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8.1 Problem 1

One problem which was assigned a few days ago was

Problem 1. Let G be a graph with m edges. Show that one can remove ≤ m
2

edges in such
a way that what remains is bipartite (2-colorable).

A student gave a proof to the above problem using induction on the number of vertices.
But we will give a proof that is using probabilistic methods.

Proof. Take G, and randomly color each vertex either red or blue. Then call an edge “bad”
if its endpoints are the same color; the probability that a given edge will be bad is 1

2
.

Let the random variable X be the number of bad edges. Then the expected value E(X)
of X is m

2
. (Reason: let Xi be the probability that edge i is bad; each Xi is an indicator

variable which takes value 0 or 1 with equal probability. So E(X) =
∑

E(Xi) =
∑

1
2

= m
2
.)

Therefore, there exists an outcome (i.e., a coloring of the vertices) where the number of
bad edges is ≤ m

2
.

8.2 Problem 2 : Embarrassing tournaments

Another assigned exercise concerned “embarrassing” tournaments. Recall the definition of
a tournament.

Definition 1. A tournament is an oriented complete graph, that is between any pair of
vertices there exists exactly one directed edge. So it has

(
n
2

)
edges. Hence on n vertices there

are 2(n
2) tournaments. If there is an edge from vertex i to vertex j we say that vertex i beats

vertex j.
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Definition 2. A tournament G = (V, E) is called k-embarrassing if for all set A ⊂ V of size
k (|A| = k) there exists one vertex v ∈ V such that v beats all the vertices in A.

Problem 2. Show that there exists a “2-embarrassing” tournament, one in which, for every
pair of vertices, there exists a third vertex that beats both of them. More generally, show
that for every k there exists a k-embarrassing tournament, where for every set of k vertices
there exists a k + 1rm vertex that beats all of them.

The students gave two different kind of constructions of a graph on 7 vertices that is
2-embarrassing.

Proof 1. Figure 1 is a tournament that has 7 vertices and is 2-embarrassing.
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Figure 1: The vertices are labelled 1 to 7. The edges are labelled (1) to (7). A label (i) on
an edge means that vertex i beats all the vertices on the edge.

This is a finite projective plane (Fano plane). It has the property that, through every two
points, there is a unique line; and given any two lines, there is a unique point of intersection.
(There are 7 lines in all, each having 3 points; each point is in 3 lines.) Once we check
that the labelling is consistent, it is clear that the corresponding tournament has the desired
property, because for any two points, there is a line connecting them, and the vertex named
on that line betas both points.

Exercise 3. Call a permutation on 7 elements a collineation if it preserves the lines in the
Fano plane. Show that the number of collineations of the Fano plane is 168. This is in fact
a group; it is the second smallest simple group (A5 is the smallest).

Proof 2. We directly construct a 2-embarrassing tournament with 7 vertices. Label the
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verices with the elements of the cyclic group of order 7. We want every two verices to be
beaten by a third. In particular, given x and y, then one of x − y and y − x will be in
{1, 2, 3}. Draw directed edges by saying that 0 beats 1, 2, and 4, and then cyclically rotate
(so in general, x beats x + 1, x + 2, and x + 4). (See Figure 1). So, given x and x + 1, both
are beaten by x− 1; x and x + 2 are beaten by x− 2; and x and x + 3 are beaten by x− 1.
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Figure 2: The vertices are labelled 0 to 6. The arrows indicate the vertices that vertex 0
beats

It will be interesting to see whether it is possible to extend the above proof to, say,
3-embarrassing tournaments.

8.3 Existential Proof of Problem 2

We will give a non-explicit proof that k-embarrassing tournaments exist.

Theorem 4 (Erdös). For every k, there exists a k-embarrassing tournament.

Proof. Let Pn(k) be the probability that a random tournament with n vertices is k-embarrassing.

Claim 5. limn→∞ Pn(k) = 1.

Proof of Claim. Pick a random tournament on n vertices, by randomly orienting the edges
on the graph. Let A be a subset with k vertices, and let x 6∈ A. Since the edges are oriented
randomly so the probability that x beats everyone in A is 1

2k , and hence the probability that
x does not beat everyone in A is 1− 1

2k .
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Now let y be another vertex not in A. Then the probability that neither x nor y beats
everyone in A is (1 − 1

2k )2, because the events are independent. Similarly, the probability
that no vertex outside A beats everyone in A is (1− 1

2k )n−k.

Now consider the probability that there exists a set A (of size k) which was not beaten
by anyone. Call this Qn(k); it is equal to 1− Pn(k).

We can give an upper bound on Qn(k) using the union bound.

[Union bound says that if X1, . . . , Xd are events then Pr(X1 ∪ · · · ∪Xd) ≤
∑d

i=1 Pr(Xi),
regardless of independence.]

In our case, this means that

Pr(∃A which was not beaten by anyone) <

(
n

k

) (
1− 1

2k

)n−k

But
(

n
k

)
is a polynomial of degree k, and

(
1− 1

2k

)n−k
decays exponentially. So, as n → ∞,

this product goes to 0. That is Qn(k) → 0 and hence Pn(k) → 1.

Thus from the claim we have that as n → ∞ a random tournament on n vertices is
highly likely to be k-embarrassing. If for some n the probability that a random tournament
is k-embarrassing is nonzero then there must be a k-embarrassing tournament for that n.

Exercise 6. Show that ∀c, 0 < c < 1,∀k, limn→∞ nkcn = 0.

But can we get an estimate on the n such that there is a k-embarrassing tournament on
n vertices. In particular, we have shown

Lemma 7. If
(

n
k

) (
1− 1

2k

)n−k
< 1, then there exists a k-embarrassing tournament with n

vertices.

So we need so estimate the n for which the above inequality holds.

With some approximations, we see that
(

n
k

)
< nk

k!
, and

(
1− 1

2k

)−k
< 3. Also, you can

show that 1 + x < ex for all x, so (
1− 1

2k

)n

< e−n/2k

.

We would like to find the smallest n such that(
n

k

) (
1− 1

2k

)n−k

< nk

(
1− 1

2k

)n

< nke−n/2k ≤ 1
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So

nk ≤ en/2k

k ln n ≤ n

2k

n

ln n
≥ k · 2k

Now if n
ln n

= k·2k then by taking log on both sides we see that asymptotically ln n = k ln 2.
Now plugging it in the above inequality we get that the smallest n satisfying the inequality
is

n & k22k · c

for some constant c.

Exercise* 8. Show that n < 2k is not enough.

8.4 Explicit construction of a k-embarrassing tournament

We will give a 2nd solution to Problem 2 by explicitly constructing one k-embarrassing
tournament. The construction is due to Graham and Spencer.

Let p be a prime such that p ≡ −1 (mod 4). Construct a tournament by saying i beats
j if i− j is a quadratic residue mod p. (Remember a is a quadratic residue mod p if p is not
a divisor of a, and there exists x such that x2 ≡ a (mod p).)

We know that the number of quadratic residues mod p is p−1
2

.

Define the Legendre symbol:

(
a

p

)
=


1 if a is a quadratic residue mod p

0 if p|a
−1 otherwise

For this to be a tournament, we need to check that there is only one edge connecting
each pair of points; that is, we need(

i− j

p

)
= −

(
j − i

p

)
.

Since (j − i) = −1(i− j), it is sufficient to show that(
j − i

p

)
=

(
−1

p

) (
i− j

p

)
.
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Exercise 9. Prove these facts.

Question. When is −1 a quadratic residue?

The tournament constructed above is called a Paley tournament.

Theorem 10. For all k, there exists p0 such that p > p0 implies that the tournament
constructed above is k-embarrassing.

The proof of this requires a theorem of André Weil, which we will not prove.

Theorem 11 (André Weil). Let f be a polynomial of degree d over Fp, the field with p
elements. Assume that f 6= c · g2, for all constants c and polynomials g. Then∣∣∣∣∣

p−1∑
j=0

(
f(j)

p

)∣∣∣∣∣ ≤ (d− 1)
√

p.

This theorem is known as Weil’s character sum estimate.

Proof of Theorem 8.4. Fix a prime p, and define

χ(a) =

(
a

p

)
.

(χ is for “character.”)

Consider the Paley tournament. Let A be a subset of k vertices, and let b /∈ A. Then b
beats A if

χ(b− a1) = χ(b− a2) = · · · = χ(b− ak) = 1.

We expect this to happen ≈ p
2k times. We will now prove that it is always close to this.

Let N be the number of times that this happens. Consider (χ(x − ai) + 1). It is 0 if ai

beats x. So
1

2k

k∏
i=1

(χ(x− ai) + 1)

will be 0 if at least one ai beats x, and 1 if not. So then we have

∑
x∈Fp

1

2k

k∏
i=1

(χ(x− ai) + 1) ≈ N

where the ≈ means here that the error is less than k.
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We have

2kN ≈
∑
x∈Fp

k∏
i=1

(χ(x− ai) + 1)

=
∑
x∈Fp

∑
I⊆{1,...,k}

∏
i∈I

χ(x− ai)

=
∑
x∈Fp

∑
I⊆{1,...,k}

χ(fI(x))

= p + R

for some remainder R. Here we define fI(x) =
∏

i∈I (x− ai); recall that χ is multiplicative.
On Friday, we will figure out what R is. The p comes from the case when I = ∅.

7


