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1. CHANGING BASIS

Definition 1.1. Given two bases b = (by, ..., by,) (the old basis) and b’ = (], ...,b},) (the new basis), define
the basis change transformation o : V. — V by

a(b;) = b
Note that this transformation is invertible (why?). Define also the corresponding matrix
[0]ota == [[0(b1)]o1d -+, [0 (bn)]ola] = [0, -5 b, Jora = B ola,

where [v]o1q denotes the coordinate vector of v with respect to the old basis. More explicitly, if

n n
v= E a;b; = E asbl,
i=1 i=1

then

[U]C)ld = ) [(U} new —

Qan @
Theorem 1.2. The coordinates of a vector v with respect to the old and new bases are related by
[U]old = [U]old : [U]new~

Recall that given a linear map ¢ : V' — W and bases e for V and f for W, respectively, we denote by [¢]e ¢
the matrix for ¢ relative to the bases e and f. The j-th column of this matrix is [¢(e;)]¢. Recall further
the fundamental relation this notation establishes between matrix multiplication and the action of a linear
transformation:

[0(v)]f = [@les - [V]e for all v € V.

Theorem 1.3. Let ¢ : V — W be a linear function, and let 0 : V — Ve ¢€ and7: W — W, f — {’ be
basis change transformations. Writing

A= [Plold = [Pt
A" = [Plnew = [Pler g7,
S = [0]o1d,
T = [T]ow,
we have
A =T71AS.
That is,

[Qﬂnew = [7—]&(11 : [¢]old : [U]old-
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Corollary 1.4. In the special case V. =W and o = 7, we have
[Blaew = S™"+ [Plola - S.
In particular, taking ¢ = o, we find
[0]new := 57188 =8 = [o]old-

Thus,
S = [e/}e, 571 = [e]e/.

Definition 1.5. A, B € M, (F) are similar if there exist S, S~ € M, (F) such that B = S7'AS. If A and
B are similar, we write A ~ B.

Exercise 1.6. This is an equivalence relation.

Observation 1.7. A, B describe the same linear transformation with respect to some bases if and only if
A~ B.

Exercise 1.8. If A ~ B, then rk(A) = rk(B), tr(A4) = tr(B), and det(A4) = det(B).

This shows that we can define the rank, trace, and determinant of a linear transformation as the corre-
sponding quantity of the matrix that describes our linear transformation in some basis. These concepts are
well-defined, i.e., they depend only on the linear transformation and not on the choice if the basis. A major
theme in linear algebra is consequently to understand matrices up to equivalence.

Exercise 1.9 (!). For a linear map ¢ : V. — W we define rk(¢) := dimim(¢). Let e be a basis of V and f is
a basis of W. Set A = [¢]e . Prove:

rk(A4) = rk(¢).
In particular, rk(A) does not depend on the choice of the bases e, f.
Recall that the rank-nullity theorem asserts
dim(ker ¢) + dim(im ¢) = dim(V).
—_ —

nullity rank

2. EULER’S ¢ FUNCTION
Definition 2.1. FEuler’s ¢ function is the function
() = {i | 1< < nged(i,n) =1}
Problem 102. Prove that ¢(n) is equal to the number of primitive n-th roots of unity.
Problem 103. Show that for the matrix
Dy, = (ng(i,j))1§z‘,j§n7

we have
det(Dy) = [ (i)
=1

Hint: Find an upper-triangular (0, 1)-matrix Z such that



3. EIGENVALUES, EIGENVECTORS, THE CHARACTERISTIC POLYNOMIAL

Definition 3.1. If ¢ : V — V is a linear transformation, we say v € V is an eigenvector to the eigenvalue
A€ Fifv#0and ¢(v) = lv.

Definition 3.2. If A € M,,(F), then v € F™is an eigenvector to eigenvalue A € F if v # 0 and Av = Av.

Definition 3.3. v is an eigenvector of ¢ if v # 0 and there exists A € F' such that ¢(v) = Av. Similarly for
matrices.

Definition 3.4. )\ € F is an eigenvalue of ¢ if there exists v # 0 such that ¢(v) = Av. Similarly for matrices.

Observation 3.5. v € V is an eigenvector of ¢ : V' — V to eigenvalue A if and only if [v]p is an eigenvector
of [¢]p.
Exercise 3.6. For any A € F the set

Uyn={x € F"| Az = Az} = ker(A\] — A)

is a linear subspace. The nonzero elements of U are precisely the eigenvectors of A to eigenvalue A. So A is
an eigenvalue of A precisely if dim(Uy) > 1.

Observation 3.7. By the rank-nullity theorem, we have
dim Uy =n — k(A — A).

Theorem 3.8. The following are equivalent:

(1) X is an eigenvalue of A € M, (F)

(2) dimUy > 1

(3) tk(AMT — A) <n

(4) M — A is singular

(5) det(A\l —A)=0

Let us state the last equivalence as a separate theorem to emphasize it; for that is how we usually detect

eigenvalues.

Theorem 3.9. X is an eigenvalue of A if and only if det(A — A) = 0.

Definition 3.10. f4(t) = det(tI — A) is called the characteristic polynomial of A.

Observation 3.11. X is an eigenvalue of A if and only if f4(\) = 0.

Observation 3.12. If A € M,,(F), then f4 is a polynomial in ¢ of degree n. So we may write
fa(t) = ant™ + an_1t" "+ + ao.

From the definition of f4, one may easily compute a, =1, a,—1 = —tr(4), and ag = (—1)" det(A).

Theorem 3.13. QOver C, we may factor

(1) fat) =@t —A1)-(t=An),

where A1, ..., A\ are the eigenvalues of A (not necessarily distinct here). It follows that

tr(A) = i: i
i=1

and
n

det(4) = [ n.

i=1
Definition 3.14. The algebraic mulitplicity of an eigenvalue A is the number of times the factor (¢t — )
occurs in the factorization (1).
Definition 3.15. The geometric multiplicity of an eigenvalue A is dim Uy = n — rk(AI — A). This is the
number of linearly independent eigenvectors to eigenvalue .
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Problem 104. For all A € M,,(C) and for all A € C, we have
algebraic multiplicity of A > geometric multiplicity of A.

Problem 105. If A ~ B, then fa(t) = fg(t).
Problem 106. The converse to Problem 105 is false. Hint: Find A, B such that rk(A4) # rk(B) but

fa(t) = fB(t).
Problem 107. (a) Consider the matrices
2 7 2 0
=63 =03

Note that their characteristic polynomials are equal. (Why?) Are these two matrices similar?
(b) Same question for the matrices

(D Gy

Definition 3.16. A matrix A is diagonalizable if A is similar to a diagonal matrix, that is, there exist S, S~!
such that S~tAS is diagonal.

Definition 3.17. An eigenbasis for ¢ is a basis consisting of eigenvectors of ¢.
Exercise 3.18. The matrix [¢]p is diagonal if and only if b is an eigenbasis for the linear transformation ¢.
Theorem 3.19. (a) [¢]p is diagonalizable if and only if there exists an eigenbasis for ¢.
(b) A e M, (F) is diagonalizable if and only if there exists an eigenbasis for A.
Problem 108. Prove that <é 1) is not diagonalizable.

Problem 109. Over C, a matrix A is diagonalizable if and only if for all eigenvalues A of A, we have

alg.mult.(\) = geom.mult.(A).



