
REU 2006 · Discrete Math · Lecture 9

Instructor: László Babai
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9.1 Character of a group

Definition 9.1.1. A character of a group G is a homomorphism χ : G → T = {z ∈ C |
|z| = 1} (homomorphism means χ(ab) = χ(a)χ(b)).

Now, let F be a finite field. We can define two types of characters:

Definition 9.1.2. A multiplicative character of F is a character of the group F
× = F\{0}

under multiplication. That is, χ : F
× → T. We formally set χ(0) = 0 to extend to

F → T ∪ {0}.
Definition 9.1.3. An additive character of F is a character of the additive group F, i.e.
a map χ : (F, +) → T, with χ(a + b) = χ(a)χ(b).

Now, let Fq denote the field of order q = pk. We can define it by Fq := Fp[x]/(f), where
f is any irreducible polynomial of degree k.

We know that F
×
q is a cyclic group of order q − 1, and is generated by some g ∈ F

×
q

(in other word F
×
q = 〈g〉). That is, gq−1 = 1 and no smaller positive power of g is 1. We

have (χ(g))q−1 = χ(gq−1) = 1 for any multiplicative character g. So characters correspond
to a choice of primitive (q − 1)-st root of unity ω, so that χ(g) = ω. Then, for any element
x = g` ∈ F

×
q , we have χ(x) = χ(g`) = ω`.

In general, we have

Definition 9.1.4. The order of a multiplicative character χ is the smallest positive integer
m such that χm(x) = 1 for all x ∈ F

×
q . A quadratic character is a character of order 2.

Exercise 9.1.5. If q is an odd prime number then F
×
q has a unique quadratic character.

(Hint: χ(g) = −1 and χ(g`) = (−1)`.)

Let us return our attention to F
×
p for the moment, where p is prime. We may define the

Legendre symbol as follows: Let χ be the unique quadratic character. For a ∈ F
×
p , set

(

a
p

)

= χ(a).
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We turn our attention back to a general field Fq with q = pk. André Weil’s character
sum estimate is then given as follows:

Theorem 9.1.6. (André Weil’s character sum estimate) Let χ : F
×
q → T, χ(0) = 0, and let

f be a polynomial. Then

|
∑

x∈Fq

χ(f(x))| < (d − 1)
√

q, (9.1.1)

where d = deg f, t = order of χ, unless f = cgt.

9.2 Paley Tournament

Recall the Paley tournament: We have p ≡ −1 (mod 4), i.e.
(−1

p

)

= −1. We have

V = {0, 1, . . . , p − 1} and i → j if
(

i−j
p

)

= 1.
If there is a directed edge from vertex i to vertex j then we say i beats j. If i beats all

the elements in a set A then we say x → A.

Theorem 9.2.1. (∀k)(∃p0) such that if p > p0 then the Paley tournament is k-embarassing,
that is, ∀A ⊂ V, |A| = k, there exists x such thar x beats all the vertices in A

Proof. Let A = {a1, . . . , ak}, and χ(a) =
(

a
p

)

. Let N = #{x | χ(x− a1) = · · · = χ(x− ak) =

1}. We “expect” N ≈ p
2k . Now,

1

2k

∑

x∈Fp

k
∏

i=1

(χ(x − ai) + 1) = N +
µ

2
, (9.2.1)

with µ = 0 or 1. If x → A, it contributes 1 to the sum. If x is beaten by anyone in A, it
contributes 0. If x ∈ A and beats A \ {x}, it’s contribution is 2k−1/2k = 1

2
.

Now, we have

2k(N +
µ

2
) =

∑

x∈Fp

k
∏

i=1

(χ(x − ai) + 1) =
∑

x∈Fp

∑

I⊂{1,...,k}

∏

i∈I

χ(x − ai). (9.2.2)

This is because
k

∏

i=1

(1 + zi) =
∑

I⊂{1,...,k}

∏

i∈I

zi, (9.2.3)

To simplify (9.2.2), set fI(x) :=
∏

i∈I χ(x − ai), with f∅(x) := 1. Then (9.2.2) becomes
∑

I⊂{1,...,k}

∑

x∈Fp

χ(fI(x)) = p + R, (9.2.4)

where p comes from I = ∅, and R comes from I 6= ∅. We have

|R| = |
∑

∅6=I⊂{1,...,k}

∑

x∈Fp

χ(fI(x))| ≤
∑

∅6=I⊂{1,...,k}

|
∑

x∈Fp

χ(fI(x))| < k2k√p. (9.2.5)

2



The last inequality uses “Weil’s Character Sum Estimate,” because the inside sum is less
than (|I| − 1)

√
p < k

√
p. We used the triangle inequality, |a + b| ≤ |a| + |b| in the first

inequality.

Now, wk(N +
µ

2
) = p + R, and |2k(N +

µ

2
) − p| < k2k√p. So

2k(N +
µ

2
) > p − k2k√p

=⇒ 2kN > p − 2k(k
√

p + 1

2
)

Hence 2kN will be > 0 if p > 2k(k
√

p +
1

2
). Hence the Paley tournament is k-embarassing is

p > k222k. (9.2.6)

9.3 Chromatic Number and Girth of a graph

Let us consider graphs that are not 3k-colorable but does not contain any K3 (a K3 would
immediately require all three have different colors).

Let’s consider Kneser’s graph: K(r, s) for r ≥ 2s + 1, has
(r

s

)

vertices, labeled by
s-subsets of {1, . . . , r}. For any A ⊂ {1, . . . , r}, |A| = s, call the associated vertex vA. Then,
we have vA ∼ vB if A ∩ B = ∅. This is a generalization of Peterson’s graph, which is the
smallest case, K(5, 2).

Observation 9.3.1. χ(K(r, s)) ≤ r − 2s + 2.

Proof. Take all s-subsets that contain the number 1: a large independent set of vertices. The

number of such subsets is
(r − 1

s−1

)

. Let’s color all of this #1. For the remaining sets, color
2 those sets that contain the number 2. Is the number of colors needed r? Well, once we
get down to only 2s− 1 numbers left, then all s-subsets in those are independent: so we can
stop there. That is, we only need to use r − 2s + 2 colors: i.e. χ(K(r, s)) ≤ r − 2s + 2.

In fact, Lovasz showed in 1980 that this is an equality: the chromatic number equals

r − 2s + 2.
Now when does Kneser’s graph not contain triangles? If r < 3s the Kneser’s graph has

a triangle as then there are no 3 mutually disjoint subsets of size s).
So for a Kneser’s graph to have no triangle 3s > r ≥ 2s + 1: infact for such choices of r

and s, the graph will not contain triangles.
On the other hand, Kneser’s graph will contain large bipartite graphs (e.g. by partitioning

{1, . . . , r} into two disjoint subsets.) So it turns out that it’s much easier to avoid 3-cycles
than to avoid large bipartite graphs. In fact, we can avoid 3-cycles, 5-cycles, and 7-cycles:
still using Kneser’s graph.

Exercise 9.3.2. Find parameters of Kneser’s graph such that χ > 1000 and the graph does
not contain any odd cycles of length less than 100.
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The question is, what do we do about even cycles? Can we avoid C4, for example?

Theorem 9.3.3. (Erdős) ∀g, k, ∃ a graph of girth > g and χ ≥ k.

(Recall that girth is one the length of the shortest cycle occurring in the graph. So girth
> g means that there are no cycles of length ≤ g.)

Proof. (Sketch) Pick n vertices, and choose edges independently with probability p = nε

n
=

nε−1. That is, we pick the edges by “flipping a biased coin” so that it’s not that likely
we’ll put an edge in each place, but it will happen sometimes with probability nε−1. So,
E(degree of a given vertex) ≈ nε (for large n). The goal is to show that there is no inde-
pendent set of size ≥ n

k
, thus showing that χ ≥ k. Then, we want to show that there are no

cycles of size ≤ g.
Now, if A ⊂ {1, . . . , n}, with |A| = t, then

P (A is independent) = (1 − p)(
t

2
)

(remember independent means no edges are in A). So,

P (∃independent set of size t) <

(

n

t

)

(1 − p)(
t

2
)

Therefore, we conclude, for example, that if

(

n

t

)

(1 − p)(
t

2
) <

1

100
, then

P (∃independent set of size t) <
1

100

We need t = n
2k

.
Now, P (a given cycle of length ` is in G) = p`. Then, the number of constructible cycles

of length ` is n(n − 1) · · · (n − ` + 1) < n`. So E(#cycles of length `) < (np)`. Also,

g
∑

`=1

(np)` ≈ (np)g = nεg, (9.3.1)

since np = nε. At the same time, we can make sure that the chromatic number χ > n/2

n/2k
= k.

So this gives us what we want.

It was very difficult to actually give a construction of such a graph, which was finally
done in 1980. It was done by taking the Cayley graph of the group PSL(2, q) for appropri-
ate choices of generators (this actually was done to find a graph with linear isoperimetric
inequality, and in fact having a large eigenvalue gap in the eigenvalues of the adjacency
matrix/Laplacian.)
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