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2.1 Roots of unity

Definition 1. A complex nth root of unity is a complex number z such that zn = 1. We
can write zk = cos

(
k 2π

n

)
+ i sin

(
k 2π

n

)
. So the nth roots of unity are the vertices of a regular

n-gon in the complex plane.

Definition 2. A primitive nth root of unity is z such that zn = 1 and z` 6= 1 for all
1 ≤ ` ≤ (n− 1). In other words, the multiplicative order of z is n.

Exercise 3. Prove that zk is a primitive nth root of unity if and only if gcd(k, n) = 1.

Therefore from the above exercise we can conclude that the number of primitive nth roots
of unity is ϕ(n).

Exercise 4. Prove that
∑

d|n ϕ(d) = n.

Theorem 5. For all n 6= 1 the sum of all the nth roots of unity is 0, that is, if n 6= 1,

Sn
def
=

n−1∑
k=0

zk = 0 (2.1.1)

Proof. We will give two different proof of the theorem.
Geometric proof: Consider the n different nth roots of unity. Note that the vectors
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corresponding to the roots form a regular n-gon in complex plane. So, their sum Sn has
rotational symmetry, that is, if we rotate each vector by 2π/n, then we get the same set of
vectors. So Sn is fixed under rotation by 2π/n. Therefore, if n 6= 1, then Sn must be 0.
Algebraic Proof: Notice that rotation by 2π/n is the same as multiplication by z1. Hence,
zj = zj

1. So,
Sn = z0

1 + z1
1 + · · ·+ zn−1

1 ⇒ z1S = z1
1 + · · ·+ zn

1 (2.1.2)

By definition, zn
1 = 1 and z1 6= 1. So z1S = Sn. Thus Snz1 − Sn = Sn(z1 − 1) = 0.

Corollary 6.
∑n−1

k=0 cos (k2π/n) = 0.

Exercise 7. Find a closed-form expression for
∑n−1

k=0 cos(ak + b). [Hint: Look at a geometric
property of

∑
cos(ak + b) + i sin(ak + b).]

Definition 8. Let Rn =
∑′

k zk be the sum of the primitive nth roots of unity.

Now let us study what is can be the value of Rn.

Note that is n is a prime then Rn = −1.

Consider the case when n = pq, where p and q are primes. Then

Spq = Rpq + Rp + Rq + R1 = Rpq + (−1) + (−1) + 1

Since Sn = 0 so we have Rpq = 1.

Exercise 9. Prove that Rn = µ(n), the Möbius function.

2.2 Probability

Refer to Chapter 7 in László Babai’s notes for an introduction to finite proba-
bility theory

Suppose we pick a random nonnegative integer x uniformly at random, what does this
mean? Furthermore how can we define “the probability” that x ≡ 3 (mod 4).

We should define the probability as follows:

Pr(x ≡ 3 (mod 4)) := lim
n→∞

Pr(x ≡ 3 (mod 4)) (2.2.1)

This probability Pn, depending on n, is

Pn =
bn+1

4
c

n

that we have |Pn − 1
4
| ≤ 1

n
; therefore Pn → 1

4
.
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Now, what about Pr(gcd(x, y) = 1), for “random” x, y ∈ N. It is ≤ 3/4 = (1− 1
4
), since

we have the probabilities Pr(2|x) = Pr(2|y) = 1
2
. Similarly, there is an 8/9 chance that they

are not both multiples of 3.

The important question is: Are these two events independent? If they are independent
then we would be able to multiply the probabilities of those for each prime to find the
solution to this problem. So when do we say that two events independent?

Definition 10. For two events, the definitions of positively(negatively) correlated and
independent are given in the Chapter 7 of Babai’s Lecture Notes.

Exercise 11. For x in {0, 1, . . . , n− 1}, how are the events “2|x” and “3|x” correlated? In
particular, when are they independent? More generally, when are the events “divisible by
p” and “divisible by q” independent?
Remark: certainly if pq|n, then p|x and q|x are independent, but surprisingly this is not the
only case.

It is not true that for all n, divisibility by 2 and 3 are independent. But it turns out, for
large n these events are almost independent, more specifically for x ∈ {0, 1, . . . , n− 1},

|Pr(2|x)Pr(3|x)− Pr(6|x)| → 0 as n →∞

So we have,

Pr(gcd(x, y) = 1) ≤ (1− 1

4
)(1− 1

9
)

Similarly for the first finitely many primes p1, p2, . . . , pk,

Pr(gcd(x, y) = 1) ≤
∏

p∈{p1,...,pk}

(1− 1

p2
)

So what happens if we take the infinite product?

Exercise 12. Prove: Pr(gcd(x, y) = 1) = 1
ζ(2)

= 6
π2 ≈ 0.6079....

Hint: we had an exercise that ζ(s) = 1/
∏

p (1− 1/ps).
Remark: When an exercise is used multiple times, it is a good indication that you should
write it up at some point.

Let pn = Prx,y∈{0,...,n−1}(gcd(x, y) = 1); the probability that we are looking for is
limn→∞ pn. The proof of the existence of the limit is rather tedious so you may assume
that the limit exists. Given that this limit exists, it is a two-line proof that it must be 6/π2.

Exercise 13. Relate the probability Pr(gcd(x, y) = 1) = 6/π2 to the average value of ϕ(n).
(Recall that 1

n2

∑n
k=1 ϕ(k) → 3/π2.)
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2.3 Fibonacci numbers

The Fibonacci numbers are defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. So
the Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Let’s look at the ratios of consecutive Fibonacci numbers.

1/0 1/1 2/1 3/2 5/3 8/5 13/8 21/15 . . .
1 2 1.5 1.333 1.6 1.375 . . .

Theorem 14. Let L = limn→∞
Fn+1

Fn
. Then the limit L exists and its value is the golden

ratio, that is, L = 1+
√

5
2

= γ ≈ 1.6.

The proof of this theorem is difficult. But assuming that the limit L exist we will give a
simple proof.

Note that the golden-ratio is the solution to the equation L = 1 + 1/L.

Proof. We have Fn = Fn−1 + Fn−2, so

Fn/Fn−1 = 1 + Fn−2/Fn−1 (2.3.1)

so if we take limit on both sides we get L = 1 + 1/L, and the result follows.

Exercise 15. If d(n) is the number of divisors of n prove that d(n) < 2
√

n.

Exercise 16. Prove that for all ε > 0 there exists n0 such that for all n > n0 we have
(d(n) < nε).

Exercise 17. Prove that for all ε > 0 there exists n0 such that for all n > n0 we have
(d(n) < n

c+ε
ln ln n ). Find the best c. [Hint: use the Prime Number Theorem.]

2.4 Least common multiples and order of permutation

Let n be a positive integer. Let 0 < k1 ≤ k2 ≤ · · · ≤ kr be a partition of n, that is,
n = k1 + · · ·+ kr. We are interested in studying lcm[k1, . . . , kr].

This is very similar to studying permutations on n elements. Consider a permutation π
on n elements. The permutation can we uniquely written as a product of disjoint cycles.
Let the cycles of π be of size k1, k2, . . . , kr. Then note that the lcm[k1, . . . , kr] is same as the
order of π.

Suppose we have fixed n. What is the maximum order of a permutation on n elements?
This is same as writing n = k1 + · · ·+ kr where lcm[ki] is as large as possible.

Consider k1 = 2, k2 = 3, k3 = 5, etc. This doesn’t give exactly the right answer, but it
is close to being right in some sense. Let M(n) be the maximum order of a permutation on
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n elements; certainly M(n) ≥
∏

p≤x p =: M∗(n), where x is the largest number such that∑
p≤x ≤ n.

Exercise* 18. Prove that ln M(n) ∼ ln M∗(n).

Exercise 19 (E.Landau 1904). Prove that ln M∗(n) ∼
√

n ln n. [Hint: Prime Number
Theorem.]

Erdös-Turan-Goncharou showed that the “typical” order of a permutation is around
n(1/2) ln n. Precisely, if π is a random permutation of n elements, then with high probability
(the probability approaches 1 as n goes to ∞),

ln (order ofπ) ∼ 1

2
(ln n)2 (2.4.1)

Take a permutation π uniformly at random. Let `1 be the length of the cycle containing
1. Since there are n possible places that 1 can go are all equally likely, we get Pr(`1 = 1) = 1

n
.

Now let us consider the, Pr(`1 = n). There are n−1 choices for π(1), because 1 is excluded.

Then there are n− 2 choices for π(π(1)), and so on. So we have Pr(`1 = n) = (n−1)!
n!

= 1
n
.

Exercise 20. Let π be a random permutation on n elements and `1 be the size of the cycle
in π containing 1. Give a beautiful proof that Pr(` = k) = 1

n
. [Hint: give a clear bijection

between the set of permutations where 1 is in a cycle of length k with (n− 1)!.]

Suppose we have a permutation π on n elements. Define ck(π) to be the number of
k-cycles in π.

If the permutation π is chosen at random, what is the expected number of cycles of
length k? Call this expected value ck.
What is cn? A permutation can have at most one cycle of size n. And by our earlier argument
probability that the permutation is an n cycle is 1

n
. So cn = 1

n
.

What is c1? For each number between 1 and n, the probability that that number is in a
cycle of length 1 is 1/n, so the expected value of c1 is 1

n
+ 1

n
+ · · ·+ 1

n
= 1.

Example 21. In the permutation (12)(34)(567), c1(π) = 0, c2(π) = 2, c3(π) = 1), and
ck(π) = 0 for k > 3.

Exercise 22. Prove that the expected number of cycles in a random permutation is asymp-
totically equal to ln n.

Pick a permutation π. What is the order of π? If it consists of a single cycle, then it has
order n. If it consists of two cycles, the order is ≤ n2/4 < n2. In general, if the number of
cycles is ≤ s, then the order of π is < ns. (Actually, (n/s)s, but asymptotically this doesn’t
matter.)
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2.5 Partitions of n

Given a natural number n, we can look at all of the ways of writing n as a sum of natural
numbers. (Natural numbers start at 1.)

Example 23.

5 = 1 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 2

= 1 + 1 + 3

= 1 + 2 + 2

= 1 + 4

= 2 + 3

= 5

These are all possible partitions of 5.

Let p(n) be the number of partitions of n. By the above example we have p(5) = 7.

Theorem 24. There exist constants c1, c2 > 1 such that, for all sufficiently large n,

c
√

n
1 < p(n) < c

√
n

2 . (2.5.1)

Proof. First, let us observe the lower bound. We need to find c1 such that p(n) ≥ c
√

n
1 . So we

need to find some way of producing distinct partitions that gives about this many partitions.

Imagine that we have a partition of n into k distinct terms which are greater than 2. So
n = a1 + · · ·+ak. To produce a different partition we can modify each ai by reducing 0 or 1,
and fill the partition with 1’s to sum up to the same value. For example, 44 = 3+7+13+21
might change to 2 + 6 + 13 + 20 + 1 + 1 + 1.

By this procedure we can create 2k distinct partitions (2 choice for each term). These
partitions will be different, since all of the terms are distinct and greater than 2.

Notice that 3+4+ · · ·+(k +2) = k(k+5)
2

. Thus the maximum k to satisfy k(k+5)
2

< n will

be ∼
√

2n. Therefore we have proved c
√

n
1 ≤ p(n) for any c1 < 2

√
2.

Now, what about the upper bound?

Let p(n, k) be the number of partitions of n into at most k terms. Let q(n, k) be the
number of partitions of n into terms, each of which is ≤ k.

Example 25. p(5, 2) = 3, because we have 5 = 1 + 4 = 2 + 3 = 5.

q(5, 2) = 3, because 5 = 1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 2 = 1 + 2 + 2.
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Lemma 26. p(n, k) = q(n, k).

Proof. pictures with boxes flipped over a 45◦ line

Suppose we say that a term ≤
√

n is “small” and a term >
√

n is “large.” Define

p̃(n) =
∑
k≤n

p(k)

Similarly, define p̃(n, k) =
∑

m≤n p(m, k) and q̃(n, k) likewise. Then

p̃(n) ≤ p̃(n,
√

n)q̃(n,
√

n)

Why? Every partition n = a1+a2+· · ·+am can be split into two parts, one with all small
terms and one with large terms. The part with large terms will eventually have less than√

n terms, since each of the terms is large. Obviously, each of these parts are represented in
p̃(n,

√
n) and q̃(n,

√
n), and furthermore there is an over count, but that’s okay.

Now, p̃(n, k) ≤
(

n+k
k

)
, by the following argument: Imagine we have n boxes and k dividers.

Choose the dividers out of n + k objects and then let a1 = # of boxes until first divider,
a2 = # of boxes between first and second dividers, . . . , ak = # of boxes between (k − 1)st

and kth dividers, with
∑

ai ≤ n. This over counts, because some partitions may be counted
multiple times.

Still, these analysis give a bound of p̃(n, k) ≤ nk = ek ln n. Here k is on the order of
√

n,
which is good, but there is an extra factor of ln n, which is less good.

However, we can modify this approach to give the expression we want.

Exercise 27. Complete the above proof for the upper bound.
Hint: Asymptotic Notation handout. (Chapter 2 )

2.6 Generating functions

Let a0, a1, a2, . . . be a sequence of numbers. The associated function

f(x) =
∞∑

n=0

anx
n (2.6.1)

is called the generating function associated to the sequence.

Example 28. • 1, 1, 1, . . . gives f(x) = 1 + x + x2 + · · · = 1
1−x

.

• 1
0!
, 1

1!
, 1

2!
, . . . gives f(x) =

∑
xn

n!
= ex.
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If all ai ≥ 0, then ∀x > 0, if f(x) is convergent, then

an ≤
f(x)

xn
= · · ·+ an + · · · . (2.6.2)

Let

P (x) = (1 + x + x2 + · · · )(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · ) · · · =
∞∏

k=1

(
∞∑

j=0

xkj) (2.6.3)

Then, for example, the coefficient of x5 is p(5), because the number of ways we can get an
x5 from the product. Similarly, the coefficient of xn is p(n).

Notice that actually

P (x) =
∞∏

k=1

1

1− xk
(2.6.4)

So

ln P (x) = −
∞∑

k=1

ln (1− xk) (2.6.5)

For all 0 < x < 1, p(n) ≤ P (x)
xn . Also, − ln (1− y) = y + y2

2
+ y3

3
+ · · · . So

ln p(n) = −n ln x−
∞∑

k=1

ln (1− xk) = −n ln x+
∞∑

k=1

∞∑
j=1

xkj

j
= −n ln x+

∞∑
j=1

1

j

∑
k

xkj (2.6.6)

thus

ln p(n) ≤ −n ln x +
∑

j

1

j

xj

1− xj
≤ −n ln x +

∑ 1

j

xj

(1− x)jxj−1
= −n ln x +

x

1− x

∑ 1

j2

(2.6.7)
because

1− xj = (1− x)(1 + x + · · ·+ xj−1) ≥ (1− x)jxj−1 (2.6.8)

for 0 < x < 1. Also

ln p(n) ≤ −n ln x +
x

1− x

π2

6
= −n ln

y

1 + y
+ y

π2

6
(2.6.9)

where y = x
1−x

, x = y
1+y

. Note 0 < x < 1 if and only if 0 < y < ∞. So the above turns into

n ln 1 +
1

y
+ y

π2

6
≤ n

y
+ y

π2

6
= 2

n√
6n/π

=
√

2/3π
√

n (2.6.10)

This uses some facts: ln 1 + z ≤ z.

If y2 = 6n
π2 then n/y = yπ2/6.
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