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1 Symmetries of Regular Polyhedra

Last time, we talked about groups of symmetries of regular polyhedrons, and
made some statements which should be tantalizing.

For instance, we said that

Aut(Petersen’s graph) ∼= S5,

and that
Aut+(Cube) ∼= S4,

where the + means “orientation-preserving.” Most tantalizing of all, we said

Aut+(dodecahedron) ∼= A5.

Remark: one can use this last fact as a step in the proof that the roots
of general quintic polynomials cannot be expressed with radicals.

1.1 The Cube

So, how do we prove these statements? Start with orientation-preserving
symmetries of the cube. A symmetry permutes the vertices (8 objects) and
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Figure 1: A cube, with one main diagonal marked as a double line

the faces (6 objects). The center of the cube is always preserved. Since we
are talking about orientation-preserving symmetries, lines through the center
must get sent to lines through the center.

So, consider the four “main diagonals” of the cube, connecting oppo-
site corners (see Figure 1). If we apply any symmetry of the cube, these
four diagonals are permuted. Thus we get a map Aut+(cube) → S4 (and
Aut(cube) → S4) by labeling the diagonals and sending a symmetry to the
appropriate permutation on 4 objects. It is easy to see this map is a ho-
momorphism. What are some of the elements of S4 which we get in this
way? Well, a rotation by 2π

3
about diagonal #1 fixes 1 and gives a 3-cycle

on the remaining diagonals, i.e. we get the element (1)(234) of S4. We could
go through the elements of S4 and tediously check whether we get other
elements.

What symmetries get sent to the identity? Well, first look at which (not
necessarily orientation-preserving) symmetries get sent to the identity of S4.

Exercise 1. Show that the only symmetries of the cube which induce the
identity permutation on the set of the 4 main diagonals are the identity and
the map which sends every point x to −x (viewing the center as the origin).

Thus the kernel of the map Aut(cube) → S4 has size 2, so this is a 2-to-1
map. We haven’t proved the map is onto, but we know from last time that
|Aut(cube)| = 48. By the exercise, this means that Aut+(cube) → S4 is a
bijection between two sets of size 24. So it must be an isomorphism.

Alternately, we could prove directly that the map is an isomorphism by
showing that it is onto (the exercise shows that it is one-to-one). To do this,
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we just need to pick a set of generators of S4 and show that they are in the
image. For instance, (12) is in the image. Pick the line through the center
which passes through the midpoints of the edges connecting diagonal 1 to
diagonal 2. With a little thought, you can see that a 180◦ rotation about
this line gives (12). Since (12) and (234) generate S4, this means that the
map is onto.
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Figure 2: Rotating about the dashed line gives the permutation (12)

1.2 The Dodecahedron

Exercise 2. Show that Aut+(dodecahedron) ∼= A5. Hint: pick a set of 5
objects which are permuted by symmetries of the dodecahedron, and show
that the map from symmetries of the dodecahedron to permutations on these
5 elements gives all even permutations. The following exercises may help.

Exercise 3. Show that An is generated by all 3-cycles (for n ≥ 3).

Exercise 4. Show that An is generated by all permutations of type 2+2 for
n ≥ 5 (that is, permutations like (12)(34)).

1.3 Petersen’s Graph

Finally, let’s move on to Petersen’s graph. Here we don’t have a geometric
representation, so we’ll have to try a different approach. Notice that there
are 10 vertices of degree 3 each, so there are 15 = 3 · 5 edges. Maybe we
can split up the set of edges into 5 triples, such that any isomorphism of
the graph takes a triple into another triple. We can take the triple shown in
Figure 3, plus the 4 other triples you get by rotating.
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Figure 3: Petersen’s graph with a triple of edges marked

There are lots of things you need to prove about this.

Exercise 5. This partition of the 15 edges into 5 triples is invariant under
isomorphisms of the graph. In other words, the partition is preserved by all
automorphisms.

Once we have proved this exercise, we get a homomorphism
ϕ : Aut(Petersen’s graph) → S5, by looking at how an automorphism per-
mutes the triple.

Exercise 6. Show that |Aut(Petersen)| = 120. Hint: use the triples.

Once we have this, then if we can show that ϕ is onto, then we will be
done (an onto map from a group of size 120 to a group of size 120 must be
an isomorphism).

Exercise 7. Find an automorphism which switches the two triples marked
in Figure 4, and fixes all others.

By symmetry, this shows that all transpositions are in the image, and so
ϕ is an isomorphism.
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Figure 4: Petersen’s graph with two triples of edges marked

This is not an ah-ha! proof. It takes a lot of work. We will now do an
ah-ha! proof, which will actually shed some light on this outline.

Pick 5 points, labeled 1, 2, 3, 4, 5. Notice that
(
5
2

)
= 10, which suggests

trying to label the vertices of Petersen’s graph with pairs of numbers between
1 and 5. One way of doing this is shown in Figure 5.

Notice that, with this labeling, vertex {a, b} and vertex {c, d} are con-
nected if and only if {a, b} ∩ {c, d} = ∅. This immediately proves what we
want—every permutation of 1, 2, . . . , 5 induces a permutation of pairs which
induces an automorphism of Petersen’s graph. For example, the permuta-
tion (12) fixes the vertex {1, 2}, switches the three pairs {1, x} and {2, x} for
x = 3, 4, 5, and leaves the vertices {x, y} with x, y ∈ {3, 4, 5} alone. You can
check that this is an automorphism of Petersen’s graph. This is interesting—
notice that the path from {4, 5} to {1, 2} to {3, 4} to {5, 1} gets sent to the
path from {4, 5} to {1, 2} to {3, 4} to {5, 2}. That is, if you have any path of
length 3, there is an automorphism which fixes the first 2 edges and moves
the last one. It follows that, given any two paths of length 3 in Petersen’s
graph, there is an automorphism which takes the first path into the second.
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Figure 5: Petersen’s graph with vertices labeled

2 Kneser’s graphs

Petersen’s graph is a special type of a Kneser graph.

Definition 8. A Kneser graph is a graph with
(

n
k

)
vertices, labeled by the

k-subsets of an n-set (the subsets of size k of a set of size n), and adjacency
given by connecting disjoint subsets.

Notice that, if n < 2k, then there are no disjoint k-sets, so the graph has
no edges. If n = 2k, then each vertex has degree 1. So in order for a Kneser
graph to be interesting, we must have n ≥ 2k + 1.

3 More graph theory

Definition 9. The girth of a graph is the length of the shortest cycle.

For example, Petersen’s graph has girth 5.

Example 10. If G has girth 5 and every vertex has degree r, then n > r2+1.

6



•

•

•

...

•

•
•
...
•
•
•
...
•
...
•
•
...
•

��������������
iiiiiiiiiii

??
??

??
??

??
??

??

rrrrrrrrrrrr

lllllllllll \\\\\\\\\\

iiiiiiiiiii bbbbbbbbbb

RRRRRRRRRRR

iiiiiiiiiii bbbbbbbbbb

RRRRRRRRRRR

Figure 6: Subgraph of a graph with girth r

Proof. Pick a vertex. It is connected to r vertices. None of these can be
connected to each other, because then we would have 3-cycles. Each of these
r vertices is connected to r− 1 new vertices, and again there can be no other
connections among these, because then we would have 3-cycles or 4-cycles
(see Figure 6). So the total number of vertices is at least 1 + r + r(r − 1) =
r2 + 1.

The interesting thing is that, in Petersen’s graph, we have exactly n = r2 +1.

Exercise 11. If n = r2 + 1, then G has diameter 2.

Theorem 12. Under these conditions, if n = r2 + 1, then r ∈ {2, 3, 7, 57}.

We will prove this later.

Remark. For r = 7, n = 50, Hoffman and Singleton constructed the re-
markable Hoffman-Singleton graph, which gives an example of such a graph
for this n, r. They made it by pasting together copies of Petersen’s graph.
People have been looking for a long time, but it is still unknown whether
there exists a graph of this type with r = 57.
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4 Graph Coloring

Definition 13. A legal coloring of a graph G is a function from the set V (G)
of vertices to a set of colors such that adjacent vertices have different colors.

Definition 14. The chromatic number χ(G) of a graph G is the minimum
number of colors required for a legal coloring.

Example 15. For example, χ(C5) = 3. (If you try to color it with 2 colors,
then a simple argument shows you wind up with 2 adjacent vertices of the
same color.) Also,

• χ(Kn) = n

• χ(Kn,n) = 2

• An empty graph (one with no edges) has chromatic number 1.

Definition 16. G is k-colorable if χ(G) ≤ k.

It is easy to show a graph is k-colorable; you just find a coloring. It is
harder to show a graph is not k-colorable.

Exercise 17. Construct a graph G such that G is not 3-colorable, but G
contains no triangles (copies of K3). It should be fairly small. The smallest
such has 11 vertices and 5-fold symmetry, and is called Grötsch’s graph.
Make sure you prove that your graph is not 3-colorable.

Exercise 18. If every vertex of a graph G has degree ≤ r, then χ(G) ≤ r+1.

This is a rather easy exercise, but we will upgrade it a little.

Definition 19. A directed graph, or digraph, is a graph in which every
edge is assigned a direction. Given two vertices x and y, there may be two
edges connecting x and y (one going x to y, the other going y to x). In a
directed graph, there are two notions of degree, the in degree (number of
edges coming in) and the out degree (number of edges going out).

Exercise 20. If G is a digraph, such that (∀x ∈ V (G))(deg+(x) ≤ r), then
χ(G) ≤ 2r + 1. Here deg+ indicates the outdegree. (deg− is the indegree.)

8



Notice that a graph is bipartite if and only if it is 2-colorable.

Exercise 21. A graph G is 2-colorable if and only if G has no odd cycles.
(The “only if” direction, G is 2-colorable only if it has no odd cycles, is
obvious.)

Exercise 22. Let G be a graph with m edges. Then one can delete ≤ m
2

edges so that the remaining graph is bipartite. (Hint: use the additivity of
expectation.)

Exercise 23. If G is triangle-free, then χ(G) ≤ 2
√

n + 1.

Definition 24. A tournament is an oriented complete graph. That is,
it is a complete undirected graph in which each edge has been given an
orientation.

For example, a tournament might model a sports tournament in which
each player has played every other player and there are no ties.

Suppose you want to award one gold medal to the “best” player. This is
hard, because there can be cycles (A beats B, B beats C, but C beats A).

Now, what if you want to award two gold medals? Can there be an
“embarrassing” tournament, where for every pair of players, there exists a
player who has beaten both of them?

Exercise 25. 1. Find a 2-embarrassing tournament, i.e. one where every
pair is beaten by someone.

2. Prove that, for every k, there is a k-embarrassing tournament, i.e. one
where every k-tuple was beaten by someone.
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