REU 2006 · Discrete Math · Lecture 9

Instructor: László Babai Scribe: Travis Schedler Editor: Sourav Chakraborty

July 14, 2006. Last updated July 15, 2006 at 4 p.m. NOT PROOF-READ

9.1 Character of a group

Definition 9.1.1. A character of a group G is a homomorphism $\chi: G \to \mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$ (homomorphism means $\chi(ab) = \chi(a)\chi(b)$).

Now, let \mathbb{F} be a finite field. We can define two types of characters:

Definition 9.1.2. A multiplicative character of \mathbb{F} is a character of the group $\mathbb{F}^{\times} = \mathbb{F} \setminus \{0\}$ under multiplication. That is, $\chi : \mathbb{F}^{\times} \to \mathbb{T}$. We formally set $\chi(0) = 0$ to extend to $F \to \mathbb{T} \cup \{0\}$.

Definition 9.1.3. An additive character of \mathbb{F} is a character of the additive group \mathbb{F} , i.e. a map $\chi : (\mathbb{F}, +) \to \mathbb{T}$, with $\chi(a + b) = \chi(a)\chi(b)$.

Now, let \mathbb{F}_q denote the field of order $q = p^k$. We can define it by $\mathbb{F}_q := \mathbb{F}_p[x]/(f)$, where f is any irreducible polynomial of degree k.

We know that \mathbb{F}_q^{\times} is a cyclic group of order q-1, and is generated by some $g\in\mathbb{F}_q^{\times}$ (in other word $\mathbb{F}_q^{\times}=\langle g\rangle$). That is, $g^{q-1}=1$ and no smaller positive power of g is 1. We have $(\chi(g))^{q-1}=\chi(g^{q-1})=1$ for any multiplicative character g. So characters correspond to a choice of primitive (q-1)-st root of unity ω , so that $\chi(g)=\omega$. Then, for any element $x=g^{\ell}\in\mathbb{F}_q^{\times}$, we have $\chi(x)=\chi(g^{\ell})=\omega^{\ell}$.

In general, we have

Definition 9.1.4. The **order** of a multiplicative character χ is the smallest positive integer m such that $\chi^m(x) = 1$ for all $x \in \mathbb{F}_q^{\times}$. A **quadratic character** is a character of order 2.

Exercise 9.1.5. If q is an odd prime number then \mathbb{F}_q^{\times} has a unique quadratic character. (Hint: $\chi(g) = -1$ and $\chi(g^{\ell}) = (-1)^{\ell}$.)

Let us return our attention to \mathbb{F}_p^{\times} for the moment, where p is prime. We may define the **Legendre symbol** as follows: Let χ be the unique quadratic character. For $a \in \mathbb{F}_p^{\times}$, set $\left(\frac{a}{p}\right) = \chi(a)$.

We turn our attention back to a general field \mathbb{F}_q with $q = p^k$. André Weil's character sum estimate is then given as follows:

Theorem 9.1.6. (André Weil's character sum estimate) Let $\chi : \mathbb{F}_q^{\times} \to \mathbb{T}, \chi(0) = 0$, and let f be a polynomial. Then

$$\left|\sum_{x \in \mathbb{F}_q} \chi(f(x))\right| < (d-1)\sqrt{q},\tag{9.1.1}$$

where $d = \deg f$, $t = order \ of \ \chi$, unless $f = cg^t$.

9.2 Paley Tournament

Recall the **Paley tournament:** We have $p \equiv -1 \pmod{4}$, i.e. $\left(\frac{-1}{p}\right) = -1$. We have $V = \{0, 1, \dots, p-1\}$ and $i \to j$ if $\left(\frac{i-j}{p}\right) = 1$.

If there is a directed edge from vertex i to vertex j then we say i beats j. If i beats all the elements in a set A then we say $x \to A$.

Theorem 9.2.1. $(\forall k)(\exists p_0)$ such that if $p > p_0$ then the Paley tournament is k-embarassing, that is, $\forall A \subset V, |A| = k$, there exists x such that x beats all the vertices in A

Proof. Let $A = \{a_1, \ldots, a_k\}$, and $\chi(a) = \left(\frac{a}{p}\right)$. Let $N = \#\{x \mid \chi(x - a_1) = \cdots = \chi(x - a_k) = 1\}$. We "expect" $N \approx \frac{p}{2^k}$. Now,

$$\frac{1}{2^k} \sum_{x \in \mathbb{F}_n} \prod_{i=1}^k (\chi(x - a_i) + 1) = N + \frac{\mu}{2}, \tag{9.2.1}$$

with $\mu = 0$ or 1. If $x \to A$, it contributes 1 to the sum. If x is beaten by anyone in A, it contributes 0. If $x \in A$ and beats $A \setminus \{x\}$, it's contribution is $2^{k-1}/2^k = \frac{1}{2}$.

Now, we have

$$2^{k}(N + \frac{\mu}{2}) = \sum_{x \in \mathbb{F}_{p}} \prod_{i=1}^{k} (\chi(x - a_{i}) + 1) = \sum_{x \in \mathbb{F}_{p}} \sum_{I \subset \{1, \dots, k\}} \prod_{i \in I} \chi(x - a_{i}).$$
 (9.2.2)

This is because

$$\prod_{i=1}^{k} (1+z_i) = \sum_{I \subset \{1,\dots,k\}} \prod_{i \in I} z_i, \tag{9.2.3}$$

To simplify (9.2.2), set $f_I(x) := \prod_{i \in I} \chi(x - a_i)$, with $f_{\emptyset}(x) := 1$. Then (9.2.2) becomes

$$\sum_{I \subset \{1,\dots,k\}} \sum_{x \in \mathbb{F}_p} \chi(f_I(x)) = p + R, \tag{9.2.4}$$

where p comes from $I = \emptyset$, and R comes from $I \neq \emptyset$. We have

$$|R| = |\sum_{\emptyset \neq I \subset \{1, \dots, k\}} \sum_{x \in \mathbb{F}_p} \chi(f_I(x))| \le \sum_{\emptyset \neq I \subset \{1, \dots, k\}} |\sum_{x \in \mathbb{F}_p} \chi(f_I(x))| < k2^k \sqrt{p}.$$
 (9.2.5)

The last inequality uses "Weil's Character Sum Estimate," because the inside sum is less than $(|I|-1)\sqrt{p} < k\sqrt{p}$. We used the triangle inequality, $|a+b| \le |a| + |b|$ in the first inequality.

Now,
$$w^{k}(N + \frac{\mu}{2}) = p + R$$
, and $|2^{k}(N + \frac{\mu}{2}) - p| < k2^{k}\sqrt{p}$. So
$$2^{k}(N + \frac{\mu}{2}) > p - k2^{k}\sqrt{p}$$
$$\implies 2^{k}N > p - 2^{k}(k\sqrt{p} + \frac{1}{2})$$

Hence $2^k N$ will be > 0 if $p > 2^k (k\sqrt{p} + \frac{1}{2})$. Hence the Paley tournament is k-embarassing is

$$p > k^2 2^{2k}. (9.2.6)$$

9.3 Chromatic Number and Girth of a graph

Let us consider graphs that are not 3^k -colorable but does not contain any K_3 (a K_3 would immediately require all three have different colors).

Let's consider **Kneser's graph**: K(r,s) for $r \geq 2s + 1$, has $\binom{r}{s}$ vertices, labeled by s-subsets of $\{1,\ldots,r\}$. For any $A \subset \{1,\ldots,r\}$, |A|=s, call the associated vertex v_A . Then, we have $v_A \sim v_B$ if $A \cap B = \emptyset$. This is a generalization of Peterson's graph, which is the smallest case, K(5,2).

Observation 9.3.1.
$$\chi(K(r,s)) \le r - 2s + 2$$
.

Proof. Take all s-subsets that contain the number 1: a large independent set of vertices. The number of such subsets is $\binom{r-1}{s-1}$. Let's color all of this #1. For the remaining sets, color 2 those sets that contain the number 2. Is the number of colors needed r? Well, once we get down to only 2s-1 numbers left, then all s-subsets in those are independent: so we can stop there. That is, we only need to use r-2s+2 colors: i.e. $\chi(K(r,s)) \leq r-2s+2$. \square

In fact, Lovasz showed in 1980 that this is an equality: the chromatic number equals r - 2s + 2.

Now when does Kneser's graph not contain triangles? If r < 3s the Kneser's graph has a triangle as then there are no 3 mutually disjoint subsets of size s).

So for a Kneser's graph to have no triangle $3s > r \ge 2s + 1$: infact for such choices of r and s, the graph will not contain triangles.

On the other hand, Kneser's graph will contain large bipartite graphs (e.g. by partitioning $\{1, \ldots, r\}$ into two disjoint subsets.) So it turns out that it's much easier to avoid 3-cycles than to avoid large bipartite graphs. In fact, we can avoid 3-cycles, 5-cycles, and 7-cycles: still using Kneser's graph.

Exercise 9.3.2. Find parameters of Kneser's graph such that $\chi > 1000$ and the graph does not contain any **odd** cycles of length less than 100.

The question is, what do we do about even cycles? Can we avoid C_4 , for example?

Theorem 9.3.3. (Erdős) $\forall g, k, \exists a \text{ graph of girth} > g \text{ and } \chi \geq k$.

(Recall that **girth** is one the length of the shortest cycle occurring in the graph. So girth > g means that there are no cycles of length $\le g$.)

Proof. (Sketch) Pick n vertices, and choose edges independently with probability $p = \frac{n^{\varepsilon}}{n} = n^{\varepsilon-1}$. That is, we pick the edges by "flipping a biased coin" so that it's not that likely we'll put an edge in each place, but it will happen sometimes with probability $n^{\varepsilon-1}$. So, $E(\text{degree of a given vertex}) \approx n^{\varepsilon}$ (for large n). The goal is to show that there is no independent set of size $\geq \frac{n}{k}$, thus showing that $\chi \geq k$. Then, we want to show that there are no cycles of size $\leq g$.

Now, if $A \subset \{1, \ldots, n\}$, with |A| = t, then

$$P(A \text{ is independent}) = (1-p)^{\binom{t}{2}}$$

(remember independent means no edges are in A). So,

$$P(\exists \text{independent set of size } t) < \binom{n}{t} (1-p)^{\binom{t}{2}}$$

Therefore, we conclude, for example, that if $\binom{n}{t}(1-p)^{\binom{t}{2}} < \frac{1}{100}$, then

$$P(\exists \text{independent set of size } t) < \frac{1}{100}$$

We need $t = \frac{n}{2k}$.

Now, $P(\text{a given cycle of length } \ell \text{ is in } G) = p^{\ell}$. Then, the number of constructible cycles of length ℓ is $n(n-1)\cdots(n-\ell+1) < n^{\ell}$. So $E(\#\text{cycles of length } \ell) < (np)^{\ell}$. Also,

$$\sum_{\ell=1}^{g} (np)^{\ell} \approx (np)^{g} = n^{\varepsilon g}, \tag{9.3.1}$$

since $np = n^{\varepsilon}$. At the same time, we can make sure that the chromatic number $\chi > \frac{n/2}{n/2k} = k$. So this gives us what we want.

It was very difficult to actually give a construction of such a graph, which was finally done in 1980. It was done by taking the Cayley graph of the group PSL(2,q) for appropriate choices of generators (this actually was done to find a graph with linear isoperimetric inequality, and in fact having a large eigenvalue gap in the eigenvalues of the adjacency matrix/Laplacian.)