So that’s more evidence for our conjecture.
It would be good to get an explicit formula for ¢(n).

Theorem 1.0.3. Ifn = pi* - - - pi*, where p; are distinct primes, then ¢(n) = n(l—pil) s (1=
)

Proof. Let Q = {1,...,n} and j be a random number in Q. Let A; be the subset of Q of
numbers which are not divisible by p;. The events j € A; are independent of each other
(which can be seen from the Chinese Remainder Theorem).

Note that the probability that a random number in €2 is relatively prime to n is just @
But also note that a number in €2 is relatively prime to n if and only if it is not divisible by
any of the p; (and that the probability of not being divisible by a particular p; is (1 — Z%))
Since these events are independent, we get the desired formula

Let G be a group and a € G.
Definition 1.0.4. The order of a, ord(a), is the smallest k > 1 such that a* = 1.
Exercise 1.0.5. a! = 1 if and only if ord(a)|l.

Consider the complex n'* roots of unity (i.e. the complex numbers z such that 2" = 1).
They are evenly spaced on the unit circle in the complex plane. Call them zy, ...z, 1 where
we have z; = cos(2Z) + isin(2£I).

h

Observation 1.0.6. z is an n'" root of unity if and only if ord(z)|n.

Definition 1.0.7. If ord(z) = n, then z is a primitive n'* root of unity.

Exercise 1.0.8. Show z; is a primitive n'* root of unity if and only if ged(k,n) = 1.

Therefore the number of primitive n® roots of unity is ¢(n).

Let U, = {20,...,2n_1}. How many of the z; have order d where d|n (i.e. the number
of primitive d"* roots of unity)? Let P; be the set of primitive d”* roots of unity. Then
U, = Udm P, and the P; are disjoint. So

n=Ud =) [Pl =) o(n)

dn dln

and we have proven the conjecture given earlier in the class.
For another proof, take the numbers %, %, ... . Put each of these fractions in their lowest

terms and look at the denominators d that you get (which are exactly the numbers which
divide n).



Exercise 1.0.9. Show that the number of occurences of the denominator d in this list is

¢(d) and finish the proof.
As a reminder, we restate

Theorem 1.0.10 (Fermat’s Little Theorem). If p is prime and gcd(a,p) = 1, then
a*'=1 (mod p).

Definition 1.0.11. The order of a mod p, ord,(a), is the smallest k¥ > 1 such that a* =
(mod p).

So Fermat’s Little Theorem can be restated as ord,(a)|(p — 1).
Definition 1.0.12. If p is prime then we say a is a primitive root mod p if ord,(a) = p — 1.
Theorem 1.0.13. For all primes p there is a primitive root mod p.

Before preparing for the proof, here’s a nice exercise.

Exercise 1.0.14. Find infinitely many 2x2 matrices A such that A% = I where I is the
identity matrix.

Let T be a field (for example it could be C, R,F,, Q, or Q[v/2] = {a + bv/2]a,b € Q}).

Definition 1.0.15. A multiplicative inverse of a mod m is a number z such that az = 1
mod m.

For example, since 3-5 =15 =1 (mod 7), we have that 5 = 37! (mod 7)

Exercise 1.0.16. Show that a has a multiplicative inverse mod m if and only if gcd(a, m) =
1.

Definition 1.0.17. Let f(z) = ag + a1z + ... a,a™ where a; € F and a,, # 0. Then we say
that the degree of f, deg(f), is n. A root of f is an element z € IF such that f(z) = 0.

Exercise 1.0.18. Find a quadratic polynomial with coefficients in Fy which does not have
a root in .

Theorem 1.0.19. For f as above, f has at most n roots in IF.

Lemma 1.0.20. If f(a) =0, then f(x) = (x — a) - g(x) for some polynomial g(z) over F.
This is a special case of the following lemma.

Lemma 1.0.21. f(z) — f(a) = (z — a) - g(x) for some polynomial g(x) over F.

Example 1.0.22. Let f(x) = z™. Then f(x) — f(a) = 2" —a" = (z — a) - ("' + ax" % +
a3 4 -+ a" 2z + a™ 1Y), One can see this by expanding out the right hand side and
noticing that it is a telescoping sum.



For the general case, it is not that much different from the example.

Proof of Lemma. Let f(x) =Y ¢;z’. Then

fl@) = fla) =) a@' —a) =) ale—a)-g(z) = (€ —a)- ) _g(2)

where the g; are polynomials.

]
Exercise 1.0.23. If F is a field and a,b € F, then a - b = 0 if and only if either a or b is 0.

Proof of the previous theorem. Let aq,...,a, be the distinct roots of f. So since f(a;) = 0,
we have that f(x) = (z — a1)fi(x). But we also have that f(a2) = 0, so we have that
(as — a1)fi(az) = 0. Since a; # az, we have that a; — as # 0 and hence fi(ay) = 0.
So we have that f(z) = (x — a1)(z — ag) fo(x). Continuing this argument we get f(x) =
(x —ay) - (x—a)fi(x). By looking at the degree of f, we see that [ can be no greater than
the degree of f, as desired.

[

Now, in F,, Fermat’s little theorem tells us that all a # 0 are roots of f(x) = 2P~! — 1.
So we get that f(z) = ([[,ep,_(0)( — @) - 9(z). Looking at degrees, we see that g(z) is a
constant polynomial, and looking at the coefficient of 2P~ on the left and right gives us that
g(x) = 1. So we have just proven

Theorem 1.0.24. InIF,,
1= [] (@-a).

a€lF,—{0}

Now, Fermat’s Little Theorem tells us that the order of every nonzero element in I, is a
divisor of p — 1.

Question 1.0.25. How many elements of F,, — {0} have order that divides d (where d|p—1)7

In other words, how many a € F, — {0} are such that a® = 1? Call this number k,;. Now
we know that k; < d because these are the roots of z% — 1 in F,.

Lemma 1.0.26. k; = d.

Proof. We need only show that k; > d by the above. Consider the map g(x) = 27 . How
many elements can have the same (’%l)th power? No more than the number of solutions to
the polynomial 2" — a where a is their common power. So no more than ’%1. Hence, if we
group the p — 1 elements of IF, — {0} by their (I%l)th power, we are grouping p — 1 elements
into groups of no more than ’%1. Hence, we have at least d groups. So there are at least d
different (2)" powers.

And if b = a%, b? = aP~! = 1 by Fermat’s Little Theorem. So since there are at least
d different (1%1)”1 powers, there are at least d distinct d™ roots of unity. Hence kq > d and
we are done. O



Theorem 1.0.27. Let d|p — 1. Then the number of primitive d roots of unity in F, — {0}
is ¢(d).

Corollary 1.0.28. There exists a primitive root mod p.

The corollary follows by noting tht a primitive root mod p is just a primitive (p — 1)%
root of unity and ¢(p — 1) > 1.

Proof of theorem by induction on d. For the base case, we take d = 1 and note that a! =1
has the unique solution of a =1 and ¢(1) = 1.

Now assume the d > 1. Our inductive hypothesis is that our theorem is true for all ' < d
where d'|d. So we need to count the elements which have order d. So let P, be the set of such
elements and let U, be the set of solutions of 2¢ — 1. Now Uy = |J | Py where the Py are
disjoint. So we have

d=ke=|Usl =) |Pil =Pl + Y o(d)

d'|d d'|d,d' #d

The last equality comes from our inductive hypothesis that for the d' < d, |Py| = &(d).
By our earlier theorem the summation on the right is equal to d — ¢(d). So we have that
d = |P;| + d — ¢(d) and hence |P;| = ¢(d) as desired. O

Definition 1.0.29. An element a € I, is a quadratic residue mod p if a # 0 and there is a
b such that a = b%.

Example 1.0.30. 2 is a quadratic residue mod 7 because 2 = 3% in .

Definition 1.0.31. An element a € F), is a quadratic nondesidue mod p if there isno b € I,
such that a = b?.

Definition 1.0.32 (The Legendre Symbol).

a 1 if a is a quadratic residue
(—) =< —1 if ais a quadratic nonresidue
p 0 ifa=0

Theorem 1.0.33 (Euler). For odd primes p, (%) =a"7 (mod p).

Proof. Let b= o'z . 1fa= 0, then b = 0 and the theorem holds. If @ # 0, then b* = a?~! = 1.
So0=10>—1=(b+1)(b— 1) which implies that b —1=0 or b+ 1 = 0 and hence b = +1.
If a is a quadratic residue mod p, then there is a ¢ such that ¢ = a and hence ' =
c?~! =1 by Fermat’s Little Theorem and the desired result holds.
Now consider the case where a is a quadratic nonresidue mod p. Now by the corollary
above, there is a primitive root mod p. Call it g. So ord,(g) = p— 1 which implies that there
is an [ such that ¢g' = a. We call [ the discrete log of a in F,, with base g.



Lemma 1.0.34. a = ¢' is a quadratic residue mod p if and only if | is even.

If we can show the lemma, then we would know that for a a quadratic nonresidue, [
_ 1-(p—1
would be odd. So a"z = g % Since [ is odd, it cannot cancel the 2 in the denominator

I-(p—1) .. . . .
pT would not be divisible by p — 1. Hence since the order of g is p — 1, this

and hence

means that a"z = gl'(pzfl) # 1. By the above, this means that a7 = —1 as desired.

Proof of Lemma. If [ is even, then a = ¢' = (g%)2 and hence a is a quadratic residue.
Now assume that a is a quadratic residue. Then a = b? for some b # 0. But then b = ¢°

for some s and hence ¢' = a = b* = ¢** and so ¢**! = 1. But g has order p — 1. Hence
(p —1)|(2s — ). Since p is odd, p — 1 is even and hence 2|(p — 1). So 2|(2s — ). Since 2|2s,
this means that 2|l whence [ is even. ]

]
Corollary 1.0.35. —1 is a quadratic residue mod p if and only if p = 1 (mod 4) or p = 2.

Proof. Forp=2,1=—1andso 12=1= —1. So let p > 3. So
1\ e 1 if4p—1
(5) - =L

Corollary 1.0.36. If p = 1 (mod 4) then there is an a such that p[(a® + 1) (ie. a* = —1
(mod p)).

]

Experiment 1.0.37. Evaluate (%) experimentally.



