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7.1 Results on Polynomials

Claim 7.1.1. Let f(x) = x4 + ax3 + bx2 + cx − 15 where a, b, c ∈ Z. If f(t) = 0 for some
t ∈ Q then

1. t ∈ Z, and

2. t|15.

Proof. Since t is rational we can write t as r
s
, where r, s ∈ Z and gcd(r, s) = 1. If we plug

this into the equation f(t) = 0, we get

r4 + ar3s + br2s2 + crs3 − 15s4 = 0

=⇒ r4 = −s(ar3 + br2s + crs2 − 15s3) (7.1.1)

Thus, s|r4, but since gcd(r, s) = 1, it follows that s = ±1. We can assume WLOG that
s > 0 so that t = r ∈ Z. This proves part (1) of the claim.

For proving part (2) we consider the equation f(r) = r4 + ar3 + br2 + cr − 15 = 0. By
rearranging we get

15 = r(r3 + ar2 + br + c)

Since r ∈ Z we get from the above equation r|15, and in particular, r ∈ {±1,±3,±5,±15}.

Corollary 7.1.2. If u ∈ Q and u2 ∈ Z, then u ∈ Z.

Proof. u is a rational root of the polynomial f(x) = x2 − u2. So if we apply the previous
claim to this polynomial we get u ∈ Z.
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7.2 Hoffman-Singleton Theorem

Definition 7.2.1. The girth of a graph is the minimum size cycle that exist in the graph.
For example a graph with girth (≥ 5) means that there is no cycle of length 3 or 4.
The girth of a tree is ∞.

Definition 7.2.2. A graph is called r-regular if every vertex has degree r.

Question 7.2.3. Let G be an r-regular graph on n vertices with girth ≥ 5. What graphs
G also satisfy that n = r2 + 1?

For the cases r = 1, r = 2, and r = 3, the graphs are the single edge graph on two
vertices, the pentagon and the Peterson’s Graph respectively. (Figure 1).
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Figure 1: Graphs for r=1, 2, 3

No such graphs exist for r = 4, 5, 6. For r = 7, the resulting graph is called the
Hoffman-Singleton graph.

The following theorem answers the Question 7.2.3

Theorem 7.2.4 (Hoffman-Singleton). Let G be a r-regular graph on n vertices with girth
≥ 5. If n = r2 + 1, then r ∈ {1, 2, 3, 7, 57}.

7.3 Review of Linear Algebra

Let A be an n× n real matrix.

Definition 7.3.1. λ ∈ R is an eigenvalue and x ∈ Rn is a corresponding eigenvector of
the matrix A if x 6= 0 and Ax = λx.

We can think about A as a map A : Rn −→ Rn. To say that x is an eigenvector of A
means that Ax − λIx = 0, where I is the identity matrix. Equivalently, (A − λI)x = 0, or
(λI − A)x = 0.
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In general, consider a matrix B = (b1 · · · bn), where the bi ∈ Rn are column vectors.
Then write Bx =

∑
bixi. We can then see that (∃x 6= 0)(Bx = 0) ⇐⇒ the columns of B

are linearly dependent. Equivalently, (∃x 6= 0)(Bx = 0) ⇐⇒ det(B) = 0. Applying this
observation to our matrix equation (λI −A)x = 0, we see that (∃x 6= 0)(λI −A)x = 0 ⇐⇒
det(λI − A) = 0.

Let us write this out explicitly for the 2× 2 case. Let A =

(
a b
c d

)
Then det(λI −A) =

det

(
λ− a −b
−c λ− d

)
= (λ − a)(λ − d)− bc = λ2 − (a + d)λ + (ad− bc). For the n × n case

we introduce the following defintion.

Definition 7.3.2. Let A be an n × n matrix. Then we define fA(t) := det(tI − A) as the
characteristic polynomial of A.

Note that the characteristic polynomial has degree n.

Theorem 7.3.3. λ is an eigenvalue of A ⇐⇒ fA(λ) = 0.

Let’s consider this polynomial over C. The polynomial will factor into a product of n
linear factors:

fA(t) = (t− λ1)(t− λ2) · · · (t− λn)

The eigenvalues λi have multiplicity according to how many times they occur as a root of
the characteristic polynomial.

Now write A = (aij). Let us consider

det(tI − A) = det


t− a11 −a12 . . . −a1n

−a21 t− a22 . . . −a2n
...

...
. . .

...
−an1 −an2 . . . t− ann

 = tn −
∑

aiit
n−1 + · · · . (7.3.1)

Examine the second coefficient in the characteristic polynomial. We define the trace
of a matrix A = (aij), denoted Tr(A), to be the sum of the diagonal entries. That is,

Tr(A) =
n∑

i=1

aii. In light of Theorem 7.3.3, we have the following:

Corollary 7.3.4. Tr(A) =
n∑

i=1

λi.

Exercise 7.3.5.
n∏

i=1

λi = det A

Definition 7.3.6. We say that an n × n real matrix A = (aij) is symmetric if aij = aji.
Equivalently, a symmetric matrix satisfies A = At, where At denotes the transpose of the
matrix, or the reflection across the main diagonal, which interchanges rows and columns.
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Definition 7.3.7. The standard inner product on Rn is defined to be x · y :=
n∑

i=1

xiyi =

xty.

This inner product satisfies left distributivity; i.e., x · (y + z) = x · y + x · z.

Definition 7.3.8. We say that two vectors x and y are orthogonal if x · y = 0, and we
write x ⊥ y.

Definition 7.3.9. We define the Euclidean norm on a vector x ∈ Rn to be ||x|| :=
√

x · x =

√
n∑

i=1

x2
i .

Definition 7.3.10. The vectors e1, . . . , ek are orthonormal if

ei · ej =

{
1 if i = j
0 otherwise

That is, ||ei|| = 1 and ei ⊥ ej if i 6= j.

Definition 7.3.11. We say that we have a basis for Rn if we have n vectors in Rn that are
linearly independent. An eigenbasis is a basis that consists of eigenvectors.

Theorem 7.3.12 (Spectral Theorem). If A is a real symmetric matrix, then A has an
orthonormal eigenbasis.

Exercise 7.3.13. Prove that the matrix

(
0 1
0 0

)
has no eigenbasis. In general, the matrix

consisting of only 1’s above the diagonal and 0’s elsewhere has no eigenbasis.

7.4 Connection between graph theory and linear algebra

Definition 7.4.1. The adjacency matrix of a graph G is defined to be AG = (aij), where

aij =

{
1 if i ∼ j
0 otherwise

Here, i ∼ j, if the vertices i and j are adjacent.

Let AG be the adjacency matrix of the graph G. Let us consider A2
G = B = (bij), where

bij =
n∑

i=1

aikakj. So,

bii =
∑

a2
ik =

n∑
k=1

aik = deg(i) (7.4.1)

And in particular, note that

bij = number of common neighbors of i and j (7.4.2)
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Theorem 7.4.2. If G is a r-regular graph, or equivalently if the sum of each row is in AG

is r, then AG


1
1
...
1

 =


r
r
...
r

 = r1, where 1 =


1
1
...
1

. Thus 1 is an eigenvector with eigenvalue

r.

Exercise 7.4.3. Suppose that G is regular of degree r.
(1) Then the eigenvalue r is simple, or has multiplicity 1, if and only if G is connected.
(2) All eigenvalues λi satisfy |λi| ≤ r.
(3) Then −r is an eigenvalue in the case of a connected graph G ⇐⇒ G is bipartite.

7.5 Proof of Hoffman-Singleton Theorem 7.2.4

Let G be a r-regular graph on n vertices with no cycles of size 3 or 4. Let n = r2 + 1.

Observation 7.5.1. Note that since n = r2 + 1 and the graph has no 3 and 4 cycles, if i
and j are two adjacent vertices in G then they have no common neighbor. And if i and j
are not adjacent, then they have a unique common neighbour.

Let A be the adjacency matrix of the graph G. Now suppose A2 = B = (bij). Now from
Equation 7.4.1 and 7.4.2 and Observation 7.5.1 we have bii = r and

bij = number of common neighbours of i and j =

{
0 if i ∼ j
1 if i 6∼ j and i 6= j

Denote by J the n × n matrix that has all entries 1. Then A2 = J − A + (r − 1)I is
satisfied by the adjacency matrix. Rewriting this matrix equation yields

A2 + A− (r − 1)I = J (7.5.1)

Suppose that Ax = λx. Then A2x = A(Ax) = A(λx) = λ(Ax) = λ(λx) = λ2x. Thus we
have that A1 = r · 1, and A21 = r21. Then from the above equation and Theorem 7.4.2 we
get,

A2 · 1 = J · 1− A · 1 + (r − 1)I · 1
⇐⇒ r21 = n1− r1 + (r − 1)1
⇐⇒ r21 = (n− 1)1
⇐⇒ r2 = n− 1

which we already knew.
Now let the eigenvectors of A be 1 = e0, e1, . . . , er2 , and the corresponding eigenvalues

be r = λ0, . . . , λr2 . By the Spectral Theorem we know that ei ⊥ 1 for i 6= 0. Thus, for i 6= 0,

Jei = 0

5



So that the matrix equation 7.5.1 yields:

A2ei = λ2
i ei = 0− λiei + (r − 1)ei = λi + (r − 1)ei (7.5.2)

Solving the equation we get λ2
i = −λi + (r − 1) ⇐⇒ λ2

i + λi − (r − 1) = 0. So the
eigenvalues λi are roots of the equation t2 + t − (r − 1) = 0. Thus if we solve for t, we get

that t1,2 =
−1±

√
1+4(r−1)

2
= −1±

√
4r−3

2
and consequently λi ∈ {t1, t2}. Thus there are only

three eigenvalues. The eigenvalue r has multiplicity 1 by Exercise 7.4.3. Now suppose that
mi are the multiplicities of the eigenvalues ti for i = 1, 2. Then n = # eigenvalues and in
particular,

n = m1 + m2 + 1 (7.5.3)

Note that Tr(A) = 0 (since all diagonal entries are 0, because no vertices are adjacent to
themselves). Also, by Corollary 7.3.4, we have that

r + m1t1 + m2t2 = Tr(A) = 0 (7.5.4)

Now we solve the equations 7.5.3 and 7.5.4. We write r2 = m1 + m2 from Equation 7.5.3.
Also let −1±

√
4r−3

2
= −1±s

2
, where s =

√
4r − 3, or equivalently that r = s2+3

4
. Then we can

substitute into the above equations to obtain:

r + mi

2
(−1 + s) + m2

2
(−1− s) = 0

⇐⇒ r − m1+m2

2
+ m1−m2

2
s = 0

⇐⇒ r − r2

2
+ m1−m2

2
s = 0

⇐⇒ 2r − r2 + (m1 −m2)s = 0

We can solve this last equation explicitly for s unless m1 = m2. Hence we have two cases:
Case 1: If m1 = m2, then we get 2r − r2 = 0 ⇐⇒ r2 = 2r ⇐⇒ r = 0 or 2, and so

r = 2. This is the case of the pentagon, which we have already seen.
Case 2: If m1 6= m2, then write r = s2+3

4
, and inserting this into the above equation

yields:

2( s2+3
4

)− ( s2+3
4

)2 + (m1 −m2)s = 0
=⇒ 8s2 + 24− s4 − 6s2 − 9 + 16(m1 −m2)s = 0
=⇒ s4 − 2s2 − 16(m1 −m2)s− 15 = 0

Now if s ≥ 0, then we know from Claim 7.1.1 that s|15. Thus, our possible choices for
pairs (s, r) in this case are (1, 1), (3, 3), (5, 7), and (15, 57). Together with the choice r = 2
from Case 1, we have obtained the complete list of possible values for r in the Hoffman-
Singleton Theorem.
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