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3.1 Permutations and Permutation Groups

Definition 3.1.1. A permutation is a map f : A → A that is one-to-one and onto; i.e., a
bijection of the set A. We call A the permutation domain.

Definition 3.1.2. All permutations of A form the Symmetric Group, denoted Sym(A).

Denote the action of the permutation f on an element a by a 7→ af . We can compose

permutations A
f−→ A

g−→ A by a 7→ af 7→ (af )g =: afg. Similarly, fn := f · · · f denotes f
composed with itself n times. The identity permutation on the set A, denoted idA, leaves
every element fixed. The inverse of a permutation af−1

= b is such that bf = a. Note that
since f is a bijection, then the inverse is well-defined.

Definition 3.1.3. The degree of Sym(A) is the order of the set A, denoted |A|.

Definition 3.1.4. Denote by Sn = Sym([n]), the symmetric group of degree n, where
[n] = {1, 2, . . . , n}.

Definition 3.1.5. Let π ∈ Sym(A). We define the support of π to be supp(π) := {a ∈ A :
aπ 6= a}.

Example 3.1.6. Note that supp(id) = ∅. As another example, note that |supp((12)(34))| =
4.

Definition 3.1.7. In general, we can define the degree of a permutation to be deg(π) :=
|supp(π)|.
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Definition 3.1.8. A k-cycle is a permutation of degree k consisting of a single cycle;
e.g., π = (a1 a2 · · · ak) and |supp(π)| = k. As a special case, the 2-cycles are called
transpositions.

Here we use cycle notation (a1 a2 · · · ak) to denote the function that maps ai 7→ ai+1 and
sends ak 7→ a1. Note that the cycle notation is not unique, since (1 2 3) = (2 3 1) = (3 1 2),
for example.

Definition 3.1.9. The number of elements in the group is called the order of the group.

Example 3.1.10. The order of the symmetric group Sn is n!.

Permutations have parity, either even or odd.

Definition 3.1.11. We say that a permutation π is even if it can be expressed as a product
of an even number of transpositions. Similarly, π is odd if it can be expressed as the product
of an odd number of transpositions.

Definition 3.1.12. The sign of a permutation is defined as follows:

sign(π) =

{
1, if π is even

−1, if π is odd
(3.1.1)

Definition 3.1.13. mn := max
π∈Sn

{min{k : ∃ transpositions τ1, . . . τk s.t. τ1 · · · τk = π}}.

Question 3.1.14. How many transpositions will we need in this product? What is an upper
bound?

Let us consider the following permutation, in which we define the function using a diagram
with arrows.

?

1

5
?

2

3
?

3

7
?

4

2
?

5

8
?

6

1
?

7

4
?

8

6

Let us begin by choosing τ1 = (1 5). We can then consider where 5 is mapped, and write
τ2 = (5 8). Continuing in this manner, we use n− 1 transpositions. An inductive argument
would show in general that mn ≤ n− 1. Can we improve on this bound?

We can provide an example of a permutation that requires less than n−1 transpositions.
For example, the permutation that reverses the order of all of the elements in the set [n]
uses at most n

2
transpositions.

Exercise 3.1.15. If π is the n-cycle (1 2 · · · n), then k ≥ n − 1, where k is such that
∃ transpositions τ1, . . . τk s.t. τ1 · · · τk = π.
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3.2 Generators

Definition 3.2.1. We say that π1, . . . πk generate Sn if (∀σ ∈ Sn)(∃ρ1, . . . ρl s.t. σ = ρ1 · · · ρl

and (∀j)(∃i)(ρj = πi or π−1
i )).

We have proved that the
(

n
2

)
transpositions generate Sn.

Claim 3.2.2. The n− 1 neighboring transpositions (1 2), (2 3), . . . , (n− 1 n) generate Sn.

To prove this Claim, we first note that all transpositions will generate Sn. Thus, we need
only prove the following:

Lemma 3.2.3. All transpositions are generated by neighbor transpositions.

Proof. If 1 ≤ i < j ≤ n, then

(i j) = (i i + 1)(i + 1 i + 2) · · · (j − 1 j)(j − 2 j − 1)(j − 3 j − 2)(i i + 1). (3.2.1)

We have used 2(j − i) − 1 neighbor transpositions to form this product. Note that this is

an odd number of transpositions. On the kth step, this is ≤ 2(n − k), and
n∑

k=1

(n − k) =

n(n + 1)

2
.

Theorem 3.2.4. Not all permutations are even. Equivalently, the identity permutation is
not odd.

If we write a permutation as a product of transpositions, then we use ≤ n− 1 transposi-
tions. This observation yields the following:

Corollary 3.2.5. Every permutation is the product of ≤ 2n2 neighbor transpositions.

Definition 3.2.6. Let an and bn be sequences. We say that an = o(bn), read an is little-oh
of bn, if lim

n→∞
an

bn
= 0.

If for the purposes of the definition of little-oh, we allow 0
0

= 0, then it will help us
with computations. In general, such a convention will lead to a contradiction. Similarly, we
can think of 0

0
= 1 in the definition of an ∼ bn. This idea will ONLY apply to these two

definitions!

Exercise 3.2.7. Can every permutation be generated by a product of o(n2) neighbor trans-
positions?

Exercise 3.2.8. Prove that fewer than n− 1 transpositions do not generate Sn
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Note that one permutation is definitely not enough to generate Sn. Every permutation
π has an order, the smallest power k such that πk = idSn . Thus, a single permutation
can only generate a maximum of k permutations, where k is the order of the permutation.
This number cannot be n!, the order of Sn. Further, note that Sn is not a commutative, or
abelian, group: (1 2)(2 3) = (1 3 2), but (2 3)(1 2) = (1 2 3), which are not the same cycles.
However, all cyclic groups, or groups generated by a single element, are necessarily abelian.
In fact, if σ := (1 3 2), then σ−1 = (1 2 3). In general, (αβ)−1 = β−1α−1. Thus, if τ−1 = τ ,
where τ = τ1τ2, then (τ1τ2)

−1 = τ2τ1.

Definition 3.2.9. Let An := {even permutations}. Then An is a subgroup of Sn. That
is, An is closed under multiplication, inverses, and contains the identity. We call An the
Alternating group.

Exercise 3.2.10. Show that |An| = n!
2
, for n ≥ 2.

Exercise 3.2.11. Let ρ, π be cycles such that |supp(ρ) ∩ supp(π)| = 1. Then ρ and π
generate either Ak+l−1 or Sk+l−1.

Exercise 3.2.12. Take the cycle (1 2 · · · n − 1) of length n − 1 and one transposition
involving the nth element. Then these two elements generate Sn.

Exercise 3.2.13. The n-cycle (1 2 · · · n) and the transposition (1 2) generate Sn.

Exercise 3.2.14. A k-cycle is even ⇐⇒ k is odd.

Question 3.2.15. What is the diameter of Sn with respect to an n-cycle plus a transpo-
sition?

Provide an answer within a constant factor. That is, provide an upper and lower bound
that differ by a constant.

3.3 Asymptotics

Definition 3.3.1. Let an, bn be sequences. Then we say that an = O(bn), read big-oh of
bn, if (∃c)(∀ sufficiently large n, |an| ≤ C|bn|).

In asymptotic notation, the idea is that a finite number of changes will have no effect. If
any asymptotic statement on the board does not make sense, it is likely that we forgot to
write “for sufficiently large n”. Please insert it whenever necessary.

Definition 3.3.2. an = Ω(bn) if (∃c > 0)(∀ sufficiently large n, |an| ≥ c|bn|). Equivalently,
we see that an = Ω(bn) ⇐⇒ bn = O(an).

Definition 3.3.3. We say an = Θ(bn) if an = O(bn) and an = Ω(bn). That is,
(∃c, C > 0)(∀ sufficiently large n, c|bn| ≤ |an| ≤ C|bn|).

Exercise 3.3.4. If an = Θ(bn) and an, bn →∞, then ln(an) ∼ ln(bn).

Exercise 3.3.5. The converse of the previous exercise is false.
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3.4 Permutations and Probability

Recall the definitions of the finite probability space (Ω, P ) from last time. (Refer to handouts
or Lecture 2 notes online.)

Definition 3.4.1. If A ⊂ Ω is an event then P (A) =
∑
a∈A

P (a)

Definition 3.4.2. Given a random variable X : Ω → R, then the expected value is given

by E(X) :=
∑
a∈Ω

X(a)P (a) =
∑
y∈R

yP (X = y).

Recall the exercise from last time:

Theorem 3.4.3. E(X + Y ) = E(X) + E(Y ).

As a special case, we of course see that E(X + X) = E(X) + E(X).

Exercise 3.4.4. E(cX) = cE(X)

Suppose that we have a club with 2000 adult members. There are 2000 cards numbered
1 to 2000. Every member of the club randomly chooses a card. We say that a member of
the club is lucky if he draws a card containing the year of his birth.

Question 3.4.5. What is E(# lucky numbers)?

The claim is that you do not have to know the age distribution of the club members to
answer this question. You just have to define the proper random variables. In fact:

Exercise 3.4.6. E(# lucky numbers) = 1.

Exercise 3.4.7. Every permutation is a unique product of disjoint cycles, where we say
that two permutations are disjoint if their supports are disjoint. Here, we mean unique up
to the order of terms in a cycle.

What can we say about the number of cycles that we require for such an expression?

Definition 3.4.8. C(π) := # cycles of π, when π is written as a product of disjoint cycles.

Example 3.4.9. Note that C(id) = n. Similarly, C(n-cycle) = 1 and C(k-cycle) = n−k+1.

Pick π at random, uniformly over Sn.

Theorem 3.4.10. E(C(π)) ∼ ln(n).

Proof. The power of the additivity of E is that we can define an event as a sum of random
variables that we can compute easily and then apply Theorem 3.4.3. How can we write
C(π) = X1 + X2 + · · · , where we can deal easily with each individual random variable Xi?

Let Xi = # i-cycles. We can further break this up by writing Xi =
1

i

n∑
j=1

Zij, where

Zij = # i-cycles through point j. What event does Zij indicate? Zij is the indicator
variable of the event that the cycle through j has length i. Zij is 1 if this event occurs and
0 if it does not.
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Note 3.4.11. E(indicator variable) = P (the event indicated).

Thus, E(Zij) = P (cycle through j has length i) = 1
n
. In particular, this does not depend

on the length of the cycle. Using this fact, we write

E(Xi) =
1

i

n∑
j=1

E(Zij) =
1

i
, (3.4.1)

from which we can conclude

E(C(π)) =
n∑

j=1

E(Xi) =
n∑

i=1

1

i
∼ ln(n). (3.4.2)

Recall the definition of ν(n) from Lecture 1. We proved that ν(j) ∼ ln ln(n), for 1 ≤ j ≤
n. Now, pick a j at random from {1, . . . , n}, and consider E(ν(j)). Use the additivity of
expectation to show the following:

Exercise 3.4.12. E(ν(j)) ≈
∑
p≤n

1

p
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