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14 Communication Complexity (continued)

14.1 Lower Bound Analysis (continued)

Last time we asked a question about the communication complexity of Boolean
functions. Today we will consider a related result. As before, let f :
{0, 1}2n → {0, 1} be a boolean function. Let Mf be the 2n by 2n matrix
with entries f(x, y) for (x, y) vectors in {0, 1}n.

Now suppose Mf can be partitioned into 2s homogeneous rectangles. (A
rectangle is given by taking any subset of the rows and any subset of the
columns. Homogeneous means that all entries in that rectangle are the same,
i.e. all are zeros or all are ones.)

Claim 1. C(f) = O(s2), where C(f) is the communication complexity.
Hint: Notice there are 2s rectangles, so you need s bits to name them. s2

communication bits come in s groups of s each.

Proof. Suppose Alice says, “My row intersects this rectangle,” i.e. the row
set of the rectangle includes Alice’s row. If Bob’s column also intersects the
same rectangle, then you know what the value of f is. Indeed, the intersection
of Alice’s row and Bob’s column is in the same rectangle.
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There are 2s rectangles; we want to have just one. To get to just one in
s rounds, we need to reduce by a factor of two each time.

We want to show that either Alice or Bob can announce a rectangle
which eliminates half the rectangles. Suppose Bob announces that his column
intersects a rectangle, S × T , where S ⊂ {rows} and T ⊂ {columns}. So all
rectangles S ′ × T ′ for which T ′ ∩ T = ∅ are eliminated. Since Bob knows the
layout of the rectangles, he can see whether there exists a rectangle which he
can announce which would eliminate half the rectangles.

Notice that the intersection of two rectangles S1 × T1 and S2 × T2 is
(S1 ∩ S2) × (T1 ∩ T2), which is nonempty if and only if S1 ∩ S2 6= ∅ and
T1 ∩T2 6= ∅. Our rectangles are disjoint. So any two distinct rectangles must
have at least one of S1 ∩ S2 and T1 ∩ T2 empty. Having this information at
hand we can claim the following:

Claim 2. Either Alice or Bob can announce a rectangle that eliminates at
least half of the remaining rectangles.

Proof. Let R = S × T be the rectangle containing (X,Y ). Then either at
least half the remaining rectangles are horizontally disjoint from R, or at
least half are vertically disjoint (or both).

This gives us the desired procedure. On a turn, Alice either announces a
rectangle or passes. If she passes, then Bob announces a rectangle. Suppose
without loss of generality Bob has announced a rectangle. Then all but the
rectangles intersecting the columns of his rectangle are eliminated. We can
think of this as transforming Mf into a rectangular matrix which has had
the columns outside of Bob’s rectangle removed. This matrix is divided into
at most 2s−1 homogeneous rectangles. Repeat this s times; then we know
which rectangle our entry lived in, and so we are done.

This is an O(s2) algorithm. Recall that we saw last time that the com-
munication complexity is at least the log of the number of partitions.

Lovász defines the communication complexity as follows: the communi-
cation is complete when one player knows the answer, and the other player
knows this fact about the first player. So for instance, the communication
complexity of the function which computes the combined parity of x and y

has communication complexity 1.
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Using the above definition, equality testing requires exactly n bits of com-
munication, and we have also shown that randomization improves the com-
munication by an exponential speedup, resulting in randomized complexity
of logarithmic order.

One intriguing question would be: “Does there exist functions of boolean
inputs, which even using randomization require linear order complexity, say
1
2
n?” Below are some candidates:

1. What is the communication complexity of the function which computes
the parity of the number of bits where x and y agree?

2. Something that might be good for answering this question is the inner
product mod 2:
IP2(x, y) =

∑

xiyi (mod 2), where x, y are strings of 1s and −1s.

3. Let p be an n-bit prime, 0 ≤ x ≤ p − 1, and 0 ≤ y ≤ p − 1. What is

the complexity of the function which computes
(

x+y

p

)

? (Technically,

we need to change the Legendre symbol so that it only takes on two
values; for example, say that zeros get changed into ones.)

14.2 Distributional Complexity

The notion of complexity we have been discussing is known as worst-case
analysis of random protocols. It focuses on what the worst complexity for a
given pair of inputs is, for general (possibly nondeterministic) protocols.

A different concept of complexity is distributional complexity. Here
the protocol is deterministic, but the inputs are chosen at random. So this
is a kind of “average-case” analysis.

There is a generic principle that is capable of using the distributional
complexity to give a lower bound on the worst-case complexity.

Let Cε(f) be the worst-case complexity of calculating f by a randomized
protocol. Then we have the following guarantee:

(∀(x, y))(Pr(error) ≤ ε) (14.2.1)

The ∀ quantifier here shows that we are talking about worst-case complexity.
On the other hand, distributional complexity reflects average case complexity.
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Let Dε(f) be
max

µ
min

P
(cost of P ) (14.2.2)

where µ is a distribution over the inputs x, y and we are chosing among those
protocols P such that Prµ,P (error) ≤ ε. As before, cost of P is the maximum
cost over inputs (x, y).

Theorem 3. Cε(f) ≥ Dε(f).

Proof. Create a matrix with rows corresponding to pairs of inputs, and
columns corresponding to deterministic protocols. Put a 0 if the answer
given by the protocol is correct, and a 1 if the answer is wrong. Then the
average of a column corresponding to a protocol matching Dε(f) is ≤ ε.

Our strategy, very roughly speaking, is as follows: a deterministic protocol
chosen at random is essentially the same as a randomized protocol.

In more detail, suppose we list all deterministic protocols and choose one
at random, according to some probability distribution. Let π be a proba-
bility distribution on deterministic protocols; π is essentially a randomized
protocol.

Returning to our matrix, the average of a row according to π will be at
most ε, given that π is a randomized protocol with probability of error at
most ε. So the average of the entire table according to π is at most ε. Hence
there must be a column whose vertical average is at most ε! This column is
a deterministic protocol which will make at most ε error. So there exists a
deterministic protocol whose probability of error is at most the probability of
error of the best randomized protocol. In other words, Cε(f) ≥ Dε(f).

In the Dε concept, the protocol P computes not f but some function g

such that
Pr
µ

(f(x, y) 6= g(x, y)) ≤ ε

Since the protocol computes g, there is a rectangle cover (a partition of Mg

into homogeneous rectangles) of Mg. But Mf differs from Mg in at most
ε portion of the entries; so the partititon of Mg gives a partition of Mf

which is not quite homogeneous. This partition computes f with probability
of error at most ε. Hence if we are interested in proving lower bounds on
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Dε(f), we must somehow account for not just homogeneous partitions but
also almost-homogeneous partitions.

One method is as follows. Pick your favorite distribution µ; often, this will
be simply the uniform distribution (inputs are picked uniformly at random.)
Then prove an upper bound on the discrepancy of every rectangle. The
discrepancy is the difference between the number of ones and the number of
zeros in a rectangle, normalized by the size of the matrix.

If M is an N ×N (0, 1)-matrix, R ⊂ M is a k × ` rectangle in M , and R

has a ones and b zeros (where a + b = k`), then the discrepancy of R with
respect to the uniform distribution is

disc(R) =
|a − b|

N2
.

Suppose we can prove, for a matrix Mf , an upper bound on the discrep-

ancy; that is, we show (∀R ⊂ M)(disc(R) ≤ δ). Then write M =
⋃2s

k=1 Rj

as the disjoint union of 2s rectangles Rj. Let s = Dε(f). Let Rj be a kj × `j

rectangle. If disc(Rj) ≤ δ, then we have kj`j = aj + bj, where aj − bj ≤ δN2.
So 2bj ≥ kj`j − δN2. Next time we will see how this gives a lower bound on
the error on Rj. We will need Hadamard matrices in this task.

Definition 4. A square matrix H is a Hadamard matrix if all entries of
H are ±1, and the rows of H are orthogonal (hence HHT = n · I, if H is
n × n).

Exercise 5. Construct 2n × 2n Hadamard matrices for every n, and relate
them to Mf where f is the inner product modulo 2.

Exercise* 6. (Lindsay’s Lemma) If R is a k × ` rectangle in an N × N

Hadamard matrix H, then
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