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9.1 Character of a group

Definition 9.1.1. A character of a group G is a homomorphism xy : G — T = {z € C |
|z| = 1} (homomorphism means x(ab) = x(a)x(b)).

Now, let F be a finite field. We can define two types of characters:

Definition 9.1.2. A multiplicative character of IF is a character of the group F* = F\ {0}
under multiplication. That is, y : F* — T. We formally set x(0) = 0 to extend to
F — T uU{0}.

Definition 9.1.3. An additive character of F is a character of the additive group F, i.e.
amap x : (F,+) — T, with x(a + b) = x(a)x(b).

Now, let F, denote the field of order ¢ = p*. We can define it by F, := F,[z]/(f), where
f is any irreducible polynomial of degree k.

We know that Fy is a cyclic group of order ¢ — 1, and is generated by some g € Fy
(in other word Fy* = (g)). That is, g% ' = 1 and no smaller positive power of g is 1. We
have (x(9))7 ! = x(¢? ') = 1 for any multiplicative character g. So characters correspond
to a choice of primitive (¢ — 1)-st root of unity w, so that x(¢g) = w. Then, for any element
r=g"¢c Fx, we have x(z) = x(g%) = wh.

In general, we have

TN

Definition 9.1.4. The order of a multiplicative character yx is the smallest positive integer
m such that x™(z) = 1 for all x € F. A quadratic character is a character of order 2.

Exercise 9.1.5. If q is an odd prime number then Fy has a unique quadratic character.
(Hint: x(g) = —1 and x(¢") = (-1)".)

Let us return our attention to F); for the moment, where p is prime. We may define the
Legendre symbol as follows: Let x be the unique quadratic character. For a € F, set

(%) = x(a).



We turn our attention back to a general field F, with ¢ = p*. André Weil’s character
sum estimate is then given as follows:

Theorem 9.1.6. (André Weil’s character sum estimate) Let x : FX — T, x(0) =0, and let

f be a polynomial. Then
> (s —1)/q, (9.1.1)

z€Fy

where d = deg f,t = order of x, unless f = cg'.

9.2 Paley Tournament
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Recall the Paley tournament: We have p = —1 (mod 4), ie. (—) = —1. We have

o p
V={0,1,....,p—1} and i — j if (%) =1.
If there is a directed edge from vertex i to vertex j then we say ¢ beats j. If ¢ beats all
the elements in a set A then we say =z — A.

Theorem 9.2.1. (Vk)(3po) such that if p > po then the Paley tournament is k-embarassing,
that is, VA C V,|A| = k, there exists x such thar x beats all the vertices in A

Proof. Let A ={ay,...,ax}, and x(a) = (%) Let N=F#{z | x(zr—a1) = =x(r—a) =
1}. We “expect” N =~ 4. Now,

k
%Zﬂ(x(w—ai)ﬂ) =N+g, (9.2.1)

z€F), i=1

with £ = 0 or 1. If z — A, it contributes 1 to the sum. If x is beaten by anyone in A, it
contributes 0. If z € A and beats A\ {z}, it’s contribution is 2¥°1/2F = 2.
Now, we have

=Y [Ixe-aw+n=>" > [lx@-a) (9.2.2)

z€F, i=1 x€Fp, IC{1,...,k} i€l

This is because

[Ta+=0= > ]= (9.2.3)

Ic{1,..,k} i€l
To simplify (9.2.2), set fr(x) := [[,c; x(z — a;), with fy(z) := 1. Then (9.2.2) becomes

> > X(file) =p+R, (9.2.4)

Ic{1,...,k} =€y

where p comes from I = (), and R comes from I # (). We have

Rl=1 > doxtfieDl<s > 1 x(fi(2)] < k2*p. (9.2.5)

P£IC{L,....k} z€F, P£IC{L,..k} wz€F,
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The last inequality uses “Weil’s Character Sum Estimate,” because the inside sum is less
than (|| —1)\/p < k\/p. We used the triangle inequality, |a + b| < |a| + [b] in the first
inequality.

Now, w*(N + %) =p+ R, and |2"(N + g) —p| < k2%/p. So

k(N + g) > p— k2t p
= 2N > p—2"kyp+1)

1
Hence 28N will be > 0 if p > 2"(ky/p+ 5) Hence the Paley tournament is k-embarassing is

p > k*2°. (9.2.6)

O

9.3 Chromatic Number and Girth of a graph

Let us consider graphs that are not 3*-colorable but does not contain any K3 (a K3 would
immediately require all three have different colors).

Let’s consider Kneser’s graph: K(r,s) for r > 2s + 1, has (7;) vertices, labeled by
s-subsets of {1,...,7}. Forany A C {1,...,r}, |A| = s, call the associated vertex vs. Then,
we have vy ~ v if AN B = (). This is a generalization of Peterson’s graph, which is the
smallest case, K(5,2).

Observation 9.3.1. x(K(r,s)) <r —2s+ 2.

Proof. Take all s-subsets that contain the number 1: a large independent set of vertices. The
number of such subsets is (T;Il). Let’s color all of this #1. For the remaining sets, color
2 those sets that contain the number 2. Is the number of colors needed r? Well, once we
get down to only 2s — 1 numbers left, then all s-subsets in those are independent: so we can

stop there. That is, we only need to use r — 2s + 2 colors: i.e. x(K(r,s)) <r—2s+2. O

In fact, Lovasz showed in 1980 that this is an equality: the chromatic number equals
r— 254 2.

Now when does Kneser’s graph not contain triangles? If » < 3s the Kneser’s graph has
a triangle as then there are no 3 mutually disjoint subsets of size s).

So for a Kneser’s graph to have no triangle 3s > r > 2s + 1: infact for such choices of r
and s, the graph will not contain triangles.

On the other hand, Kneser’s graph will contain large bipartite graphs (e.g. by partitioning
{1,...,r} into two disjoint subsets.) So it turns out that it’s much easier to avoid 3-cycles
than to avoid large bipartite graphs. In fact, we can avoid 3-cycles, 5-cycles, and 7-cycles:
still using Kneser’s graph.

Exercise 9.3.2. Find parameters of Kneser’s graph such that y > 1000 and the graph does
not contain any odd cycles of length less than 100.
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The question is, what do we do about even cycles? Can we avoid Cy, for example?
Theorem 9.3.3. (Erdds) Vg, k, 3 a graph of girth > g and x > k.

(Recall that girth is one the length of the shortest cycle occurring in the graph. So girth
> g means that there are no cycles of length < g.)

Proof. (Sketch) Pick n vertices, and choose edges independently with probability p = %s =
ne~!. That is, we pick the edges by “flipping a biased coin” so that it’s not that likely
we’ll put an edge in each place, but it will happen sometimes with probability n~!. So,
E(degree of a given vertex) &~ n¢ (for large n). The goal is to show that there is no inde-
pendent set of size > %, thus showing that x > k. Then, we want to show that there are no
cycles of size < g.

Now, if A C {1,...,n}, with |A| = ¢, then
P(A is independent) = (1 — p)(;)

(remember independent means no edges are in A). So,

P(3Jindependent set of size t) < (7;) (1-— p)@

Therefore, we conclude, for example, that if (7;) (1-— p)(g) < —, then

1
P(Jindependent set of size t) < —
100
We need t = 4.
Now, P(a given cycle of length ¢ is in G') = p’. Then, the number of constructible cycles
of length £is n(n —1)---(n — £+ 1) < n’. So E(#cycles of length ¢) < (np)*. Also,

> (np) = (np)? =n, (9.3.1)
=1

since np = n°. At the same time, we can make sure that the chromatic number y > :/—/;k = k.

So this gives us what we want. O

It was very difficult to actually give a construction of such a graph, which was finally
done in 1980. It was done by taking the Cayley graph of the group PSL(2,q) for appropri-
ate choices of generators (this actually was done to find a graph with linear isoperimetric
inequality, and in fact having a large eigenvalue gap in the eigenvalues of the adjacency
matrix/Laplacian.)



