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1.1 The Limit of a Sequence

Let us begin by discussing some familiar series.

Example 1.1.1.

ζ(1) :=
∞∑

k=1

1

k
= ∞, (1.1.1)

that is, the sum diverges.

Example 1.1.2. (Euler 1700’s)

ζ(2) :=
∞∑

k=1

1

k2
=

π2

6
. (1.1.2)

This can be proved, as is done in Honors Analysis, using Parseval’s theorem from Fourier
analysis. Another proof using contour integrals is often presented in a course on complex
analysis.

However, just proving that the sum ζ(2) converges can be done in one line, by comparing
with a telescoping series:

ζ(2) =
∞∑

k=1

1

k2
< 1 +

∞∑
k=2

1

k(k − 1)
= 1 +

∞∑
k=2

(
1

k − 1
− 1

k

)
= 2. (1.1.3)
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Definition 1.1.3. In general, the zeta function, ζ(s), is defined for s > 1 by

ζ(s) =
∞∑

k=1

1

ks
. (1.1.4)

Exercise 1.1.4. ζ(s) < ∞ for all s > 1.

Exercise 1.1.5 (*). lim
s→1+

(s− 1)ζ(s) = 1.

This uses the standard

Definition 1.1.6. lim
x→x0

f(x) = L means (∀ε > 0)(∃δ > 0)(∀x)(|x−x0| < δ ⇒ |f(x)−L| < ε).

Here the quantifiers are:

(∃x) means “there exists x such that”; (1.1.5)

(∀x) means “for all x”. (1.1.6)

If L = ∞, then

Definition 1.1.7. lim
x→x0

f(x) = ∞ means (∀k)(∃δ > 0)(∀x)(|x− x0| < δ ⇒ f(x) > k).

If L is finite, and x0 = ∞, then

Definition 1.1.8. lim
x→∞

= L means (∀ε > 0)(∃M)(∀x)(x > M ⇒ |f(x)− L| < ε).

Quantified formulas like this can be viewed as a game between the universal player that
wants to make it false, and the existential player that wants to make it true. The formula
is true if the existential player has a winning strategy and false if the universal player has a
winning strategy.

There is a philosophy that says that each quantifier alternation in a definition results in
an order of magnitude increase in the difficulty of the concept defined. As we see above, this
fundamental definition in calculus involves three alternating quantifiers: this is one reason
why calculus is difficult. It is peculiar that in games such as chess, people deal with unlimited
alternation; yet when it comes to mathematics, very few will comprehend concepts defined
by several alternations of quantifiers.

Now let’s move on to a game some of you may be familiar with: The Divisor Game.
Consider the divisor diagram for 30:
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In this game, players alternate picking divisors of 30 and thereby erase that divisor and
all of its divisors from the divisor diagram. They can only pick divisors that are not already
erased (i.e., are not divisors of a number already picked). The loser is the player that ends
up having to pick 30.

As a special case, consider replacing the number 30 with a prime power pk so that the
diagram is just a line. Then the first player can always win by choosing the divisor pk−1.

Exercise 1.1.9. Prove that for ANY number n > 1, in the Divisor Game played on the
divisors of n, the first player has a winning strategy.

This is a proof of existence. It remains an open problem to find an explicit winning
strategy for any number n. This is open even for numbers of the form pkq` where p, q are
distinct primes.

For some special cases, you can actually write down an algorithm that expresses a winning
strategy.

Exercise 1.1.10. Find explicit winning strategies for numbers of the form pk · q, pk · qk, pqr,
and pqrs, where p, q, r, and s are distinct primes.

Note that the divisor diagram for 30, as a graph, is a three-dimensional cube. If we pick
the product of n distinct primes, its diagram will be an n-cube. That is, square-free numbers
have divisor diagrams which are hypercubes of dimension = the number of prime factors.
Even for these we do not know any general explicit strategy.

1.2 Arithmetic Functions

Let’s continue our exploration of divisors by studying some functions.

Definition 1.2.1. For any number n = pk1
1 pk2

2 · · · pkr
r where the pi are distinct primes, let

d(n) be the number of positive divisors of n (including n).
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For example, d(30) = 8. In general, the divisors of n are the numbers p`1
1 · · · p`r

r for
0 ≤ `i ≤ ki. One sees therefore that

d(n) = (k1 + 1)(k2 + 1) · · · (kr + 1). (1.2.1)

We see that

Corollary 1.2.2. If gcd(a, b) = 1, then d(ab) = d(a)d(b).

On the other hand, for a = pk, b = p`, d(a) = k + 1, d(b) = ` + 1, and d(ab) = k + ` + 1 <
(k + 1)(` + 1). This motivates the following:

Definition 1.2.3. An arithmetic function is a function f : Z+ → C.

Definition 1.2.4. A multiplicative function is an arithmetic function such that (∀a, b ∈
Z+)(gcd(a, b) = 1 ⇒ f(ab) = f(a)f(b)).

Example 1.2.5. Examples of multiplicative functions include d(n) and Euler’s ϕ-function,
which is discussed later.

Examples of totally multiplicative functions (f(ab) = f(a)f(b) for all a, b): the identity
function id, given by id(n) = n; the one function 1(n) = 1,∀n, or more generally, f(n) = nk

for any k ≥ 0. Any totally multiplicative function is multiplicative, but not vice-versa.

Definition 1.2.6. σ(n) = the sum of the divisors of n.

This is also multiplicative!

Definition 1.2.7. ν(n) = the number of distinct prime divisors of n. Specifically, ν(n) = r

if n =
r∏

i=1

pki
i .

Now, ν(n) is not multiplicative, but rather additive:

Definition 1.2.8. A function is additive if (∀a, b)(gcd(a, b) = 1 ⇒ f(ab) = f(a) + f(b)).

Observation 1.2.9. If f(x) is additive, then ef(x) is multiplicative.

Note that ν(n) is not totally additive. One standard example of a totally additive
function is k log n. But there are other totally additive functions, such as:

Definition 1.2.10. ν∗(n) = the total number of prime divisors =
∑

ki.

Example 1.2.11. As another example, consider gab(n) :=
∏

pi (for n =
∏

pki
i ), which is

multiplicative.
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1.3 Asymptotics and Primes

Definition 1.3.1. Two sequences {an} and {bn} are asymptotically equal, denoted an ∼
bn, if lim

n→∞
an

bn
= 1.

Example 1.3.2. For example, 5n3 + 3n2 − πn3/2 +
√

log n ∼ 5n3.

Observation 1.3.3. an ∼ bn and bn ∼ cn implies an ∼ cn, since an

cn
= an

bn

bn

cn
.

Example 1.3.4 (Stirling’s Formula).

n! ∼
(

n

e

)n√
2πn. (1.3.1)

Exercise 1.3.5. Show that (
2n

n

)
∼ c · dn · nb. (1.3.2)

Also determine what c, d, and b are.

Another important question in mathematics is determining the frequency of prime num-
bers. To this end, we make the following definition:

Definition 1.3.6. π(x) = the number of primes ≤ x.

Example 1.3.7. For example, π(10) = 4: namely 2, 3, 5, 7. Also, π(100) = 25 and π(π) = 2.

We now state one of the most beautiful results of all of mathematics:

Theorem 1.3.8 (Prime Number Theorem).

π(x) ∼ x

ln x
. (1.3.3)

This was conjectired by Gauss in the early 19th century and proved by Jacques Hadamard
and Pierre de la Vallée-Poussin in 1894. (De la Vallée-Poussin was Belgian; Hadamard
was French. In Hadamard’s name, the “H” in the front and the “d” at the end are silent,
presumably to confuse foreigners.) That is, the frequency of primes up to x is asymptotically
1/ ln x:

π(x)

x
∼ 1

ln x
. (1.3.4)

Example 1.3.9. The probability that a random 100-digit integer is prime, is about
1

ln 10100
=

1

100 ln 10
≈ 1

230
.

Let us denote the n-th prime number by pn.
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Exercise 1.3.10. The Prime Number Theorem is equivalent to the asymptotic relation
pn ∼ n ln n.

Exercise 1.3.11.
∏

p<x p is approximately equal to ex; the exact meaning of this statement
is that the logarithms of the two sides are asymptotically equal:∑

p≤x

ln p ∼ x. (1.3.5)

Using the Prime Number Theorem, one sees that∑
p prime

1

p
= ∞. (1.3.6)

In fact, ∑
p≤x

1

p
∼ ln ln x. (1.3.7)

This latter equation follows from the integral comparison test of calculus, using the version
pn ∼ n ln n of PNT. We shall, however, prove the divergence of the series

∑
1/p without

using the PNT (below).
For the proof we shall need to know the rate at which the harmonic series

∑
1/n diverges.

n∑
k=1

1

k
< 1 +

∫ n

1

dx

x
= 1 + ln n. (1.3.8)

Similarly, we have the following comparison:

Exercise 1.3.12.
∑n

k=1
1
k

> ln n.

Corollary 1.3.13.

ln n <
n∑

k=1

1

k
< 1 + ln n. (1.3.9)

We can then use the Sandwich Theorem, (also known as the Two Policemen Theorem in
Hungary, since “if two police officers converge to the station, then the suspect between them
also converges to the station”), to show that the asymptotic equality

n∑
k=1

1

k
∼ ln n. (1.3.10)

Now let’s compare this with the sum
∑′ of 1

n
over all integers without the digit 8:

Exercise 1.3.14.
∑′ 1

n
< ∞.

Exercise 1.3.15. In fact,
∑′′ 1

n
< ∞, where the sum is over all integers without the string

2006.
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Here is an interesting result:

Theorem 1.3.16 (Dirichlet’s Theorem). The sequence an + b contains infinitely many
prime numbers unless gcd(a, b) 6= 1.

Now we come to the first nontrivial proof:

Theorem 1.3.17. ∑
p≤n

1

p
≥ ln ln n− 1. (1.3.11)

Proof. We have

ln n <

n∑
k=1

1

k
<

∏
p≤n

1

1− 1
p

=
∏
p≤n

(
1 +

1

p
+

1

p2
+ . . .

)
=

∑
′′′ 1

m
, (1.3.12)

where the
∑′′′ is the sum over all integers of which all prime divisors are ≤ n. To show

the first equality, we use the geometric series
1

1− x
= 1 + x + x2 + . . .. This equality then

explains the second < sign.

Next, taking ln of the above inequality, we have ln ln n < −
∑
p≤n

ln

(
1− 1

p

)
. We can now

use the Taylor series, which says that − ln(1− x) = x +
x2

2
+

x3

3
+ . . ., if |x| < 1. So we get

ln ln n <
∑
p≤n

1

p
+

1

2

∑
p≤n

1

p2
+

1

3

∑
p≤n

1

p3
+ . . . . (1.3.13)

Using that
∑
p≤n

1

p2
< 1 and similarly for p3, etc., one gets

ln ln n <
∑
p≤n

1

p
+

1

2
+

1

4
+

1

8
+ . . . <

∑
p≤n

1

p
+ 1. (1.3.14)

This completes the proof.

The following similar statement is more difficult to prove:

Exercise 1.3.18 (*). ∑
p≤n

1

p
∼ ln ln n (1.3.15)

Interlude: Paul Erdős and Paul Turán were both famous as high school students for
sending in the most elegant solutions to problems designed for high schoolers. These prob-
lem contests promised to publish the most elegant solutions together with the authors’
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photographs, which provided great incentive to solve them. In college, Erdős was really
intrigued to learn why the sum of the reciprocals of the primes diverges, since his father,
who was also a mathematician, could not tell him. Erdős thus sought Turán, and upon
recognizing his face from the contest photos exclaimed, “You are Turán! Tell me why the
sum of the reciprocals of the primes diverges!” Thenceforth Erdős became the magician of
prime numbers.

Around the end of World War II was a bad time to be in Hungary. Turán and Erdős
were Jewish and were in danger. Anticipating this, Erdős had already left Hungary for the
United States, but Turán remained in Hungary. Somehow he managed to escape from a
cell and survive for a few days while the Nazis were driven out by the Soviets, but then
he was captured by the Soviets and asked for his ID, which was a problem since it had
been confiscated by the Nazis. However, he did carry a reprint of a paper published with
Erdős in a Soviet journal, which he showed the officer instead. This publication by two
Jewish Hungarians in a Soviet journal impressed the officer enough that he let Turán go.
Subsequently Turán wrote to Erdős to tell him of his new, unexpected application of number
theory.

Question 1.3.19. How fast can ν grow?

Let’s consider 1, . . . , x with 1 < n < x. To maximize ν, we want n to be a product of the

primes up to some y. That is, n := 2 · 3 · 5 · · · =
∏
p<y

p ≤ x. Here we have by Exercise 1.3.11

that
∏
p<y

p ≈ ey. Thus we should take n :=
∏

p≤ln x

p, and then the Prime Number Theorem

says that ν(n) = π(ln x) ∼ ln x

ln ln x
.

Definition 1.3.20. an . bn if an ∼ min{an, bn}.

This is called an asymptotic inequality. The discussion above motivates the following
exercise:

Exercise 1.3.21. ν(n) .
ln n

ln ln n

One may also show that the average value of ν(n) for n ≤ x is ln ln x. Let’s explore what
this means and how to prove it. We will make use of δ-notation:

Definition 1.3.22.

δ(statement) =

{
1, if “statement” is TRUE;

0, otherwise.
(1.3.16)

By definition we can thus see that

ν(k) =
∑

p

δ(p | k), (1.3.17)
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where “p | k” means “p divides k”, i.e. p is a divisor of k. Now, if n is an integer, then

1

n

n∑
k=1

ν(k) =
1

n

n∑
k=1

∑
p≤n

δ(p | k) =
1

n

∑
p≤n

n∑
k=1

δ(p | k) =
1

n

∑
p≤n

n

bpc
, (1.3.18)

where b·c is the floor or greatest integer function, returning the greatest integer ≤ the
quantity inside.

Combining the above equalities with Theorem 1.3.17, we then have

ln ln n ∼
(∑

p≤n

1

p

)
− 1 =

1

n

(∑
p≤n

(
n

p
− 1

))
<

1

n

n∑
k=1

ν(k) <
1

n

∑
p≤n

n

p
=

∑
p≤n

1

p
∼ ln ln n.

(1.3.19)
By the Two Policemen Theorem, all quantities in the above equation are asymptotic. In
other words, we have just proved the following theorem about the average value of ν(n):

Theorem 1.3.23.
1

n

n∑
k=1

ν(k) ∼ ln ln n. (1.3.20)

Exercise 1.3.24.
1

n

n∑
k=1

ν∗(k) ∼ ln ln n. (1.3.21)

Exercise 1.3.25 (*). Prove that ν∗(n) ≤ log2 n.

Note that ν∗(n) can be as large as log2(n), since ν∗(2r) = r.

Question 1.3.26. What can we say about the behavior of ν around the mean: does it
deviate much?

The standard deviation is defined to answer precisely such questions. Hardy and
Ramanujan computed the variance of ν, which is the square of the standard deviation:

Theorem 1.3.27. (Hardy-Ramanujan)

1

n

n∑
k=1

(
ν(k)− ln ln n

)2 ∼ ln ln n. (1.3.22)

Corollary 1.3.28. The standard deviation of ν(n) is
√

ln ln n.

Exercise 1.3.29 (*). Turán came up with a beautiful elementary proof of this Corollary.
Now that you know it exists, you can find it!
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In 1949, Erdős attended a lecture by Kac in which a conjecture was posed about the
distribution of primes. After the lecture, Erdős approached Kac and said he thought he could
prove the result, but just needed to know one thing. (This “one thing” was the Central Limit
Theorem, which any mathematician would know.) After this and other contributions, they
proved the result and published it in a joint paper. The theorem says that the distribution
of primes is asymptotically normal, if you recenter the bell curve to have mean ln ln n and
standard deviation

√
ln ln n. One can get this bell curve by scaling x and renormalizing the

function
1√
2π

e−
x2

2 .

Theorem 1.3.30. (Erdős-Kac)

Pr
k≤n

(
ν(k)− ln ln n√

ln ln n
< x

)
∼ 1√

2π

∫ x

−∞
e−t2/2dt. (1.3.23)

This says that the ν function behaves as the sum of small independent quantities. This
makes sense because the event of being divisible by 2, 3, 5, etc., are basically independent.
But how far can that go? Only up to log, and so the proof of this is quite difficult: even
taking the larger prime numbers into account, as a whole, it still behaves as if divisibility
were independent events.

1.4 More Arithmetic Functions

Definition 1.4.1. We define Euler’s ϕ function as follows:

ϕ(n) = #{k : 1 ≤ k ≤ n and gcd(k, n) = 1}. (1.4.1)

Note that we have the following equality:

ϕ(n) = n ·
∏
p|n

(
1− 1

p

)
. (1.4.2)

Example 1.4.2. ϕ(p) = p− 1 and ϕ(pk) = pk − pk−1 = pk(1− 1/p).

Exercise 1.4.3. ϕ is multiplicative. That is, if gcd(a, b) = 1 then ϕ(ab) = ϕ(a)ϕ(b).

As a result, we conclude that if n =
r∏

i=1

pki
i , then

ϕ(n) =
r∏

i=1

pki
i

(
1− 1

pi

)
= n

r∏
i=1

(
1− 1

pi

)
. (1.4.3)

Now, Pr
1≤k≤n

(gcd(k, n) = 1) =
ϕ(n)

n
=

∏
p|n

(
1− 1

p

)
.
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Question 1.4.4. Can the product
∏
p|n

(
1− 1

p

)
be less than 1

100
?

Since n :=
∏
p≤x

p ≈ ex, then we see that

ϕ(n)

n
=

∏
p≤x

(
1− 1

p

)
(1.4.4)

Exercise 1.4.5 (Important Exercise!). Does∏
p

(
1− 1

p

)
= 0 ? (1.4.5)

Exercise 1.4.6. Show that

lim
n→∞

n∑
k=1

ϕ(k)

n2
=

3

π2
=

1

2ζ(2)
. (1.4.6)

HINT: Prove this under the assumption that the limit exists.

Definition 1.4.7. Define F (n) :=
∑
k|n

ϕ(k).

Example 1.4.8. For example, F (6) = ϕ(1) + ϕ(2) + ϕ(3) + ϕ(6) = 1 + 1 + 2 + 2 = 6. Also,
F (7) = ϕ(1) + ϕ(7) = 1 + 6 = 7.

Exercise 1.4.9. Show F (n) = n.

Definition 1.4.10. Define f(n) :=

{
1, if n = 1,

0, otherwise.

If we have a function g such that

f(n) =
∑
d|n

g(d), (1.4.7)

then 1 = f(1) = g(1). Furthermore, 0 = f(p) = g(1) + g(p) implies that g(p) = −1 for any
prime p. Similarly, 0 = f(pq) = g(1) + g(p) + g(q) + g(pq) = 1− 2 + g(pq) implies g(pq) = 1.
One also obtains g(pqr) = −1 and g(p2) = 0 in a similar manner.

So in fact g is the Moebius function, µ (“mu”), which is defined as follows:

Definition 1.4.11.

µ(n) :=

{
(−1)ν(n), if n is square-free,

0, otherwise.
(1.4.8)
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We can then see that ∑
d|n

µ(d) =

{
1, if n = 1,

0, otherwise.
(1.4.9)

The above observation naturally leads to Moebius Inversion.

Theorem 1.4.12. Suppose F : Z+ → C and G(n) :=
∑
d|n

F (d). Then

F (n) =
∑
d|n

µ

(
n

d

)
G(d). (1.4.10)

Exercise 1.4.13. If F is multiplicative, show that so is G, and vice-versa.

Exercise 1.4.14. Deduce from Moebius inversion that

1. ϕ(n) = n
∏(

1− 1

p

)
;

2. ϕ is multiplicative.

Exercise 1.4.15. Contemplate
∞∑

n=1

µ(n)

n
. (1.4.11)

Is there any convergence?

Recall the definition of the zeta function, ζ(s) =
∞∑

n=1

1

ns
.

Exercise 1.4.16. Show that ζ(s)(ζ(s) − 1) =
∑ σ(n)

ns
, recalling that σ(n) is the sum of

divisors.

Exercise 1.4.17. ζ(s) =
∏

p

1

1− 1
ps

.

Exercise 1.4.18.
1

ζ(s)
=

∞∑
n=1

µ(n)

ns
.

Exercise 1.4.19. (ζ(s))2 =
∞∑

n=1

d(n)

ns
.

Definition 1.4.20. A partition of a positive integer n is a representation of n as a sum of
positive integers: n = x1 + · · ·+ xk, where x1 ≤ · · · ≤ xk.
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Example 1.4.21. A partition here is something like 7 = 1 + 1 + 2 + 3. For other examples,
refer to Handout 2, Definition 2.2.14.

Definition 1.4.22. Define the partition function, p(n), to be the number of partitions of
n.

A very nontrivial result of Hardy-Ramanujan describes the growth of p(n):

Theorem 1.4.23 (Hardy-Ramanujan Formula).

p(n) ∼ 1

4
√

3n
e
√

2
3
π
√

n. (1.4.12)

The important thing is the form
c1

n
ec2

√
n. This theorem is difficult, but the following

exercise should take only 15 minutes:

Exercise 1.4.24. Prove that there exists c, d such that ec
√

n < p(n) < ed
√

n, for large n.

As a step toward proving the Hardy-Ramanujan Formula, we shall show next time that

p(n) < e
√

2
3
π
√

n. (1.4.13)

13


