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Lemma 1. A polynomial of degree n is uniquely determined by its value at
n + 1 distinct points xq, ..., x,.

Proof. Suppose f and g are degree n polynomials such that f(z;) = g(x;) for
i=0,...,n. Then f — g has degree < n but it has n + 1 roots (the x;), so
it must be the zero polynomial, hence f = g. O]

We now consider the question of the existence of a polynomial attaining
prescribed values at the n+ 1 points. Suppose we are given scalars g, ..., yn
and we want to find a polynomial f such that f(z;) = y; for all i. For each
fixed 1 =0, ..., n, notice that the polynomial
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satisfies fi(z;) = 1 and fi(xz;) = 0 for all j # i. Thus, we consider the

polynomial
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which clearly satisfies f(x;) = y; for all i. Since we already proved uniqueness,
we have the following:

Theorem 2 (Lagrange interpolation). Given any n + 1 distinct points
xo, ..., T, and any scalars yo,...,Yn, there exists a unique polynomial f
(given by the formula (1)) such that f(x;) = y; for all i.



The characteristic polynomial

If M € M,(k) then the n? + 1 matrices I, M, ..., M™ cannot be linearly
independent over k, since M, (k) is a k-vector space of dimension n?. Thus,
we can find scalars aq, ..., a,2 € k such that

aol+a1M—|—---+an2M”2 =0.

This shows that every n x n matrix M is a root of a polynomial of degree at
most n?. Our next goal is to prove the following:

Claim 3. Every M € M, (k) is a root of a degree n polynomial.

To see that this bound is sharp, consider the matrix with 1s on the first
super-diagonal:
0
0
: |

0o --- 0

For k = 1,...,n — 1, M* is the matrix with 1s on the kth super-diagonal
(you should check this), and M™ = 0. It follows that I, M,..., M™ ! are
linearly independent (over k), so M cannot satisfy a polynomial of degree

< n. Thus, M is a root of the polynomial ", but no polynomial of lower
degree, so the bound in the claim is sharp.

Definition 4. The characteristic polynomial of a matrix M € M, (k) is
chps(A) = det(A — M),
which is a degree n polynomial in the variable A\, with coefficients in k.
Notice that chy () has leading coefficient 1, so we can write it as
char(A) = A" + ap A" 14+ ag X + ag. (2)
Claim 3 will follow from the following important result:

Theorem 5 (Cayley-Hamilton). M is a root of chp ().



Before beginning the proof, recall how we defined the quasi-inverse of
a square matrix. Given a matrix A, we define a new matrix B by setting
bij = (—1)"*7 det Aj;, and we showed that AB = (det A)I. In particular,
B = (det A)A~Y if A is invertible.

Proof of theorem. Define a matrix B by setting
b = (—1)"7 det [(A] — M);],
and notice that
BA — M) =det(M — M) - I =chy(\)- 1. (3)
Now, B is a matrix of polynomials of degree < n — 1, so we can write
B =B, \"'4+ .-+ B+ B,, (4)

where B,,_1,..., By are constant scalar matrices. (This is just the natural
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isomorphism M, (k[\]) = M, (k)[A]: “a polynomial matrix equals a matrix
polynomial”.) Substituting (2) and (4) into (3) yields

(Bpoi A" 4o BIA+ Bo) (M — M) = (\" + ap A" 4 agh + a1
Equating coefficients of A\ gives a system of n + 1 equations:

—B()M = CL(]I
—BlM -+ BO = a1[

—BkM + Bk—l = CLk]

_Bn—lM + Bn—2 = CLn—ll
Bn,1 = ]

Multiply these equations by I, M, ..., M", respectively, and add them. The
RHS of this sum equals agl +a;M + ...a, M" ' + M™ = chy (M), while
the LHS telescopes to zero:

(=BoM )+ (—=Bi1M +By) - M+ ---+B,_1-M"=0,

hence chy; (M) = 0, as claimed. O



Definition 6. Let ¢ € Hom(V,V) be a linear transformation of a vector
space V. We say that 0 # v € V is an eigenvector of ¢ if ¢(v) = Av for some
A € k. We then say that A is the eigenvalue associated to v.

Given any A € k, we define V), = {v € V : ¢(v) = Av}. It is easy to check
that V) is a subspace of V. It is a nonzero subspace iff A is an eigenvalue of
¢, in which case we call V) the eigenspace associated to A. Finally, notice

that if A # p then VANV, = {0}.



