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1.1 Graphs

Refer to Section 6.1 in the Discrete Mathematics Lecture Notes (DMLN) handed out
in class (also available online on this website). The concepts of graphs, subgraphs, degree
of a vertex, isomorphism between graphs, girth of a graph, Hamilton cycle, independence
number α(X), legal coloring, k-colorability, chromatic number χ(X), complement of graphs
were introduced. Unless specified otherwise, n always denotes the number of vertices of the
graph X = (V, E).

The maximum number of edges in a graph with n vertices is
(

n
2

)
.

Exercise 1.1.1. Prove that the Petersen graph has no Hamilton cycle. (In contrast to most
exercises which have elegant solutions, this one does not appear to.)

Question 1.1.2. Are the graphs Figure 6.8 and Figure 6.9 in DMLN isomorphic?

Let Cn denote the cycle of length n. Then its independence number, α(Cn) = bn
2
c.

Exercise 1.1.3. Find the independence number of the 5 × 5 toroidal grid. (In this graph,
every vertex has degree 4.)

For the Rook’s graph on an 8× 8 chessboard, α = 8 and the number of independent sets
of maximum size is 8!. - Examples of self-complemantary graphs (X ∼= X): the graph with
one vertex (K1), the path of length 3 (P4), cycle of length 5 (C5).

Exercise 1.1.4. If X ∼= X, then n ≡ 0, 1 (mod 4).

For a graph X, the clique number is ω(X) = α(X) ≤ χ(X).

Exercise 1.1.5. Construct a triangle-free graph with χ = 4. (Hint: 11 vertices and 5-fold
symmetry. This graph is known as Grötzsch’s graph.)

Exercise 1.1.6. Prove (∀k)(∃ triangle-free graph X)(χ(X) ≥ k).

Exercise 1.1.7. Prove: if X is triangle-free then χ(X) ≤ 2
√

n + 1.
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Note that χ(X) = n ⇔ X ∼= Kn, where Kn is the n-clique (complete graph on n vertices).

Exercise* 1.1.8. Prove (∀k, `)(∃X) ( (a) X has no odd cycle of length ≤ ` (b) χ(X) ≥ k).

Exercise** 1.1.9 (Erdős 1959). Prove (∀k, `)(∃X) ( (a) X has no cycle of length ≤ ` (b)
χ(X) ≥ k).

The following is a preview from weeks 5–8 and provides an explanation of the difficulty
of proving 1.1.9.

Theorem 1.1.10 (Erdős-Hajnal). (1) For any infinite cardinal k and any integer `, 1.1.8
above is true. (2) For infinite chromatic numbers, 1.1.9 above fails badly: If X has no cycle
of length 4 then χ(X) is countable.

1.2 Groups

Look up the definition of a group and a commutative group (also called abelian group) in
Wikipedia.

Example 1.2.1. (Z, +), (Zn, +), the general linear group GL2(p) (2 × 2 matrices over Zp

with nonzero determinant (nonzero mod p)), the special linear group SL2(p) (the subgroup
of GL2(p) consisting of those matrices with determinant = 1 (mod p))

Exercise 1.2.2. If p is a prime (Z×
p , ·) is a group. Here Z×

p is the set of non-zero integers
modulo p.

Definition 1.2.3. Let G be a group. S ⊂ G is said to be product-free is (∀x, y, z ∈
S)(xy 6= z). Let α(G) = largest size of a product free set in G.

Exercise 1.2.4. Prove (a) α(Zn) ≥ n−1
3

(b) α(Zn) ≥ 2n
7

(n ≥ 2)

Question 1.2.5. (Babai–Sós, 1982) (∃c > 0)(∀finite G, |G| ≥ 2)(α(G) ≥ c|G|) ?

In 2006, Fields medalist Tim Gowers proved that if n = |SL2(p)| then α(SL2(p)) < cn8/9.
Hence the answer to the question is no. His proof uses “algebraic graph theory” (graph
theory plus linear algebra) and “representation theory” (group theory plus linear algebra).
We shall hopefully see the complete proof by the end of week 4.

Exercise 1.2.6. Calculate |SL2(p)|. (Give a very simple exact formula.)

1.3 Linear Algebra

Definition 1.3.1. A vector space V over a field F of scalars (think of real numbers) is
an abelian group where we can multiply by scalars such that (∀α, β ∈ F, v, w ∈ V )((αβ)v =
α(βv), (α + β)v = αv + βv, α(v + w) = αv + αw, 1 · v = v).

Example 1.3.2. C[0, 1] = continuous real-valued functions on [0, 1], Rn = n × 1 column
vectors with real entries.

2



Definition 1.3.3. v1, . . . , vk are said to be linearly independent over F if (∀α1, . . . , αk ∈
F )(

∑k
i=1 αivi = 0 ⇒ α1 = . . . = αk = 0).

Exercise 1.3.4. Find a curve in Rn such that any n points are linearly independent (give a
simple explicit formula).

Exercise 1.3.5. R is a vector space over Q. Prove that 1,
√

2,
√

3 and more generally the
square roots of all square-free positive integers (integers not divisible by the square of any
prime) are linearly independent over Q.

Definition 1.3.6. Span(v1, . . . , vk) = {
∑

αivi | αi ∈ scalars}. v1, . . . , vk generake V if
their span is V . A basis of V is a linearly independent set of generators.

Example 1.3.7. R[x] = {α0 +α1x+ . . .+αnx
n | ai ∈ R, n ∈ N} = the space of polynomials

with real coefficients. An R-basis is {1, x, x2, x3, . . .}.

Exercise 1.3.8. If f0, f1, . . . ∈ R[x] and deg(fi) = i, then f0, f1, . . . form an R-basis of R[x].

Exercise 1.3.9. Every linearly independent set can be extended to a basis and every set of
generators contains a basis.

Exercise 1.3.10. Any two basis of the same vector space have the same cardinality which
is called the dimension. Equivalently, if L is a linearly independent set and G is a set of
generators then |L| ≤ |G|.

Exercise 1.3.11. v1, v2, . . . , vk is a basis if and only if every vector is a unique linear com-
bination of the vi.

If v1, . . . , vk is a basis and w = α1v1 + · · · + αkvk then α1, . . . , αk are the coordinates
of w with respect to this basis. Arranging the coordinates as a k × 1 column vector, we
get a bijection between V and F k which preserves linear combinations (such a bijection is
called an isomorphism); therefore V ∼= F k. Hence a vector space is characterized, up to
isomorphism, by its dimension and the field of scalars.

Exercise 1.3.12. If F = Fp and V is a k-dimensional vector space over F , then |V | = pk.

1.4 Combinatorics

Exercise 1.4.1.
(

n
n/2

)
/2n > 1/n. In fact,

(
n

n/2

)
/2n ∼ c√

n
where c =

√
2/π. (READ about

asymptotic equality (∼) from Section 2.2 in DMLN.)

Exercise 1.4.2. If there are n people, and they can form clubs such that (a) no two clubs
have the exact same set of members; (b) every club has an even number of members; and
(c) any two clubs have an even number of members in common (“Eventown Rules”) then
prove that the maximum number of clubs that can be formed is 2b

n
2
c. (Hint: Linear algebra

modulo 2)
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