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15 Communication Complexity (continued)

15.1 Randomized and Distributional Complexity

Let f : {0, 1}2n → {0, 1}, and define

C(f) = min
P

max
(x,y)

|P(x, y)|, (15.1.1)

where P is over all protocols that compute f , and |P(x, y)| is the message
string. Note that C(f) ≤ n.

Correction: the theorem from last time that states C(β) ≥ log rk(Mf )
where Mf = (f(x, y))2n×2n was incorrectly attributed to Yau last time: the
correct attribution is Mehlhorn-Schmidt.

The Randomized Communication Complexity of f is denoted Cε(f), and
is defined by the same equation (15.1.1), except that P ranges over protocols
that compute f with some error allowed, of probability ≤ ε. More precisely,
we require that (∀x, y)(Pr(error) ≤ ε).

Distributional Complexity: The randomization over inputs

Dε,µ(f) = min

{

C(f ∗)

∣

∣

∣

∣

Pr
µ

(f ∗(x, y) 6= f(x, y)) ≤ ε

}

(15.1.2)

Lemma 15.1.1. ∀µ, Rε(f) ≥ Dε,µ(F ).
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In fact, Rε(f) = max
µ

Dε,µ(f) =: Dε(f). (We won’t use this.)

IPx

(

x, y
)

=
∑

xiyi (mod 2).

Theorem 15.1.2. Cε(IPX) = Ω(n) (i.e. ≥ c · n).

Let’s switch notation: let f : Ω → {±1}, with S ⊂ Ω. The (normalized)
discrepancy of f over S is

∆(f, s) =

∣

∣

∣

∣

∣

∑

x∈S

f(x)

∣

∣

∣

∣

∣

|Ω| .

If f is homogeneous on S then ∆(f, S) =
|S|
|Ω| .

The discrepancy of f is ∆(f) = max
S∈F

∆(f, S) where F is a particular

family of subsets of Ω.
Now, recall that our domain is Ω = {0, 1}n×{0, 1}n. We wanted to prove

the

Theorem 15.1.3.

Cε(f) ≥ log

(

1 − 2ε

∆¤(f)

)

, (15.1.3)

where the ¤ is over all rectangles (in the big 2n × 2n-rectangle of inputs).
(note the numerator was originally 1

2
− ε and was then changed.)

To bound Cε from below, we estimate Dε,µ with respect to the uniform
distribution µ. Let s := Dε,µ.

Now, ∆ := ∆¤(f), i.e. , for every rectangle: say, label the rectangles Rj,
of sizes kj × `j; one has

∣

∣

∣

∣

∣

∣

∑

Rj

f(x, y)

∣

∣

∣

∣

∣

∣

≤ ∆ · 22n. (15.1.4)

So P is a deterministic protocol with ≤ ε fraction of error, and the message
length is s. If we have a cover by 2s rectangles, homogeneous with respect
to a fraction f ∗ ≈ε f , let’s say each Rj has aj 1’s and bj −1’s, with aj ≥ bj:
the number of errors is bj.
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Now 0 ≤ aj − bj ≤ ∆ · 22n, and aj + bj = kj`j. So, adding these,
2bj ≥ kj`j − ∆22n.

So

2ε22n ≥ 2 · total error ≥ 22n − 2s · ∆ · 22n, (15.1.5)

2ε ≥ 1 − 2s∆ (15.1.6)

2s∆ ≥ 1 − 2ε (15.1.7)

2s ≥ 1 − 2ε

∆
(15.1.8)

s ≥ log
1 − 2ε

∆
. (15.1.9)

Now to complete the proof we need to learn about Hadamard matrices.

15.2 Hadamard Matrices

We have the following claim about the discrepancy of IPx over rectangles:

Claim 15.2.1. ±1-representation of IP− matrix is Hadamard.

Definition 15.2.2. A N × N -matrix is Hadamard if

1. every entry is ±1

2. rows are orthogonal, i.e. AAT = N · I =







N . . . 0
...

. . .
...

0 . . . N







Exercises:

Exercise 15.2.3. rk(A ⊗ B) = rk(A) · rk(b).

Exercise 15.2.4. If k1 = `1 and k2 = `2 and eigenvalues of A are λ1, . . . , λk1

and of B are µ1, . . . , µk2
(full lists counting multiplicities over C), then the

eigenvalues of A ⊗ B are λiµj.

Exercise 15.2.5. If A,B are Hadarmard then A ⊗ B is Hadamard.

Exercise 15.2.6. Sn :=
⊗n

(

1 1
1 −1

)

is a 2n × 2n Hadamard matrix. This

is called the 2n × 2n Sylvester matrix
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Exercise 15.2.7. Prove: if ∃ an N × N Hadamard matrix then N = 2 or
4 | N .

Conjecture 15.2.8. This is also sufficient: if 4 | N then there exists an
n × N Hadamard matrix.

Exercise 15.2.9. If p ≡ 1 (mod 4) is prime, then there exists a Hadamard
matrix of size (p− 1)× (p− 1). Hint: use the quadratic character (Legendre
symbol) modulo p.

One question is, what is the density of Hadamard numbers (numbers for
which a Hadamard matrix of that size exists).

Bad fact: the density of the currently known Hadamard numbers is 0.

Here, density(A) := lim
n→∞

|A ∩ {1, . . . , n}|
n

. But the conjectural (15.2.8) den-

sity is 1/4.

Lemma 15.2.10. (J.H. Lindsey’s Lemma): If H is an N × N Hadamard
matrix and R is a k × ` rectangle in H, then

∣

∣

∣

∣

∣

∑

R

hij

∣

∣

∣

∣

∣

≤
√

k`N, k, ` ≤ N. (15.2.1)

Corollary 15.2.11.

∆ ≤ N3/2

N2
=

1√
N

(15.2.2)

Now, Cε(f) ≥ log2
1−2ε

1
√

2n

= log2(1−2ε)+ n
2

= Ω(n), assuming that Mf (±1)

is Hadamard.
We have that Mn =

(

(−1)|A∩B|)
2n×2n for A,B ⊂ {1, . . . , n}. Note that

|A ∩ B| can be reduced modulo two here because it’s an exponent of −1.

Claim 15.2.12.

Mn+1 =

(

Mn Mn

Mn −Mn

)

. (15.2.3)

Recall from Exercies 15.2.6 that
⊗n

(

1 1
1 −1

)

= Sn is called the 2n × 2n

Sylvester matrix.

Claim 15.2.13. Mn is Hadamard.
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Exercise 15.2.14. (a hint for Exercise 15.2.6)
∑

A

(−1)|A∩B1| · (−1)|A∩B2| =

δB1,B2
.

Now, let’s end with some magic. First note that if A is orthogonal and
x ∈ R

n, then ‖Ax‖ = ‖x‖. Now, we have (AB)T = BT AT , so (AAT )T = AAT .
Let’s suppose that AAT = I. Does it follow that AT A = I? In general it

is not obvious that if AB = I then BA = I. To do this we really only need to
prove that the existence of a right inverse is equivalent to the existence of a
left inverse. This is because, in a semigroup, ab = 1 and ca = 1 imply b = c.
Existence of a right inverse is the same as the rows being linearly independent,
while the existence of a left inverse is the same as the columns being linearly
independent. So if the matrix is square, having a right inverse is equivalent to
having a left inverse (for finite-dimensional matrices). Example: multiplying
by x or differentiating in the space of polynomials in x.

Finally, we need to prove Lindsey’s lemma:

Proof. (Lindsey’s Lemma): We will need Cauchy-Schwarz (note that Schwarz
has a “c” and no “t” so it’s a German Schwarz):

Theorem 15.2.15. (Cauchy-Schwarz): |x · y| ≤ ‖x‖ · ‖y‖.
We know that ‖Ax‖2 = (Ax)T (Ax) = xT AT Ax = xT x = ‖x‖2.
Now we want to know the sum of the entries that fall in a rectangle R,

i.e.
∑

R

hi,j = aT Hb, where a has a 1 in the entries corresponding to the rows

used by R and b has a 1 in the entries corresponding to the columns used by
R (we put a and b as column vectors). So |aT Hb| ≤ ‖aT‖ · ‖Hb‖ =

√
k‖Hb‖.

Now HHT = N · I, and 1√
N

H is orthogonal. So ‖
(

1√
N

H
)

b‖ = ‖b‖ and

‖Hb‖ =
√

N‖b‖ =
√

N`. This is a magical proof: note that 99% of the
magic is in the Cauchy-Schwarz.

This completes the proof of Theorem 15.1.3.

15.3 Indian Head Poker

Let’s move on to something different: recall Indian Head Poker: three people
each put a card on their respective foreheads so that they can see the other
two cards but not their own. Then they bet on whose card will win. So we
have a function f(x, y, z), with C(f) ≤ n, which has to do with the cards
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(e.g. is someone’s card higher than the other, etc.). Let’s find an explicit
function f such that C(f) = Ω(n). Finding explicit functions is usually what
people are most interested in (random functions cannot be computed).

Suppose f : {0, 1}3n → {0, 1}. We want to find a function that’s difficult
to compute: one is the Generalized Inner Product (GIP): GIP (x, y, z) =
∑

xiyizi (mod 2).
What other examples are there? For two players one has

Exercise 15.3.1.

Cε

((

x + y

p

))

= Ω(n), (15.3.1)

where the (−) here is the Legendre symbol.

Theorem 15.3.2. Cε

((

x+y+z
p

))

= Ω(n).

This has to do with the quadratic character. One also has Cε(GIP ) =
Ω(n).

For k players,

C(GIPk) = Ω
( n

4k

)

, (15.3.2)

and
C(QCH) = Ω

( n

2k

)

. (15.3.3)

Note that for both of these, they are only difficult to communicate if k ¿
log(n). We don’t know any functions that are difficult to compute if k ∼
log(n).

Question 15.3.3. (Open question): Find an explicit f with Ck(f) > (log n)2

with k > log n players.

Note: the proof of C(GIPk) involves repeated Cauchy-Schwarz. The
proof of C(QCH) is an inductive proof using Cauchy-Schwarz whose base
case uses Weil’s character estimates.
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