
REU 2006 · Discrete Math · Lecture 13

Instructor: László Babai
Scribe: Duru Türkoğlu

Editor: Elizabeth Beazley

July 31, 2006. Last updated August 1, 2006 at 2:30 p.m.
NOT PROOF-READ

13 Communication Complexity

13.1 Testing Equality of Strings

There are two computers on the opposite ends of the Earth. We will name the
computers Alice and Bob. Alice and Bob are given information protecting
the security of mankind consisting of strings of 0’s and 1’s, denoted X and
Y , respectively. Little green aliens are attacking the Earth by changing the
information contained in X and Y . They can change any characters in either
of the strings independently. As the green men approach the Earth, our only
defense is to verify whether X = Y , after the little green men have augmented
these strings of data. If we fail in this task, the green aliens will blow up the
Earth.

Let us assume that Alice and Bob have unlimited computational power;
i.e., they can perform any internal computations for free. Nevertheless, they
incur a cost for sending messages to each other, at a price of $1 per bit.
Yao proved that the problem defined above requires at least n bits of com-
munication for n-bit strings X and Y . For instance, if Alice and Bob are
given 1015-digit (decimal) numbers, the best algorithm would be that Alice
transmits all those 1015 digits to Bob, and Bob checks these digits against
those of Y , outputting an answer as to whether or not they agree. Directly
testing whether or not X = Y thus becomes quite costly.

1

So that we can save the Earth within our financial means, we are inter-
ested in finding a more cost-efficient algorithm. There is a far more efficient
randomized protocol to determine whether X = Y . The above example
requires only 200 digits of communication using this randomized protocol
which is given as follows:

1. Alice: Generates a random prime p with 100 decimal digits (initial
zeros permitted.)

2. Alice: Calculates X mod p.

3. Alice → Bob: Sends p and X mod p.

4. Bob: Compares X mod p and Y mod p.
if X 6≡ Y (mod p) then NO
else YES

The first, second and the fourth steps are free of cost since they are inter-
nal computations, so the only cost is the second step which is the transmission
of 200 digits. Clearly this algorithm makes errors but the below claim states
that the it is very unlikely to make an error:

Claim 13.1.1. P (error) =

{
0 if X = Y

< 1
1080 if X 6= Y

Here, we compute the error using worst case analysis. That is, we assume
that the little green aliens know the strategy that we are going to use to test
X and Y before they make changes to these strings. The only thing that the
aliens do not know is the value of p we will use.

Obviously in the first case there is no error, we simply output the correct
answer that they are equal. Thus we shall assume X 6= Y . Then the only
case of error is: p | X − Y . Therefore

P (error) =
ν(X − Y)

π(10100)

where ν(a) is the number of distinct prime factors of a and π(a) is the number
of primes ≤ a.

Lemma 13.1.2. If a is an `-digit integer, then ν(a) ≤ ` + 1.

2

Proof. If ν(a) = k then

a ≥ 2 · 3 · 5 · 7︸ ︷︷ ︸
3 digits

. 11 · 13 · · · pk︸ ︷︷ ︸
k−4 digits

So for the claim we have

π(10100) ≈ 10100

ln 10100
=

1098

ln 10
≈ 1098

2.3

and by the help of the lemma

P (error) ≤ 1015 + 1
1098

2.3

=
2.3

1083
<

1

1080

This protocol is designed by Rabin, Yao and Simon (Janos Simon of
University of Chicago.)

13.1.1 General Results

Yao proved C(X =? Y) = n, where C denotes the communicational complex-
ity with no errors allowed; i.e., deterministic communicational complexity.
For the randomized complexity we want to prove something of the following
form

Cε(X =? Y) = · · · log n

where ε is the error probability. In other words, we would like to predict the
right answer with high probability by just using approximately log n bits of
communication.

Now we can design the detailed version of the protocol while analyzing
it. We have the probability of the error defined before

P (error) =
ν(X − Y)

π(2s)

where s is the number of bits of the random prime p and X, Y have n binary
digits. We have a better bound for the ν function:

Exercise 13.1.3. ν(a) ≤ c · log a
log log a

for some constant c.

3

Using this exercise,

P (error) ≈
c · n

log2 n

2s

s ln 2

= c ln 2 · n

2s
· s

log2 n

We want to make the error less than ε. Choose s = log2 n + r, so that
n

2s
=

1

2r
and

s

log2 n
= 1 +

r

log2 n
< 2, if we choose r < log n. Then we have

P (error) < c ln 2 · 2 · 1

2r
=

c′

2r

for some new constant c′. To have P (error) < ε, we can set r := log
(

c′

ε

)
,

which makes r = o(log n) and s ∼ log2 n.

Exercise 13.1.4. Work out the details for ε = 1
1050 .

13.2 Lower Bound Analysis

We begin with some definitions:

Definition 13.2.1. A boolean function is a function f : A → {0, 1}, where
A is any set.

Definition 13.2.2. We say that an input is a boolean input when A =
{0, 1}n.

We can think of a target function f , a boolean function with boolean
input: f : {0, 1}2n → {0, 1}. Now, we assume that A(lice) has access to the
first n bits of the input X = (x1, x2, . . . , xn) ∈ {0, 1}n and similarly B(ob)
has access to the last n bits Y = (y1, y2, . . . , yn) ∈ {0, 1}n. They are trying
to compute f according to the communication protocol described below:

A → B message string a1

B → A message string b1

A → B message string a2
...

...
A or B “answer”

4

Here the ai’s, (resp. bi’s,) are functions of X (resp. Y) and the strings
bj, j ≤ i − 1 (resp. aj, j ≤ i − 1). Now for each protocol we can define a
function P which computes the “answer” P (X, Y) through communication.
P is said to be correct if

(∀X, Y) P (X, Y) = f(X, Y) (13.2.1)

The cost of P is given by # bits communicated (for the worst X, Y .)

Definition 13.2.3. The communicational complexity of f , denoted C(f), is
defined as follows

C(f) = min
P

cost {P | P correctly computes f} (13.2.2)

= min
P

max
X,Y

{cost of P (X, Y)} (13.2.3)

Observation 13.2.4. C(f) ≤ n + 1

Theorem 13.2.5 (Mehlhorn–Schmidt). Define the matrix Mf = (f(X, Y))2n×2n.
The communicational complexity is bounded from below as follows

C(f) ≥ log2 rk(Mf) (13.2.4)

Example 13.2.6. If f(X, Y) =

{
1 if X = Y

0 else
, then we have Mf = Id2n×2n ⇒

rk(Mf) = 2n which implies C(f) ≥ n.

Proof of the Mehlhorn–Schmidt Thm. Suppose C(f) = s. Therefore there
exists a correct protocol P for f which uses s bits of communication. So the
of possible communication strings z = a1b1a2b2 . . . is 2s. Define a function
P on input (X, Y) to output the whole communication string z(X, Y). Now
look at P−1(z) = {(X, Y) | P generates communication z}.

Claim 13.2.7. P−1(z) is a rectangle.

Lemma 13.2.8. If P (X1, Y2) = P (X2, Y1) = z; i.e., the whole commu-
nication is the same for inputs (X1, Y2) and (X2, Y1), then P (X1, Y1) =
P (X2, Y2) = z. That is, the communication is the same for the entire rect-
angle {X1, X2} × {Y1, Y2}.

5

Y1 Y2

X1 � = z z
X2 z � = z

Proof. The proof of the lemma is inductive. Given that a1(X1, Y2) = a1(X2, Y1),
we can clearly say that a1(X1, Y1) = a1(X1, Y2) = a1(X2, Y1) = a1(X2, Y2).
The first equality holds since A has only access to X, and in this case they
are the same. Similarly for the third equality. Inducting on the history, since
the history is same for all of them, the next step only depends on the portion
of the input they can access. The same trick applies then, and therefore we
can conclude that the whole communication is the same for all of them.

Claim 13.2.7 now follows, since in this case we have homogenous rectan-
gles (rectangles with all entries equal) in the matrix. We now require the
following:

Claim 13.2.9. C(f) = dlog2(size of min. partition into hom. rectangles)e

Example 13.2.10. For the above matrix, the minimal number of homoge-
neous rectangles we can use is 5.

We shall prove Claim 13.2.9 through a series of observations. Let R =
size of min. partition into hom. rectangles. C(f) ≥ log2 R because message
strings provide a partition into rectangles. Hence there exists a cover with
≤ 2s rectangles.

Exercise 13.2.11. Prove the other direction upto a factor of 3.

Now we know C(f) ≥ log2 R and claim that R ≥ rk(Mf).

Lemma 13.2.12. rk(A + B) ≤ rk(A) + rk(B)

Proof. Note that span(rows of A+B) ⊆ span(rows of A and rows of B).

Thus Claim 13.2.9 now follows, since Mf ≤
∑

≤R “rectangle matrices”
where each “matrix” in the sum has rank 1. This completes the proof of the
Mehlhorn–Schmidt theorem.

A natural question to ask now is the following: Is the bound appearing
in the Mehlhorn–Schmidt Theorem tight up to a constant exponent? The
below conjecture suggests that the bound is tight, and this problem remains
OPEN today.

6

Conjecture 13.2.13 (log-rank Conjecture (Lovász - Saks)). There
exists a constant c satisfying

(log2 rk(Mf))
c ≥ C(f) (13.2.5)

7

