
REU 2006 · Discrete Math · Lecture 16

Instructor: László Babai
Scribe: Elizabeth Beazley

Editor: Eliana Zoque

August 7, 2006. Last updated August 7, 2006 at 11:15 p.m.
NOT PROOF-READ

16 Hadamard Matrices

16.1 Results about Hadamard Matrices

How do we construct a Hadamard matrix; i.e., an N × N matrix H such
that HH t = NI and the entries will all be ±1. This condition implies that
N = 2 or 4|N , as we will prove now.

If the first row consists of all 1’s, then all subsequent rows have half of
their entries 1 and the other half −1. Let’s assume,rearranging the rows if
necessary, that second row has the first half of the row 1’s and the second half
-1’s. If the third row has more 1’s than -1’s on the first half, then it is going
to have more -1’s than 1’s on the second half, and the inner product between
the second and third row would not be zero, as in the following matrix. The
same argument applies if the third row has more -1’s than 1’s on the first
half.









1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 1 −1 1 −1 −1 −1
. .









Then the third row has as many 1’s a -1’s on the first half. Rearranging
the rows we have N

4
1’s and N

4
− 1’s, followed by N

4
1’s and then N

4
− 1’s,

as in the following matrix. This implies that 4|N .

1









1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
. .









Note that being Hadamard does not change if we multiply a row through
by −1; similarly for a column. Thus, we can indeed assume WLOG that the
first row consists of all 1’s.

Let’s focus on constructing a (p + 1) × (p + 1) matrix, where p ≡ −1
mod 4 is a prime.

First we construct an auxiliary matrix C in the following way: In the ijth

spot, let us put the Legendre symbol (i−j

p
). If we multiply CCt, the diagonal

consists of entries p − 1.
Computing the inner product of rows h and i, we have

p−1
∑

j=0

(

h − j

p

)(

i − j

p

)

=

p−1
∑

j=0

(

(h − j)(i − j)

p

)

Note that if j = h or i, then the product inside the sum is 0. Denote

by χ(a) :=
(

a
p

)

. Then we see that χ(h − j)χ(i − j) = χ(h−j)
χ(i−j)

= χ
(

h−j

i−j

)

,

where i 6= j. Denote this function of the character χ by f(x) := h−x
i−x

. Then
f : Fp − {i} → Fp.

Question 16.1.1. Do we see a number that is not in the range of the function
f?

The number 1 never occurs, since h 6= i; i.e., that we are looking at
distinct rows.

Claim 16.1.2. f : Fp − {i} → Fp − {1} is a bijection.

Proof. We shall argue that f is onto, which implies the result. We claim that
(∀z 6= 1)(∃x)(h−x

i−x
= z). We need only show that we can solve this equation:

(h − x) = z(i − x) ⇐⇒ h − x = zi − zx ⇐⇒ zx − x = zi − h

⇐⇒ (z − 1)x = zi − h ⇐⇒ x =
zi − h

z − 1
(16.1.1)

And this final equality has a solution, since z 6= 1.

2

As a consequence, we have that the values of χ(f(x)) are: 0 for x = h;
i.e., if f(x) = 0. Since f(x) 6= 1, then we get the value 1 exactly p−3

2
times,

and we have −1 exactly p−1
2

times. This tells us that this matrix has 0’s on
the diagonal and ±1 elsewhere; and that the inner product of two distinct
rows equals -1.

Now we augment the matrix by a row and a column of all one’s and
replacing all zeros by -1. The dot product of a row with itself is (p − 1) +
1 + 1 = p + 1. Consider two distinct rows h and i. The hi and ih entries

are
(

h−i
p

)

and
(

i−h
p

)

, respectively. Note that
(

−j

p

)

= −
(

j

p

)

, since
(

−1
p

)

=

−1 because p ≡ −1 mod 4. Thus the dot product of the rows h and i is

−1 + 1 +
(

h−i
p

)

+
(

i−h
p

)

= 0.

16.2 Eigenvalues of Hadamard Matrices

Claim 16.2.1. If λ is an eigenvalue of an n × n Hadamard matrix, then

|λ| =
√

N

Recall that orthogonal matrices A are such that AAt = I.

Claim 16.2.2. If µ is an eigenvalue of A, then |µ| = 1.

To prove this, one can argue that ‖Ax‖ = ‖x‖ and so Ax = µx. Thus,
‖µx‖ = |µ| · ‖x‖. But there is a problem with this argument: if A =
(

cos α − sin α

sin α cos α

)

, then the characteristic polynomial is

fA(x) = det(xI − A) =

∣

∣

∣

∣

x − cos α − sin α

sin α x − cos α

∣

∣

∣

∣

= (x − cos α)2 + (sin α)2

= x2 − 2 cos αx + 1.

But note that fA(x) = 0 ⇐⇒ (x − cos α)2 = −(sin α)2 ⇐⇒ x − cos α =
±i sin α ⇐⇒ x = cos α ± i sin α.

This proof only goes through if µ is real! But in general, µ ∈ C. How do
we fix it?

Lemma 16.2.3. If AAt = I, then ‖Ax‖2 = ‖x‖2.

Proof. (Ax)t(Ax) = xtAtAx = xtx =
∑

xi
2.

3

Recall that the norm in C is given by ‖x‖2 =
∑ |xi|2, so that x · y =

n
∑

i=1

xiyi.

Definition 16.2.4. Denote by A∗ the conjugate-transpose of the complex
matrix A. We say that A is a unitary matrix if AA∗ = I. Equivalently, we
could require that A∗A = I.

Definition 16.2.5. If A is unitary and real, then A is orthogonal.

Lemma 16.2.6. If A is unitary and x ∈ C
n, then ‖Ax‖ = ‖x‖.

Proof. ‖Ax‖2 = (Ax)∗(Ax) = x∗A∗Ax = x∗x = ‖x‖2.

Using this Lemma and the definition of unitary matrices, the same proof
we provided in our first attempt will now go through.

16.3 Boolean circuits

Input x1, . . . , xn ∈ {0, 1}. Denote by “and” =:∧, “or” =: ∨ and the negation
of x by x.

Example 16.3.1. If we let x1 = 1, x2 = 1, x3 = 0, and x4 = 0, then the
following is an unsatisfiable Boolean circuit:

x1 x1 x2 x2 x3 x3 x4 x4

∧ ∨

∧

HHHHHHHH

³³³³³³³³³³³³

XXXXXXXXXXXXXXXX

HHHHHHHH

©©©©©©©©

¥
¥
¥
¥
¥
¥
¥
¥¥

aaaaaa

!!!!!!

We will introduce several bits of complexity. First, the size of the circuit.
At the minimum, we want to keep the circuit size polynomial in n, where n

is the number of wires in the Boolean circuit. The second parameter is the
depth, or the largest path from input to output.

Definition 16.3.2. A Boolean function is a function f : {0, 1}n → {0, 1}

4

Note that (a ∨ b) = a ∧ b.

Example 16.3.3. If negation permitted along wires, then such a circuit can
be simulated by a circuit on which all negations are at the input level and
newsize = O(oldsize), with newdepth = olddepth.

Claim 16.3.4. Every Boolean function is computed by a Boolean circuit of

depth 2.

This can be done in two ways, depending on the type of logic symbols
that we use in each level.

Conjunctive Normal Form: AND or OR’s.
Disjunctive Normal Form: OR of AND’s.
Here we have a string of literals, or variables and their negations:

x1 x1 x2 x2 x3 x3 x4 x4

Take some and’s among these literals, and then below, take the or of these
and’s. Specifically, every and has n terms, consisting of either the variable
or its negation. Then we take the or of all of these and’s.

Definition 16.3.5. A complete clause of literals is a string of literals such
that (∀i)(x1or x1 is included)

In a Disjunctive Normal Form (DNF), we do not necessarily require that
the clauses be complete.

Example 16.3.6. Here is an example of a DNF: (x1 ∧ x2)∨ (x1 ∧ x3 ∧ x4)∨
(x2 ∧ x3 ∧ x4)

Note that (x1 ∧ φ) ∨ (x1 ∧ φ) ↔ φ.

Exercise 16.3.7 (Shannon). For almost all Boolean functions, the circuit

size is ckt size = Ω

(

2n

n

)

.

Note here that there is no condition on the depth in the above exercise.

Exercise 16.3.8. Every CNF for parity has ≥ 2n−1 clauses.

Exercise 16.3.9. Every depth-2 circuit for parity has size Ω(n2n).

5

Question 16.3.10. What is the number of Boolean functions in a given
number of variables, say n?

The number of Boolean functions is 22n

.

Definition 16.3.11. PARITY(x1, . . . , xn) =
n
∑

i=1

xi mod 2.

Exercise 16.3.12. Compute parity in depth-3, size ≈ 2
√

n. Here, it is OK
if nc2

√
n.

HINT: Suppose we have a parity gate
⊕

having
√

n inputs. We could
group each

√
n collection with a parity gate, and then connect all of these

parity gates with a parity gate. The output would then be the parity of the
parity, which computes the total parity. Altogether, we would have size =√

n2
√

n.

Question 16.3.13. How can we compress this circuit to depth-3?

Suppose we have a Boolean circuit having or’s on the first level and only
and’s on the next two levels, followed by a fourth level having only or’s. This
is a depth-4 Boolean circuit, which we can make depth-3 by compressing the
second and third levels, since and(and) = and. If we perform this compression
on our circuit of parity gates, this will yield the depth-3 result.

We can compute parity in depth-d with size ≈ 2n
(1

d−1
)

.

Exercise 16.3.14. Compute the sum of two n-bit integers in bounded depth
and polynomial size. (You will actually use depth 3).

Theorem 16.3.15 (Ajtai, Furst-Saxe-Sipsor). PARITY cannot be com-

puted in bounded depth and polynomial size.

Exercise 16.3.16 (Corollary). Multiplication of n-bit integers cannot be
done in bounded depth and polynomial size.

Theorem 16.3.17 (Yao, Hastad). PARITY in depth d requires size 2
n

10

(1
d−1

)

.

Definition 16.3.18. MOD3(x1, . . . , xn) =

{

1 if
∑

xi ≡ 0 mod 3

0 otherwise

Theorem 16.3.19 (Razborov). Even with MOD2 gates, MOD3 cannot be

computed in bounded depth with polynomial size.

We will work through the proof of Razborov’s Theorem next time.

6

