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15 Communication Complexity (continued)

15.1 Randomized and Distributional Complexity
Let f:{0,1}*" — {0,1}, and define

C(f) = minmax |P(z,y)|, (15.1.1)

P (zy)

where P is over all protocols that compute f, and |P(z,y)| is the message
string. Note that C(f) < n.

Correction: the theorem from last time that states C(3) > logrk(My)
where My = (f(2,9))gnon Was incorrectly attributed to Yau last time: the
correct attribution is Mehlhorn-Schmidt.

The Randomized Communication Complexity of f is denoted C.(f), and
is defined by the same equation (15.1.1), except that P ranges over protocols
that compute f with some error allowed, of probability < e. More precisely,
we require that (Vz,y)(Pr(error) < ¢).

Distributional Complexity: The randomization over inputs

Do) =min{C(r)

P ) # fla) < ¢ (15.1.2)

Lemma 15.1.1. Vu, R.(f) > D. .(F).



In fact, R.(f) = max D, ,(f) =: D.(f). (We won’t use this.)
I
IP; (z,y) = X iy (mod 2).
Theorem 15.1.2. C.(IPx) = Q(n) (i.e. > c-n).

Let’s switch notation: let f: Q — {£1}, with S C . The (normalized)
discrepancy of f over S is

> @)

zeS
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A(f,s) =

If f is homogeneous on S then A(f,S) = %
The discrepancy of f is A(f) = max A(f,S) where F is a particular
€
family of subsets of €.
Now, recall that our domain is = {0,1}" x {0, 1}". We wanted to prove

the

Theorem 15.1.3. _
C.(f) > log (ﬁ(;) , (15.1.3)

where the O is over all rectangles (in the big 2" x 2™-rectangle of inputs).
(note the numerator was originally % — ¢ and was then changed.)

To bound C. from below, we estimate D, , with respect to the uniform
distribution p. Let s:= D, ,.

Now, A := Ag(f), i.e. , for every rectangle: say, label the rectangles R;,
of sizes k; x {;; one has

> flay)| a2 (15.1.4)

R;

So P is a deterministic protocol with < e fraction of error, and the message
length is s. If we have a cover by 2° rectangles, homogeneous with respect
to a fraction f* ~. f, let’s say each R; has a; 1's and b; —1’s, with a; > b;:
the number of errors is b;.



Now 0 < a; —b; < A-2? and a; +b; = k;jl;. So, adding these,
2, > k;l; — AN,

So
2e2*" > 2 - total error > 2*" — 2. A . 27" (15.1.5)
2 >1—2°A (15.1.6)
2°A > 1 —2¢ (15.1.7)
1-2
p (15.1.8)
1-2
s> log — = (15.1.9)

Now to complete the proof we need to learn about Hadamard matrices.

15.2 Hadamard Matrices
We have the following claim about the discrepancy of I P, over rectangles:
Claim 15.2.1. +1-representation of [ P_ matriz is Hadamard.
Definition 15.2.2. A N x N-matrix is Hadamard if

1. every entry is £1

N ... 0
2. rows are orthogonal, i.e. AAT =N .1 =

Exercises:
Exercise 15.2.3. tk(A ® B) = rk(A) - rk(b).

Exercise 15.2.4. If ky = ¢; and ko = {5 and eigenvalues of A are A\q,..., A\,
and of B are puq, ..., uy, (full lists counting multiplicities over C), then the
eigenvalues of A ® B are \;ju;.

Exercise 15.2.5. If A, B are Hadarmard then A ® B is Hadamard.

Exercise 15.2.6. S, := Q" bl ) is a 2" x 2" Hadamard matrix. This

1 -1
is called the 2™ x 2™ Sylvester matrix



Exercise 15.2.7. Prove: if 3 an N x N Hadamard matrix then N = 2 or
4| N.

Conjecture 15.2.8. This is also sufficient: if 4 | N then there exists an
n X N Hadamard matriz.

Exercise 15.2.9. If p =1 (mod 4) is prime, then there exists a Hadamard
matrix of size (p — 1) x (p —1). Hint: use the quadratic character (Legendre
symbol) modulo p.

One question is, what is the density of Hadamard numbers (numbers for
which a Hadamard matrix of that size exists).
Bad fact: the density of the currently known Hadamard numbers is 0.

An{l,...
Here, density(A) := lim A0 ,n}| But the conjectural (15.2.8) den-
n—oo n
sity is 1/4.

Lemma 15.2.10. (J.H. Lindsey’s Lemma): If H is an N x N Hadamard
matrix and R is a k X £ rectangle in H, then

> hy| <VEIN, k(<N (15.2.1)
R
Corollary 15.2.11.
N3/2 1
A < - (15.2.2)

Now, C.(f) > logy 555 = logy(1—2¢)+2 = Q(n), assuming that M (+1)
Van
is Hadamard. ’

We have that M, = ((—1)"4”3')2”“” for A,B C {1,...,n}. Note that
|AN B| can be reduced modulo two here because it’s an exponent of —1.

M, M,
My = <Mn —Mn) . (15.2.3)

Claim 15.2.12.

1

Recall from Exercies 15.2.6 that " G 1

) = S, is called the 2" x 2"

Sylvester matrix.

Claim 15.2.13. M,, is Hadamard.



Exercise 15.2.14. (a hint for Exercise 15.2.6) Z DANBilL (_1)lAnBal —
A

531,32'

Now, let’s end with some magic. First note that if A is orthogonal and
r € R, then ||Az|| = ||z||. Now, we have (AB)T = BT AT so (AAT)T = AAT.

Let’s suppose that AAT = I. Does it follow that AT A = I? In general it
is not obvious that if AB = I then BA = I. To do this we really only need to
prove that the existence of a right inverse is equivalent to the existence of a
left inverse. This is because, in a semigroup, ab =1 and ca = 1 imply b = c.
Existence of a right inverse is the same as the rows being linearly independent,
while the existence of a left inverse is the same as the columns being linearly
independent. So if the matrix is square, having a right inverse is equivalent to
having a left inverse (for finite-dimensional matrices). Example: multiplying
by x or differentiating in the space of polynomials in z.

Finally, we need to prove Lindsey’s lemma:

Proof. (Lindsey’s Lemma): We will need Cauchy-Schwarz (note that Schwarz
has a “c” and no “t” so it’s a German Schwarz):

Theorem 15.2.15. (Cauchy-Schwarz): |z -y| < ||z - ||yl

We know that ||Az||* = (Az)T(Ax) = 2T AT Az = 22 = ||z]°.
Now we want to know the sum of the entries that fall in a rectangle R,
ie. Z hi; = a” Hb, where a has a 1 in the entries corresponding to the rows

R
used by R and b has a 1 in the entries corresponding to the columns used by
R (we put a and b as column vectors). So |a” Hb| < ||a”|| - ||Hb|| = VE| Hb|.

Now HH?” = N -1, and H is orthogonal. So ||< L H> bl = ||b]| and

|Hb|| = VN|b|| = VNL. ThlS is a magical proof: note that 99% of the
magic is in the Cauchy-Schwarz. O

This completes the proof of Theorem 15.1.3.

15.3 Indian Head Poker

Let’s move on to something different: recall Indian Head Poker: three people
each put a card on their respective foreheads so that they can see the other
two cards but not their own. Then they bet on whose card will win. So we
have a function f(z,y,z), with C(f) < n, which has to do with the cards



(e.g. is someone’s card higher than the other, etc.). Let’s find an explicit
function f such that C(f) = Q(n). Finding explicit functions is usually what
people are most interested in (random functions cannot be computed).
Suppose f: {0,1}*" — {0,1}. We want to find a function that’s difficult
to compute: one is the Generalized Inner Product (GIP): GIP(x,y,z) =
> xyiz (mod 2).
What other examples are there? For two players one has

. ((“";y)) = Q(n), (15.3.1)

where the (—) here is the Legendre symbol.

Exercise 15.3.1.

Theorem 15.3.2. C. ((%)) = Q(n).

This has to do with the quadratic character. One also has C.(GIP) =
For k players,

C(GIP,) = 0 (%) , (15.3.2)
. C(QCH) = Q (2%) . (15.3.3)

Note that for both of these, they are only difficult to communicate if k£ <
log(n). We don’t know any functions that are difficult to compute if k& ~

log(n).

Question 15.3.3. (Open question): Find an explicit f with Ci(f) > (logn)?
with & > logn players.

Note: the proof of C(GIP;) involves repeated Cauchy-Schwarz. The
proof of C(QCH) is an inductive proof using Cauchy-Schwarz whose base
case uses Weil’s character estimates.



