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1. Changing Basis

Definition 1.1. Given two bases b = (b1, ..., bn) (the old basis) and b′ = (b′1, ..., b
′
n) (the new basis), define

the basis change transformation σ : V → V by

σ(bi) := b′i.

Note that this transformation is invertible (why?). Define also the corresponding matrix

[σ]old := [[σ(b1)]old, ..., [σ(bn)]old] = [b′1, ...., b
′
n]old = b′old,

where [v]old denotes the coordinate vector of v with respect to the old basis. More explicitly, if

v =
n∑
i=1

αibi =
n∑
i=1

α′ib
′
i,

then

[v]old =

α1

...
αn

 , [v]new =

α
′
1
...
α′n

 .

Theorem 1.2. The coordinates of a vector v with respect to the old and new bases are related by

[v]old = [σ]old · [v]new.

Recall that given a linear map φ : V →W and bases e for V and f for W , respectively, we denote by [φ]e,f
the matrix for φ relative to the bases e and f . The j-th column of this matrix is [φ(ej)]f . Recall further
the fundamental relation this notation establishes between matrix multiplication and the action of a linear
transformation:

[φ(v)]f = [φ]e,f · [v]e for all v ∈ V .

Theorem 1.3. Let φ : V → W be a linear function, and let σ : V → V, e 7→ e′ and τ : W → W, f 7→ f ′ be
basis change transformations. Writing

A := [φ]old = [φ]e,f ,

A′ := [φ]new = [φ]e′,f ′ ,

S := [σ]old,

T := [τ ]old,

we have
A′ = T−1AS.

That is,
[φ]new = [τ ]−1

old · [φ]old · [σ]old.
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Corollary 1.4. In the special case V = W and σ = τ , we have

[φ]new = S−1 · [φ]old · S.

In particular, taking φ = σ, we find

[σ]new := S−1SS = S = [σ]old.

Thus,

S = [e′]e, S−1 = [e]e′ .

Definition 1.5. A,B ∈Mn(F ) are similar if there exist S, S−1 ∈Mn(F ) such that B = S−1AS. If A and
B are similar, we write A ∼ B.

Exercise 1.6. This is an equivalence relation.

Observation 1.7. A,B describe the same linear transformation with respect to some bases if and only if
A ∼ B.

Exercise 1.8. If A ∼ B, then rk(A) = rk(B), tr(A) = tr(B), and det(A) = det(B).

This shows that we can define the rank, trace, and determinant of a linear transformation as the corre-
sponding quantity of the matrix that describes our linear transformation in some basis. These concepts are
well-defined, i.e., they depend only on the linear transformation and not on the choice if the basis. A major
theme in linear algebra is consequently to understand matrices up to equivalence.

Exercise 1.9 (!). For a linear map φ : V →W we define rk(φ) := dim im(φ). Let e be a basis of V and f is
a basis of W . Set A = [φ]e,f . Prove:

rk(A) = rk(φ).

In particular, rk(A) does not depend on the choice of the bases e, f.

Recall that the rank-nullity theorem asserts

dim(kerφ)︸ ︷︷ ︸
nullity

+ dim(imφ)︸ ︷︷ ︸
rank

= dim(V ).

2. Euler’s ϕ function

Definition 2.1. Euler’s ϕ function is the function

ϕ(n) := |{i | 1 ≤ i ≤ n, gcd(i, n) = 1}| .

Problem 102. Prove that ϕ(n) is equal to the number of primitive n-th roots of unity.

Problem 103. Show that for the matrix

Dn = (gcd(i, j))1≤i,j≤n ,

we have

det(Dn) =
n∏
i=1

ϕ(i).

Hint: Find an upper-triangular (0, 1)-matrix Z such that

Dn = ZT

ϕ(1) 0
. . .

0 ϕ(n)

Z.
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3. Eigenvalues, Eigenvectors, the Characteristic Polynomial

Definition 3.1. If φ : V → V is a linear transformation, we say v ∈ V is an eigenvector to the eigenvalue
λ ∈ F if v 6= 0 and φ(v) = λv.

Definition 3.2. If A ∈Mn(F ), then v ∈ Fnis an eigenvector to eigenvalue λ ∈ F if v 6= 0 and Av = λv.

Definition 3.3. v is an eigenvector of φ if v 6= 0 and there exists λ ∈ F such that φ(v) = λv. Similarly for
matrices.

Definition 3.4. λ ∈ F is an eigenvalue of φ if there exists v 6= 0 such that φ(v) = λv. Similarly for matrices.

Observation 3.5. v ∈ V is an eigenvector of φ : V → V to eigenvalue λ if and only if [v]b is an eigenvector
of [φ]b.

Exercise 3.6. For any λ ∈ F the set

Uλ = {x ∈ Fn | Ax = λx} = ker(λI −A)

is a linear subspace. The nonzero elements of Uλ are precisely the eigenvectors of A to eigenvalue λ. So λ is
an eigenvalue of A precisely if dim(Uλ) ≥ 1.

Observation 3.7. By the rank-nullity theorem, we have

dimUλ = n− rk(λI −A).

Theorem 3.8. The following are equivalent:
(1) λ is an eigenvalue of A ∈Mn(F )
(2) dimUλ ≥ 1
(3) rk(λI −A) < n
(4) λI −A is singular
(5) det(λI −A) = 0

Let us state the last equivalence as a separate theorem to emphasize it; for that is how we usually detect
eigenvalues.

Theorem 3.9. λ is an eigenvalue of A if and only if det(λI −A) = 0.

Definition 3.10. fA(t) = det(tI −A) is called the characteristic polynomial of A.

Observation 3.11. λ is an eigenvalue of A if and only if fA(λ) = 0.

Observation 3.12. If A ∈Mn(F ), then fA is a polynomial in t of degree n. So we may write

fA(t) = ant
n + an−1t

n−1 + · · ·+ a0.

From the definition of fA, one may easily compute an = 1, an−1 = − tr(A), and a0 = (−1)n det(A).

Theorem 3.13. Over C, we may factor

(1) fA(t) = (t− λ1) · · · (t− λn),

where λ1, ..., λn are the eigenvalues of A (not necessarily distinct here). It follows that

tr(A) =
n∑
i=1

λi,

and

det(A) =
n∏
i=1

λi.

Definition 3.14. The algebraic mulitplicity of an eigenvalue λ is the number of times the factor (t − λ)
occurs in the factorization (1).

Definition 3.15. The geometric multiplicity of an eigenvalue λ is dimUλ = n − rk(λI − A). This is the
number of linearly independent eigenvectors to eigenvalue λ.
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Problem 104. For all A ∈Mn(C) and for all λ ∈ C, we have

algebraic multiplicity of λ ≥ geometric multiplicity of λ.

Problem 105. If A ∼ B, then fA(t) = fB(t).

Problem 106. The converse to Problem 105 is false. Hint: Find A,B such that rk(A) 6= rk(B) but
fA(t) = fB(t).

Problem 107. (a) Consider the matrices

A =
(

2 7
0 3

)
, B =

(
2 0
0 3

)
.

Note that their characteristic polynomials are equal. (Why?) Are these two matrices similar?
(b) Same question for the matrices

A =
(

2 7
0 2

)
, B =

(
2 0
0 2

)
.

Definition 3.16. A matrix A is diagonalizable if A is similar to a diagonal matrix, that is, there exist S, S−1

such that S−1AS is diagonal.

Definition 3.17. An eigenbasis for φ is a basis consisting of eigenvectors of φ.

Exercise 3.18. The matrix [φ]b is diagonal if and only if b is an eigenbasis for the linear transformation φ.

Theorem 3.19. (a) [φ]b is diagonalizable if and only if there exists an eigenbasis for φ.
(b) A ∈Mn(F ) is diagonalizable if and only if there exists an eigenbasis for A.

Problem 108. Prove that
(

1 1
0 1

)
is not diagonalizable.

Problem 109. Over C, a matrix A is diagonalizable if and only if for all eigenvalues λ of A, we have

alg.mult.(λ) = geom.mult.(λ).
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