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Today’s topic will be Primality Testing. Assume that we have a large number with
thousands of digits, and we want to know whether or not it is prime. For a long time, this
problem was equated with factoring a number. Factoring, however, remains intractible with
no efficient algorithms for computer computations. We shall discuss efficient algorithms for
determining whether a number is prime.

10 The Monte Carlo Algorithm

We shall discuss algorithms of the following form. We input a number n, and the outcome
is either prime or it is composite. Compositeness will be certified and a proof that n is
composite, or certificate, is presented. The prime outcome, by contrast, is correct ≤ 50% of
the time. To improve this probability, we can use this algorithm repeatedly with the same
number n. Note that there is nothing random about the input number. The number n is
either prime or it is not. The challenge becomes to think of certificates of compositeness
that are somehow easy to find.

10.1 Mersenne and Fermat Primes

The largest known prime number is a Mersenne prime, or a prime number of the form
2p − 1. Numbers of the form 2p − 1 are called Mersenne numbers, not all of which are
prime. For example, 211 − 1 is not prime.

Exercise 10.1.1. If 2k − 1 is prime, then k is prime.

There are special methods to test Mersenne numbers for primality. The exponents can
be in the millions, and there exist algorithms that can determine whether a given Mersenne
number is prime.
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Exercise 10.1.2. If 2k +1 is prime, then k = 2m for some m. Numbers of the form 2(2m)+1
are called Fermat numbers.

The first five Fermat numbers are all prime: 3, 5, 17, 257, 65,537. We strongly believe
that only a finite number of Fermat numbers are prime. By contrast, we believe strongly
that infinitely many of the Mersenne numbers are prime.

Let’s think about how we can prove that the sixth Fermat number F6 = 232 + 1 is
composite. Recall that by Fermat’s Little Theorem we have that 3p−1 ≡ 1 mod p. Thus, if
we could prove that 3F6−1 6≡ 1 mod F6, we would know that F6 is not prime. Let us call
this the “Fermat Test”: Given n and a, is an−1 ≡ 1 mod n? If 1 ≤ a ≤ n − 1 and (n, a)
fails the Fermat test, then we will say that “a is a Fermat witness of compositeness of n.”
By Fermat’s Little Theorem, if a number n has a Fermat witness, then n is composite.

10.2 Carmichael Numbers

Definition 10.2.1. An integer n is a Carmichael number if (∀a)(gcd(a, n) = 1 then
an−1 ≡ 1 mod n) and n is not a prime.

Equivalently, note that n is a Carmichael number if n is composite, but has no Fermat
witness.

We shall proceed with “worst-case analysis” of primality. Specifically, we assume that the
number n is given by an adversary who knows what algorithm we are going to use to decide
whether or not n is prime. We are interested both in guaranteeing that the computation can
be carried out in finite time and that the outcome will be correct.

Suppose we have a number that is composite, but not Carmichael, so there is a Fermat
witness. Assume that n is a k-digit integer, where k ≈ 1000. How do we find a Fermat
witness?

If n = pq for two distinct primes p and q, then how many numbers are there that are

relatively prime to n? We can compute that
ϕ(pq)

pq
= (1 −

1

p
)(1 −

1

q
), so that the density

of integers from 1 to pq that are not relatively prime to pq is
1

p
+

1

q
−

1

pq
. There are better

algorithms than testing every number smaller than n, as this calculation might suggest.

Observation 10.2.2. Consider Z
×
n , the multiplicative group of integers mod n. Concretely,

Z
×
n = {i | 1 ≤ i ≤ n, gcd(i, n) = 1}. Note that |Z×

n | = ϕ(n).

Exercise 10.2.3. Prove that Z
×
n is a group under multiplication mod n.

Theorem 10.2.4 (Lagrange’s Theorem). If H ≤ G is a subgroup of a group G, then |H|
divides |G|.

Corollary 10.2.5. In particular, if H 6= G, then |H| ≤ 1
2
|G|.

Now define Z
×
n ⊃ M := {non-witnesses} = {i ∈ Z

×
n | in−1 ≡ 1 mod n}.
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Claim 10.2.6. M ≤ Z
×
n is a subgroup.

Proof. Note that the subset is closed under multiplication. Since 1 ∈ M , then if i, j ∈ M ,
then (ij)n−1 = in−1jn−1 ≡ 1 · 1 = 1 mod n.

Is it possible that M = Z
×
n ? Yes, exactly if n is a Carmichael number.

Here is another possible algorithm for testing primality. Input an integer n, and pick a
random number a such that 1 ≤ a ≤ n − 1. Then,

1. if gcd(a, n) = 1, output “COMPOSITE”

2. if an−1 6≡ 1 mod n, output “COMPOSITE”.

3. else, output “PRIME OR CARMICHAEL”.

Theorem 10.2.7. If n is not prime or Carmichael, then P (output “COMPOSITE”) ≥ 1
2
.

Proof. If a does not catch the compositeness of n, then a ∈ M . Thus, the probability that
this algorithm won’t catch compositeness is |M |

n
< 1

2
, since |M | ≤ ϕ(n)

2
< n

2
.

Exercise 10.2.8. Carmichael numbers exist.

1. Show that 561 is a Carmichael number.

2. Show that 561 is the smallest Carmichael number.

3. Find the second smallest Carmichael number. (Hint: It is less than 2000!)

Theorem 10.2.9. There are infinitely many Carmichael numbers.

Exercise 10.2.10. If n = pq for p, q prime, then n is not a Carmichael number.

10.3 Carmichael Numbers are Square-Free

Theorem 10.3.1. If n is Carmichael, then n is square-free; i.e., n is a product of distinct

primes.

Definition 10.3.2. Let G be a group, and a ∈ G. The order of a is the smallest k ≥ 1
such that ak = 1. We shall denote the order by oG(a).

Claim 10.3.3. at = 1 ⇐⇒ oG(a)|t.

Proof. Suppose that oG(a)|t. Then at = (aoG(a))s = 1s = 1. Conversely, suppose that at = 1.
Then the Division Algorithm says that we may write t = oG(a)q+r, where 0 ≤ r ≤ oG(a)−1.
Thus, at−r = aoG(a)q = 1 and so 1 = at = arat−r = ar and in particular, ar = 1. But since
r < oG(a), this contradicts the definition of t as oG(a).
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Proof of Theorem 10.3.1. We shall proceed by contradiction. Suppose that p2|n for some
prime p and that n = psm, where gcd(m, p) = 1. Consider op2(pm + 1), where we denote
by op2 the order in the group Z

×
p2 . Note that p does not divide pm + 1, and any other

prime divisor of n is a divisor of m, and so it does not divide pm + 1. Thus we see that
gcd(pm+1, n) = 1. Therefore, (pm+1)n−1 ≡ 1 mod n, since n is Carmichael by hypothesis.
Further, (pm + 1)n−1 ≡ 1 mod p2, and so op2(pm + 1)|n − 1.

Now, (pm+1)p = (1+pm)p = 1+p2m+

(

p
2

)

p2m2+· · · ≡ 1 mod p2. Thus op2(pm+1)|p.

But note that op2(pm + 1) = 1 ⇐⇒ pm + 1 ≡ 1 mod p2; i.e., p2|pm and so p|m, which is
a contradiciton. Thus, op2(pm + 1) = p and so p|n − 1, which can only happen if p|1 since
p|n, our final contradiction.

10.4 Quadratic Residues

One of Gauss’s great early discoveries, the Theorem of Quadratic Reciprocity, shall now be
of use to us. We now review the basic properties and definitions of quadratic residues.

Definition 10.4.1. Let p be a prime. We say that a is a quadratic residue mod p if
(∃x)(x2 ≡ a mod p and x 6≡ 0 mod p).

Example 10.4.2. In the integers mod 5, we have x = ±1,±2 and so x2 = 1, 4. The
residues are {1, 4}. The non-residues are {2, 3}.

Example 10.4.3. If we compute mod 7, then we have x = ±1,±2,±3, so that x2 = 1, 4, 2.
The quadratic residues are {1, 2, 4}, and the non-residues mod 7 are {3, 5, 6}.

Claim 10.4.4. The number of quadratic residues is p−1
2

and so the number of non-residues

is also p−1
2

.

Exercise 10.4.5. Prove that if x2 = y2 mod p, then x ≡ ±y mod p.

Definition 10.4.6. The Legendre symbol is defined to be

(

a

p

)

=











1 if a is a quadratic residue mod p

−1 if a is a non-residue mod p

0 if a ≡ 0 mod p

Exercise* 10.4.7.

(

−1

p

)

= 1 ⇐⇒ p ≡ 1 mod 4

Exercise* 10.4.8. a
p−1

2 ≡

(

a

p

)

mod p

Theorem 10.4.9. The Legendre symbol is multiplicative; i.e.,

(

a

p

)(

b

p

)

=

(

ab

p

)

.
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Proof. If
(

a
p

)

or
(

b
p

)

= 0, then p|ab as well. Assume that p does not divide a or b. Then we

have four cases:

1. If
(

a
p

)

=
(

b
p

)

= 1, then x2 ≡ a mod p and y2 ≡ b mod p. Thus we need to find a z

such that z2 ≡ ab mod p. Take z = xy.

2. If
(

a
p

)

= 1 and
(

b
p

)

= −1, then we need to prove that
(

ab
p

)

= −1. Assume that
(

ab
p

)

= 1. Then we have x2 ≡ a mod p and y2 ≡ ab mod p and we need to find a z

such that z2 ≡ b mod p. Take z = y

x
. Then xz ≡ y mod p, and we can solve for z.

3. If
(

a
p

)

= −1 and
(

b
p

)

= 1, the argument is the same as in Case (2).

4.
(

a
p

)

=
(

b
p

)

= −1, and we need to prove that
(

ab
p

)

= 1. Let R denote the set of

quadratic residues mod p and N the set of non-residues. Consider the set of numbers
{1, 2, . . . , p−1} = R∪N . Then aR ⊂ N by the previous case, and since R and N have
the same cardinality, we may conclude that aR = N . Similarly, aN = R, since there is
no room for more numbers in N . (Here we have used the basic fact that multiplication
by a permutes the set {1, 2, . . . , p − 1} mod p.)

Another proof of this uses Group Theory. Let R and N be as above.

Claim 10.4.10. R ≤ Z
×
p .

Further, note that the index of R in Z
×
p is [Z×

p : R] =
|Z×

p |

|R|
=

p − 1
p−1
2

= 2. So for a /∈ R,

we have that Z
×
p = R ∪ aR, and aR is the only coset. Therefore aN = R.

Theorem 10.4.11 (Law of Quadratic Reciprocity). If p, q, are odd primes, then

(

p

q

) (

q

p

)

=

(−1)
p−1

2

q−1

2 .

Example 10.4.12. Euler’s Formula:

(

−1

p

)

= (−1)
p−1

2

Example 10.4.13. Gauss’s Formula:

(

2

p

)

= (−1)
p2

−1
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Example 10.4.14.

(

83

107

)

=

(

107

83

)

(−1)
107−1

2

83−1

2 = −

(

107

83

)

= −

(

24

83

)

= −

(

2

83

)3 (

3

83

)

=
(

3

83

)

=

(

83

3

)

(−1)
83−1

2

3−1

2 = −

(

83

3

)

= −(
2

3
) = 1. (Here we have used that

(

2
83

)

=

(−1)
83

2
−1

8 = −1.) Thus we see that 83 is indeed a quadratic residue mod 107.

Exercise 10.4.15. The number of rounds in Euclid’s algorithm for two integers a and b is
< 2 log2 a.
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