
REU 2006 · Discrete Math · Lecture 17

Instructor: László Babai
Scribe: Megan Guichard
Editors: Duru Türkoğlu

August 9, 2006. Last updated August 12, 2006 at 7:30pm.
NOT PROOF-READ

17 Boolean Circuits (continued)

17.1 Correction

First, a correction to last time. We said that we could construct Hadamard matrices using
prime numbers, which is true, but we used the wrong kind of prime numbers. The correct
statement is

Claim 1. If p is a prime number with p ≡ −1 (mod 4), then there exists a (p + 1)× (p + 1)
Hadamard matrix, given as follows. Let C be the p × p matrix with (i, j) entry given by
(

i−j
p

)

. Form a matrix H by adding an initial row and an initial column of 1s to C, and then

replacing 0s in the diagonal by −1s. Then H is Hadamard.

17.2 Boolean circuits (continued)

Theorem 2 (Yao, H̊astad). If PARITY is computed by a Boolean circuit of depth d, then
size is

> 2
1

10
·n

1

d−1

.

We will approach this by proving a stronger result:

Theorem 3 (Razborov-Smolensky). This lower bound holds even if we permit MOD3

gates (in addition to AND, OR, NOT gates.)

Corollary 4. The size is > 2c·n1/2d
.

1

Definition 5. A MOD3 gate with inputs a1, a2, . . . , an outputs the following:

MOD3(a1, a2, . . . , an) =

{

1 if
∑

ai ≡ 0 (mod 3)

0 o/w
(17.2.1)

Definition 6. A MOD3 circuit is a circuit with boolean gates AND, OR, NOT and MOD3

gates.

Recall from last time:

Theorem 7. (Razborov-Smolensky) Even using MOD3 gates, MOD2 (PARITY) cannot be
computed in bounded depth with polynomial size.

Our plan: First, we will show if a Boolean function f can be computed by a MOD3

circuit of depth d and size m, then f is approximately equal to a polynomial g over F3 of low
degree. This is the key idea: we will switch from circuits, which are elusive combinatorial
objects, to algebra, which has much more structure.

Here f ≈ g means that

Pr
x∈{0,1}n

(f(x) 6= g(x)) is small
(

<
m

2kd

)

where k is the degree of g. “Low degree” will mean o(
√

n) (little o). Also, there is a
tradeoff between the approximation and the degree, the higher the degree, the less the error
in approximation. For future analysis on the degree, note kd ≈ 2

√
n means k ≈ 2n1/2d

(n is
the number of variables.)

Second, we will show that if PARITY is approximately equal to a low-degree polynomial
over F3, then every boolean function f is approximately equal to a polynomial of degree
n
2

+ little.

Finally, we will show by counting that this is impossible, leading to the desired contra-
diction.

Proof. First Part: Let ai be boolean variables (variables taking values 0 or 1.) Then, in any
field, a1 ∧ a2 ∧ · · · ∧ ak = a1 · a2 · · · ak. Recall also deMorgan’s rule:

a1 ∧ · · · ∧ ak = a1 ∨ · · · ∨ ak

and similarly

b1 ∨ · · · ∨ bk = b1 ∧ · · · ∧ bk

Also, a = 1 − a.

Therefore we see that we can easily switch between AND and OR gates. Now, if we
naively substitute all the AND and OR gates as we formulate above (the product,) the

2

degree gets huge. If you imagine the AND gate with inputs a1, a2, . . . , ak (the quantity of
the inputs is called fan-in), as the fan-in gets larger we get larger exponent in our polynomial
for this gate. We then need some kind of reduction in the degree, for this we will compute
the result approximately.

Since handling AND and OR gates are the same (conversion is linear) we shall consider

b1 ∨ · · · ∨ bk. The quantity
(
∑

i∈I bi

)2
(mod 3) might be a good approximation, where I is

a random subset of {1, . . . , k}. So we are investigating whether

b1 ∨ · · · ∨ bk ≈
(

∑

i∈I

bi

)2

(mod 3)

Some observations:

1. The right-hand side is boolean (equal to 0 or 1), because all squares are 0 or 1 mod 3.

2. Consider the left-hand side. It is 0 only if all bi are zero, in which case the right-hand
side is also 0, so PrI(error) = 0 Here the probability of error is given by worst-case
analysis and randomization is over the subset I (one can think that there is an adversary
which provides the worst inputs b1, b2, . . . , bk and we hope that our random subset will
help us providing the correct result.)

3. If the left-hand side is 1, then PrI(right-hand side = 0) ≤ 1
2
. This can be seen as

follows. Suppose that b` = 1. Pair up the subsets of {1, . . . , k} by pairing a subset
with the subset given by toggling membership of ` in the set. Then, for every pair I
and I ′, at least one of I, I ′ gives the correct answer on the right-hand side. So, for
every input b1, . . . , bk,

Pr
I

(b1 ∨ · · · ∨ bk 6=
(

∑

bi

)2

(mod 3)) ≤ 1

2

as desired.

If we do this multiple times, say N times, using random sets Ij each time, then it’s a
good bet that

b1 ∨ · · · ∨ bk =
N
∧

j=1





∑

i∈Ij

bi





2

.

That is, the probability of error is ≤ 1
2N .

This means that we can replace all AND and OR gates by polynomials of degree 2k,
because the expression on the right-hand side is a polynomial with this degree; we are
replacing each variable by a polynomial of degree 2.

So, we have a new randomized circuit such that

(∀x)Pr(f(x) 6= g(x)) ≤ m

2k
(17.2.2)

3

where g(x) refers to the new circuit, m is the size of the original circuit, and the inequality is
given by the union bound. The polynomial g was chosen at random; we can repeat this for
each gate in the original circuit. Since the original circuit had depth d, g will be a polynomial
of degree ≤ (2k)d.

Now, since Eq. 17.2.2 holds ∀x, it follows that

Pr
x,g

(f(x) 6= g(x)) ≤ m

2k
(17.2.3)

and so
(∃g) Pr

x
(f(x) 6= g(x)) ≤ m

2k
(17.2.4)

Indeed, we use the traditional trick which we have applied also in randomized vs. dis-
tributional communication complexity. Now, we have moved to a fixed polynomial which
approximates f in the sense that not every input is correctly computed, but the fraction
which are incorrectly computed is at most m/2k.

In this sense, f(x) ≈ g(x); g is low-degree, meaning (2k)d. f was a function computable
in depth d and size m. The ≈ means that Prx(error) ≤ m

2k .

This finishes the first part of the plan.

Recall that PARITY(x1, . . . , xn) =
∑

xi (mod 2). Suppose that PARITY ≈ g(x1, . . . , xn)
over F3. Let

yi = 1 − 2xi =

{

−1 if xi = 1

1 if xi = 0

Then xi = −1
2
(yi − 1), so g(x1, . . . , xn) = h(y1, . . . , yn), where g and h have the same degree.

(In F3, −1
2

= 1 therefore xi = yi − 1.)

Now
∏n

i=1 yi = (−1)PARITY(x). Notice that (−1)z = 1 − 2z, so

n
∏

i=1

yi = 1 − 2 · PARITY(x) ≈ 1 − 2g(x) = 1 − 2h(y),

and this is a low-degree polynomial. Now let f : {0, 1}n → {0, 1} be any boolean function.

Lemma 8. f can be written as a multilinear polynomial over any field F . Multilinear
means each variable appears with monomial at most 1, i.e. cx1x3x4 is multilinear but cx2

1x3x4

is not.

Proof. Base Case: Given a ∈ {0, 1}n, define

fa(y) =

{

1 if y = a

0 otherwise

4

Then fa(y) =
∏

ti, where

ti =

{

yi if ai = 1

−yi if ai = 0

Thus fa is multilinear. Now every function {0, 1}n → F is a linear combination of the fa,
and the lemma follows.

Returning to the main proof, if f is any Boolean function, then f is a multilinear poly-
nomial over F3. Write

f =
∑

I⊂{1,...,n}
αI

∏

i∈I

xi =
∑

I

βI

∏

i∈I

yi.

Now, for |I| ≤ n
2
, do nothing. For |I| > n

2
, write

n
∏

i=1

yi =
∏

i∈I

yi

∏

i/∈I

yi.

Thus
∏

i ∈ Iyi =
∏

i/∈I

yi

n
∏

i=1

yi

where the first term is of degree ≤ n/2 and the second term is approximately equal to
a polynomial of low degree. There is only one approximation, and we can see that the
probability of error in computing

∏

i∈I yi is still small. Also, once we translate back to the
original variables xi, every xi is either 0 or 1, so x2

i = xi, so we may assume the polynomial
is multilinear. (Alternately, every yi squares to 1 and a similar result holds.) This finishes
part 2 of the plan; every Boolean function is approximable by a multilinear polynomial of
degree ≤ n

2
+ something little.

Finally, we will do some counting. The space of polynomials of degree ≤ n
2

+
√

n
100

has
dimension

n/2+
√

n/100
∑

j=0

(

n

j

)

= 2n−1 +
2n

large
= (1 + ε)2n−1.

What is the number of Boolean functions “close” (ε2n-close) to a given Boolean function?
That is, we want the size of the set

{g : Pr
x

(f(x) 6= g(x)) ≤ ε}

which is
ε2n
∑

j=0

(

2n

j

)

.

Exercise 9. Show that
∑k

j=0

(

n
j

)

<
(

en
k

)k
.

5

Using the exercise, we see

ε2n
∑

j=0

(

2n

j

)

<

(

e2n

ε2n

)ε2n

=
(e

ε

)ε2n

and for all ε there exists δ such that this last quantity is < (1 + δ)2n
.

Therefore, the total number of approximable functions is less than

3(1+ε)2n−1 · (1 + δ)2n

< 3(1+ε′)2n−1

<< 22n

(using the approximation log2 3 < 2).

This completes the proof.

6

