
REU 2006 Apprentice Problem Sheet 3

Miklós Abért and László Babai

due Friday, July 14, 2006

NEW PROBLEMS

1. (a) Prove that every prime other than 2 and 3 is ≡ ±1 (mod 6).

(b) Prove that there are infinitely many primes ≡ −1 (mod 6).

(c) Prove: if x is an integer, p is a prime, and p |x2 + x + 1 then either
p = 3 or p ≡ 1 (mod 6).

(d) Prove that there are infinitely many primes ≡ 1 (mod 6).

2. Let σ(n) denote the sum of the positive divisors of n. (For instance,
σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28.) Find a value of n such that
σ(n) > 100n.

3. Let

N(n, 3) =
bn/3c∑
k=0

(
n

3k

)
.

Prove: ∣∣N(n, 3)− 2n

3

∣∣ < 1. (1)

4. Use the Prime Number Theorem to solve the problems (a), (b), (c), (e)
below.

(a) pn ∼ n lnn, where pn denotes the n-th prime.

(b) Show that the average of all primes ≤ x is asymptotically x/2:∑
p≤x p

π(x)
∼ x

2
. (2)

(The summation is over all primes p ≤ x.)

(c) Let x(n) denote the largest integer value of x such that
∑

p≤x p ≤ n.
Prove: x(n) ∼

√
(n lnn)/2.

(d) Asymptotically evaluate (i) the arithmetic mean and (ii) the geomet-
ric mean of the numbers 1, 2, . . . , x.

1



(e) Can you evaluate asymptotically the geometric mean of all primes
≤ x? The quantity in question is (

∏
p≤x p)1/π(x). (Note that the

geometric mean is less than the arithmetic mean, which is ∼ x/2
according to part (b).)

5. Prove that for every function f : Fp → Fp there exists a polynomial
p(x) ∈ Fp[x] such that f(x) = p(x) for all x ∈ Fp.

6. Show that if Mk = 0 for some k (we call these matrices nilpotent) then
I −M is invertible, that is, there exists A such that (I −M)A = I.

7. How many invertible n× n matrices are there over Fp?

8. What are the eigenvalues, eigenvectors and diagonal form of the matrix

M =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
1 0 0 . . . 0 0


over the complex numbers?

9. Let a0, a1, . . . , an−1 be complex numbers, let f(x) = a0 + a1x + · · · +
an−1x

n−1 and let ε0, ε1, . . . , εn−1 be the n-th complex roots of unity. Show
that the determinant

det


a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2

an−2 an−1 a0 . . . an−3

...
...

...
. . .

...
a1 a2 a3 . . . a0

 = f(ε0) · f(ε1) · · · · · f(εn−1)

10. Find a vectorspace V and linear transformations A,B : V → V such that
AB = IdV but BA 6= IdV .

LEFTOVERS from Problem sheet 1

11. There are 17 weights with the property that if you omit any of them you
can divide the rest into two equal sized groups, such that the sum weights
of the two groups are equal. Show that all the weights are equal. Hint.
This is a linear algebra problem. (a) Prove the statement when all weights
are integers. (b) Reduce the general case (real weights) to the case of
integer weights.

2



12. A necklace is an arrangement of n beads around a circle. We have two
kinds of beads, red and blue. Other than their color, the beads are iden-
tical. Two necklaces do not count as distinct if one is obtained from the
other by rotation.

Determine the number of necklaces made of n beads where

(b) n = p2 where p is a prime number;

(c) n = pq where p, q are distinct primes;

(d) n = pqr where p, q, r are distinct primes.

Generalize your answers to the case when the beads come in k colors.
In each case, your answer should be a simple closed-form expression (no
summation symbols or dot-dot-dots).

13. Can you cover a 100× 100 board with 8× 1 “dominoes”?

14. You are given a pair of integers (a, b). A step is to add an integer multiple
of one of the entries to the other entry. Can you always reach (0, ∗) in at
most 100 steps?

15. Show that every sequence of n2 + 1 distinct real numbers contains an
increasing or a decreasing subsequence of length n + 1.

16. Assume that a polynomial f maps rationals to rationals. Show that f has
rational coefficients.

17. Are there two infinite subsets A and B of the nonnegative integers such
that every nonnegative integer can be uniquely written as the sum of an
element of A and an element of B?

18. Consider the 8 × 8 chessboard. Some of the 64 cells are infected. If a
cell has at least 2 infected neighbours it becomes infected. (Two cells are
neighbors if they share a side.) An infected cell is never cured. Show
that you cannot infect the full board with fewer than 8 initially infected
cells. (Note. This is an AH-HA problem. The essence of the solution is
contained in a single word. Discover that word.)

19. Show that for every natural number n the equation

n∑
i=1

1
ai

= 1

has only a finite number of solutions in natural numbers ai.

LEFTOVERS from Problem sheet 2

20. Is the set
{
1,
√

2,
√

3
}

linearly independent over Q?
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21. Let α1, . . . , αn be distinct real numbers. Prove that the set{
1

x− α1
,

1
x− α2

, . . . ,
1

x− αn

}
of rational functions is linearly independent over R.

22. The dragon appears to the princess at midnight, gives her a 13 × 21 real
matrix of rank 8 and says: “Every morning you can change an entry of
my matrix. I will come every midnight and can also change an entry. If
the rank ever goes down to 7, I shall eat you.” Would it help the princess
to take a quick course in linear algebra?

23. Let A be an n× n matrix. Show that if there exists an m× k submatrix
which is all 0 and m + k > n then det(A) = 0.

24. (Hilbert matrix) Let a1, a2, . . . , an be a list of n distinct numbers and
b1, b2, . . . , bn another list of n distinct numbers. Consider the n×n matrix
H = (hij) with

hij =
1

ai + bj
.

Prove that the rows of H are linearly independent.

25. A permutation π ∈ Sym(X) is fixed-point-free if for all x ∈ X we have
xπ 6= x. Are there more fixed-point-free even permutations on 100 points
than odd ones? (Hint: this is a determinant problem.)

26. Show that the equation AB − BA = I is unsolvable among the n × n
complex matrices. (I is the identity matrix.)

27. Find an n× n matrix M such that Mn = 0 but Mn−1 6= 0.

28. What happens to the determinant if we reflect the matrix in its anti-
diagonal?

29. Show that for every M there exists a polynomial p(x) such that p(M) = 0,
in the above sense.

30. (Vandermonde determinant) Let a1, a2, . . . , an be numbers. The Van-
dermonde matrix with generators a1, a2, . . . , an is the n× n matrix

V (a1, a2, . . . , an) =


1 a1 a2

1 . . . an−1
1

1 a2 a2
2 . . . an−1

2

1 a3 a2
3 . . . an−1

3
...

...
...

. . .
...

1 an a2
n . . . an−1

n

 .

Prove:
det(V (a1, a2, . . . , an)) =

∏
1≤i<j≤n

(ai − aj).
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31. Let a, b be numbers. Verify this determinant evaluation:

det


a b b . . . b
b a b . . . b
b b a . . . b
...

...
...

. . .
...

b b b . . . a

 = (a− b)n−1(a + b(n− 1))

32. Prove: the sum of the primitive n-th roots of unity is µ(n) where µ denotes
the Möbius function.

33. Let aij = gcd(i, j) (1 ≤ i, j ≤ n). Prove that for the n×n matrix A = (aij)
we have

det(A) = ϕ(1) · ϕ(2) · · · · · ϕ(n).

34. Let r be the probability that two random positive integers are relatively
prime. Recall that this value is defined as a limit. Assuming the limit
exists, i. e., assuming that r is well defined, give an AH-HA proof that
r = 6/π2.

35. Prove that
∑′ 1/n is finite, where the summation is extended over all

integers which do not have the string 2006 in their decimal representation.

36. (a) Prove that there are infinitely many primes which begin with the
digits 2006 (in decimal).

(b) Prove that the sum of the reciprocals of these primes diverges.

37. A polynomial f(x) is “integer-preserving” if f(x) is an integer whenever x
is an integer. An integer-preserving polynomial is “congruence preserving”
if f(a) ≡ f(b) (mod m) whenever a ≡ b (mod m), for all triples of integers
a, b, m. An integral polynomial is a polynomial with integer coefficients.
Note that every integral polynomial is integer-preserving.

(a) Find an integer-preserving polynomial which is not integral.

(b) Prove that every integral polynomial is congruence preserving.

(c) Find a congruence preserving polynomial which is not integral.
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