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12 Primality Test (Continued)

12.1 Solovay-Strassen Test (Analysis)

Recall that the Solovay-Strassen Primality test is given as follows:
For given n, odd, ≥ 3, pick random a, 1 ≤ a ≤ n − 1.

1. if gcd(a, n) 6= 1, halt COMPOSITE.

2. else if a
n−1

2 ≡
(

a
n

)

(Jacobi symbol), halt “maybe PRIME”.

3. else halt COMPOSITE.

If n is prime the output is always “maybe PRIME” because for every

prime p, we have a
p−1

2
≡(a

p) (mod p). Therefore there is no error if the input
number is prime.

If n is composite we claim that Pr(error) ≤ 1/2. Clearly, the only step
we can make an error is in line 2, outputting “maybe PRIME” instead of
COMPOSITE.

Consider the following subgroups of Z
×

n :

R =
{

a ∈ Z
×

n | an−1 ≡ 1 (mod n)
}

H∗ =

{

a ∈ Z
×

n | a
n−1

2 ≡

(

a

p

)

(mod n)

}
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K∗ =

{

a ∈ Z
×

n | a
n−1

2 ≡

(

a

p

)

= 1 (mod n)

}

L =

{

a ∈ Z
×

n |

(

a

p

)

= 1 (mod n)

}

Now, we want to find the index of L in Z
×

n , [Z×

n : L]. Consider the
following map

f : Z
×

n → {±1}

a 7→

(

a

p

)

f is a group homomorphism since the multiplication is preserved under Jacobi

symbol, i.e.
(

a
p

) (

b
p

)

=
(

ab
p

)

. Note that L = ker f = f−1(1). Therefore

[Z×

n : L] can be equal to 1 or 2. [Z×

n : L] = 1 implies L = Z
×

n ; we are going
to prove that this is possible. Recall the definition of the Jacobi symbol:

(a

n

)

=
∏

(

a

pi

)ki

where n =
∏

pki

i . If n is a perfect square, say n = l2 then (∀a ∈ Z
×

n )
((

a
n

)

= 1
)

i.e. L = Z
×

n . Is the converse true?

Claim 12.1.1. If n is not a square (∃a ∈ Z
×

n )
((

a
n

)

= −1
)

.

Proof. There is a odd ki. Find a so that
(

a
pi

)

= −1 and a ≡ 1 mod pj for

all j 6= i (such a exists by the Chinese Reminder Theorem). Clearly, this
particular a satisfies

(

a
n

)

= −1.

We conclude the following observation

Observation 12.1.2.

[Z×

n : L] =

{

1 if n is a square;

2 otherwise.

It was an exercise from last class to prove that K∗ ≤ H∗ ≤ R ≤ Z
×

n .
Note that H∗ ≤ R since

(

a
n

)

for all a ∈ Z
×

n ; and K∗ ≤ H∗ is evident, in fact
we have more: K∗ = H∗ ∩ L.
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Theorem 12.1.3. H∗ 6= Z
×

n .

Proof. Suppose H∗ = Z
×

n . Then R = Z
×

n , so n is a Carmichel number by
definition (definition is the condition R = Z

×

n .) In particular, n is square-
free. Let n = rs with gcd(r, s) = 1; r, s ≥ 3. We are to prove that there exists
an element in Z

×

n which is not an element of H∗. We will prove further that

there exists a ∈ Z
×

n so that a
n−1

2 6≡ ±1 (mod n). By the contrary assumption
we have K∗ = H∗ ∩ L = Z

×

n ∩ L = L and L 6= Z
×

n = H∗ since n is square-

free, in particular it is not a square. Thus (∃b)
(

b
n−1

2 ≡
(

b
n

)

= −1 (mod n)
)

which implies b
n−1

2 ≡ −1 (mod r). Using CRT, choose a such that

a ≡ b (mod r)

a ≡ 1 (mod s)

}

⇒
a

n−1

2 ≡ −1 (mod r)

a
n−1

2 ≡ 1 (mod s)

}

⇒ a
n−1

2 6≡ ±1 (mod rs).

We found an element a ∈ Z
×

n not in H∗. This contradicts H∗ = Z
×

n .

Since the subgroup H∗ is proper in Z
×

n , we conclude that the error occurs
at most half of the times (index is at least 2.)

Corollary 12.1.4. Pr(error) ≤ 1/2 because Pr(error) = 1/[Z×

n : H∗]

The idea in this proof is to prove a subgroup is proper in the larger group,
then we can conclude that for a random element x chosen from the larger
group, the probability of x being in the subgroup drops instantly to ≤ 1/2.
For this we just need to prove that we can find one element outside of the
subgroup yet in the larger group.

12.2 Miller-Rabin Primality Test

Like the Solovay-Strassen test, this test is also a 1-sided Monte Carlo test,
meaning that we may only make a 1-sided error. We are still going to be sure
when the algorithm outputs COMPSITE, that it is a composite number, i.e.
if the input is prime then the output will be “maybe PRIME”. The algorithm
is as follows:

Given n odd, ≥ 3, pick random a, 1 ≤ a ≤ n − 1. Define ` and m to
satisfy, n − 1 = 2` · m with m odd.

1. if gcd(a, n) 6= 1, halt COMPOSITE.
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2. else if an−1 6≡ 1 (mod n) halt COMPOSITE.

3. else j := ` − 1

4. while (j ≥ 0)

5. if a2
j
·m 6≡ ±1 (mod n) halt COMPOSITE.

6. else if a2
j
·m ≡ −1 (mod n) halt “maybe PRIME”.

7. else j ← j − 1

8. end while

9. halt “maybe PRIME”.

The idea in the algorithm is that whenever we have a square congruent
to 1 modulo n, (b2 ≡ 1 (mod n)), we investigate whether b ≡ ±1 (mod n)
or not. If b ≡ −1 (mod n), we output “maybe PRIME” and continue our
search further in the case that the congruence is 1. Clearly, in the last case
that the congruence is neither of them, we certify that n is COMPOSITE
with the “witness” b. We continue this search until we cannot go further.

12.2.1 Analysis

Claim 12.2.1. 1. If n is prime we always get “maybe PRIME”.

2. If n is composite, Pr(error) ≤ 1/2.

Proof. 1. We cannot output “COMPOSITE” if n is prime, because when-
ever we output COMPOSITE we certify that n is composite.

2. If n is not a Carmichel number (R 6= Z
×

n ) then with probability ≥ 1/2
we stop at lines 1 or 2 ([Z×

n : R] ≥ 2.) Now we may assume that n is a
Carmichel number thus square-free.

Clearly we may make an error only if we halt in lines 6 or 9. Also
as long as a2

j
·m ≡ 1 (mod n) we do not make an error, provided

that we do not diminish j to 0. So we look at the first level where

(∀a)
(

a2
j
·m ≡ 1 mod n

)

. Let

j0 = min
{

j | (∀a)
(

a2
j
·m ≡ 1 mod n

)}
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The idea is to look at a2
j0−1

·m, and then apply CRT trick (factoring
n = rs) to find b so that b2

j0−1
·m ≡ −1 (mod r) and b ≡ 1 (mod s)

which in turn yields a witness for the compositeness of n. Again by
the subgroup argument the number of the witnesses are going to be at
least half of the possible values, then we are done. But to be able to
use this trick we need j0 ≥ 1, in other words we need to prove

NOT
(

∀a ∈ Z
×

n

)

(am ≡ 1 mod n)

This is easy to achieve: take a = −1.

The Miller-Rabin algorithm was originally designed to be a deterministic
algorithm. The input a was not random, instead we run the algorithm re-
peatedly for values of a = 1, 2, . . . upto a certain bound. Every composite
number has a witness of compositeness, but can we find a bound for the
smallest witness? If we do, we can use this bound for the deterministic pri-
mality test. Apply the Miller-Rabin algorithm for every number up to the
bound, and check the primality of n. If ever we prove compositeness, for
sure the number is composite. Otherwise we have a proof of primality, by
failing to prove compositeness for all values of a which would have included
the witness of compositeness.

Gary Miller proved in 1978 that the smallest witness is smaller than
c (log n)2, for a constant c, assuming the extended Riemann hypothesis. But
showing that the deterministic primality test has a polynomial time algo-
rithm, required less than proving the extended Riemann hypothesis. Never-
theless, if the extended Riemann hypothesis is proven, the above algorithm is
far more faster than the algorithm of Manindra Agrawal, Neeraj Kayal and
Nitin Saxena which proves PRIMES is in P.
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