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Scribe: Travis Schedler
Editor: Duru Türkoğlu
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11 Primality Test (Continued)

11.1 Chinese Remainder Theorem for Primality Test

Theorem 11.1.1 (Chinese Remainder Theorem). Consider the equations:

x ≡ a1 (mod m1)

x ≡ a1 (mod m2)

...

x ≡ ak (mod mk)

If (∀i 6= j)(gcd(mi,mj) = 1), then there exists a solution x.

Exercise 11.1.2. Prove the Chinese Remainder Theorem.

Now, we consider the equation x2 ≡ 1 (mod m).

Question 11.1.3. When does this congruence have solutions other than ±1 (mod m)?

1. No nontrivial solution exists if m is prime.

Proof. x2 ≡ 1 (mod p) which by definition implies

p | x2 − 1 = (x − 1)(x + 1)

Therefore,

p | x + 1 ⇒ x ≡ −1 (mod p) or p | x − 1 ⇒ x ≡ 1 (mod p)
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2. No nontrivial solution exists if m = 2p.
For p = 2, x is odd implies x ≡ ±1 (mod 4).
For p 6= 2 we have 2p | (x − 1)(x + 1), which is equivalent to 2 | (x − 1)(x + 1) and
p | (x − 1)(x + 1). By the first part,

2 | (x − 1)(x + 1) ⇔ x ≡ ±1 (mod 2)

p | (x − 1)(x + 1) ⇔ x ≡ ±1 (mod p)

Therefore, there are altogether two solutions (modulo 2p):

x ≡ 1 (mod p)

x ≡ 1 (mod 2)

}

⇔ x ≡ 1 (mod 2p); (11.1.1)

x ≡ −1 (mod p)

x ≡ −1 (mod 2)

}

⇔ x ≡ −1 (mod 2p). (11.1.2)

3. Does a nontrivial solution exist if m = 4p, p is an odd prime?
We need 4p | (x − 1)(x + 1).

Claim 11.1.4. If n = 4p, p ≥ 3 prime, then ∃ nontrivial solution.

Proof.

x2 ≡ 1 (mod 4p) ⇔

{

x2 ≡ 1 (mod 4) ⇔ x ≡ ±1 (mod 4)

x2 ≡ 1 (mod p) ⇔ x ≡ ±1 (mod p)
(11.1.3)

Choose x ≡ 1 (mod 4) and x ≡ −1 (mod p): then there exists a nontrivial x to satisfy
Eq. 11.1.3, by Theorem 11.1.1 (CRT).

Theorem 11.1.5. If n = r · s, gcd(r, s) = 1, and r, s ≥ 3, then a nontrivial x exists to

satisfy x2 ≡ 1 (mod n).

The proof follows in the lines of the proof of the third case. The cases which are NOT
covered by the above theorem are: pk and 2 · pk.

Exercise 11.1.6. Decide the status of these numbers (status means the truth value of
(∃nontrivial x)(x2 ≡ 1 (mod n)).)

Now, the purpose of all this: PRIMALITY TEST. Remember that if p is prime, p - a,
then by Fermat’s `ittle Theorem (F`T),

a
p−1

2 ≡ ±1 (mod p), (11.1.4)

because

ap−1 ≡ 1 (mod p). (11.1.5)

Here we think of a
p−1

2 as x and ap−1 as x2.
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11.2 A Simple Primality Test

The PRIMALITY TEST goes as follows: Given an odd integer n ≥ 3. Pick random integers
a1, . . . , ak such that 1 ≤ ai ≤ n − 1. Then

1. if (∃i)(gcd(ai, n) 6= 1) halt COMPOSITE

2. else if (∀i)(a
n−1

2

i ≡ 1 (mod n)) halt COMPOSITE

3. else if (∀i)(a
n−1

2

i ≡ ±1 (mod n)) halt PRIME

4. else halt COMPOSITE

Note that this algorithm can make both types of mistakes: can either say a number is
composite if it is prime, or say that a number is prime if it is not. Nonetheless,

Theorem 11.2.1. (∀n)(Pr(error) ≤ 1

2k ).

Proof. Case (a): n is prime. An error cannot occur in line 1. We cannot reach line 4 because

a
p−1

2 ≡ ±1 (mod p). So Pr(error) = Pr(error in line 2) = 1

2k . Because half of the numbers
have a quadratic residue 1.

Case(b) n is composite. Before going on, let us make the definitions

Z×

n = {a | 1 ≤ a ≤ n − 1, gcd(a, n) = 1} (11.2.1)

R = {a | an−1 ≡ 1 (mod n)} (11.2.2)

H = {a | a
n−1

2 ≡ ±1 (mod n)} (11.2.3)

K = {a | a
n−1

2 ≡ 1 (mod n)} (11.2.4)

Exercise 11.2.2. K ≤ H ≤ R ≤ Z×

n . Here ≤ means “is a subgroup of”.

Lemma 11.2.3. If n is composite and K 6= H then H 6= Z×

n .

We use this lemma for the error estimate:
Passing line 2 and exiting in line 3 guarantees K 6= H. So we deduce that H 6= Z×

n : that

is (∃x)(x
n−1

2 6≡ ±1 (mod n), gcd(x, n) = 1). So

Pr(random x satisfies x
n−1

2 6≡ ±1 (mod n)) ≥
1

2
. (11.2.5)

Hence Pr(all ai ∈ H) ≤ 1

2k .

Proof. (Lemma). Case 1: n is not square free, by previous class

(∃x)(gcd(x, n) = 1, xn−1 6≡ 1 (mod n))

(i.e. it violates the Fermat test.) Then R ¯ Z×

n , i.e. H 6= Z×

n because H ≤ R.
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Case 2: n is square free, composite ⇒ n = r · s, gcd(r, s) = 1, r, s ≥ 3. By K 6= H, (∃x)
such that

x
n−1

2 ≡ −1 (mod n) ⇒ x
n−1

2 ≡ −1 (mod r)

Also trivially,

1
n−1

2 ≡ 1 (mod n) ⇒ 1
n−1

2 ≡ 1 (mod s)

By CRT we can find z such that z ≡ x (mod r) and z ≡ 1 (mod s). Now,

z
n−1

2 ≡ −1 (mod r)

z
n−1

2 ≡ 1 (mod s)

}

⇒ z
n−1

2 6≡ ±1 (mod rs). (11.2.6)

Also
gcd(z, r) = 1

gcd(z, s) = 1

}

⇒ gcd(z, n) = 1. (11.2.7)

Hence z ∈ Z×

n \ H ⇒ H 6= Z×

n .

11.3 Jacobi Symbol and Quadratic Reciprocity

Recall from the last lecture,

Definition 11.3.1. The Legendre symbol for p an odd prime is

(

a

p

)

=











1 a is a quadratic residue

−1 a is a non-quadratic residue

0, a ≡ 0 (mod p).

(11.3.1)

Theorem 11.3.2 (Quadratic Reciprocity). If p, q are odd primes, then

(

p

q

)(

q

p

)

= (−1)
p−1

2

q−1

2 . (11.3.2)

That is,
(

p

q

)

=

(

q

p

)

⇔ p ≡ 1 (mod 4) or q ≡ 1 (mod 4). (11.3.3)

Example 11.3.3.

(

31

83

)

= −

(

83

31

)

= −

(

21

31

)

, since 83 = 2 ·31+21. Then this is ±
(

31

21

)

?

To figure it out, write −
(

21

31

)

= −
(

3

31

) (

7

31

)

, and use
(

31

21

)

:=
(

31

3

) (

31

7

)

.

Here in the above example we are using factoring. But it is highly believed that factoring
is hard, hence we cannot calculate the Legendre symbol efficiently. Instead we analyse
Quadratic Reciprocity for the Jacobi symbol as defined below.
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Definition 11.3.4 (Jacobi Symbol). The Jacobi symbol for odd m =
∏

pki

i is

( a

m

)

=
∏

(

a

pi

)ki

(11.3.4)

Exercise 11.3.5 (Quadratic Reciprocity for Jacobi Symbol). Let r, s ≥ 3 odd, with
gcd(r, s) = 1. Then the Quadratic Reciprocity holds for the Jacobi symbol:

(r

s

) (s

r

)

= (−1)
r−1

2
·
s−1

2 . (11.3.5)

Corollary 11.3.6. The Jacobi symbol is computable as fast as gcd.

Exercise 11.3.7. If
(

a
p

)

=
(

a
q

)

= 1, then (∃x)(x2 ≡ a (mod pq)). (CRT)

More about the Jacobi symbol: E.g., if we have two factors, then
(

a
pq

)

= 1 if either a is

a quadratic residue modulo both p and q, or neither.

Exercise 11.3.8. (Practice) m = p·q,
(

a
pq

)

= 1 =
(

a
p

)(

a
q

)

then {x2 (mod pq), gcd(x, pq) =

1} ≤ Z×

pq.

This hopefully gives us a bit of understanding about the Jacobi symbol.

11.4 Solovay-Strassen Primality Test

Given n odd, ≥ 3, pick a at random, 1 ≤ a ≤ n − 1.

1. if gcd(a, n) 6= 1, halt COMPOSITE.

2. else if a
n−1

2 ≡
(

a
n

)

(Jacobi symbol), halt PRIME.

3. else halt COMPOSITE.

Claim 11.4.1. If n is prime, then there is no error. If n is composite, then Pr(error) ≤ 1

2
.

Proof. (Incomplete)

Case (a): n is prime. Then a
p−1

2 ≡
(

a
p

)

(mod p). (This is 1 if a is a quadratic residue.)

Clearly we pass line 1 and at line 2 we halt and output PRIME.
Case (b): n is composite. We could divide into cases n is square-free and not, but there

is a better way. Let H∗ := {a | a
n−1

2 ≡
(

a
n

)

(mod n), gcd(a, n) = 1}, and let K∗ := K ∩H∗.

Exercise 11.4.2. K∗ ≤ H∗ ≤ R ≤ Z×

n .

Exercise 11.4.3. Complete the proof (we are out of time).
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