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Today we discussed problems 75, 88, 89, 90, 93, 94, 96, 97, 99, 100, 101, 109. Some remarks:
• Problem 75: Nathan proposed that F = Q[ 10

√
2] satisfies [F : Q] = 10. Write α = 10

√
2. We need

to show 1, α, α2, ..., α9 are linearly independent over Q. It suffices to show that f(x) = x10 − 2 is
irreducible over Q.

• Problem 88: Remember that computing determinants is easier when there are a lot of zeroes. When
there are a lot of equal entries, we can get a matrix with a lot of zeroes by doing row operations.
Indeed: This determinant is easily computed by putting it into upper-triangular form using row
operations. It is also useful to remember that if every entry of a row (or column) has the same
factor, then that factor may be pulled out of the determinant. The final answer we found was
(a+ (n− 1)b)(a− b)n−1.

• Problem 89: Observe that the determinant of the Vandermonde matrix vanishes if we have xi = xj
for any i 6= j. Consequently, we might guess the determinant to be

D =
∏
i<j

(xj − xi).

This is indeed the correct answer. Two ways of proving this: 1. Observe that D is a polynomial of the
correct degree and correct leading coefficient. By uniqueness of factorization into irreducibles of mul-
tivariate polynomials [a fact we haven’t discussed], D must equal the determinant detV (x1, ..., xn).
2. Use Gaussian elimination to find

Vn(x1, ..., xn) =
n∏
j=2

(xj − x1)Vn−1(x2, ..., xn).

• Problem 90: Zach proposed the answer Dn = Fn+1. To prove this, we must show Dn satisfies the
Fibonacci recurrence Dn = Dn−1 +Dn−2. Homework: Prove this.

• Problem 93: David solved this by observing that |x× y| = area. See Problem ?? below.
• Problem 94: Peter proposed that if n ≡ −1 (mod 8), then n 6= a2 + b2 + c2 for integers a, b, c.

Homework: Prove this.
• Problem 96: Observe that S⊥ is a subspace and S⊥ = (span(S))⊥. Take a basis v1, ..., vk for

span(S); then x ∈ S⊥ if and only if x · vi = 0 for i = 1, ..., k. This gives a system of k independent
linear homogeneous equations. The dimension of the solution space is n − k (by the rank-nullity
theorem). Thus, dimS⊥ = n− rk(S). Let us emphasize this point: if U ≤ Fn and B is a basis of U
then U⊥ = B⊥.

• Problem 97: This is a special case of Problem 96. This implies a totally isotropic subspace U (i. e.,
U ⊥ U , i. e., U ⊆ U⊥) satisfies dimU ≤ bn2 c.

• Problem 99: Zihao solved this problem by observing that for u = (α1, ..., αn), we have u · u =∑n
i=1 α

2
i = 0 if and only if u = 0 (in Rn). Note this is not true over other fields: For example, we

have (
1
2

)
·
(

1
2

)
≡ 12 + 22 ≡ 0 (mod 5)
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in F2
5, and (

1
i

)
·
(

1
i

)
= 0

in C2.
• Problem 100: The trick is to use vectors like

1
a
0
0
0
0

 ,


0
0
1
a
0
0

 ,


0
0
0
0
1
a

 ,

where a is a square root of −1 in F . See remarks on Problem 99 above and look at Problem 111
below.

• Problem 101: Let vA denote the characteristic vector (membership vector) for the set A ⊆
{1, . . . , n} (e.g., for A = {1, 3, 4} ⊆ {1, . . . , 5} we have vA = (1, 0, 1, 1, 0)). Then vA · vB = |A ∩ B|.
In particular, vA · vA = |A|. Let vi be the membership vectors for clubs in Eventown. Since all the
clubs have an even number of members and all pairs of clubs share an even number of members, we
find vi · vj = 0 over F2 for all i, j. So if S is a set of membership vectors, then the corresponding
sets satisfy the Eventown conditions if and only if S ⊥ S. It follows that the membership vectors of
a maximal Eventown club system form a totally isotropic subspace of Fn2 . Now look at Problem 97
above.

• Problem 109: David presented a solution. Recall that the characteristic polynomial is

fA(t) = det(tI −A) = (t− λ1) · · · (t− λn),

where λi are the eigenvalues.
(⇒) If A is diagonal, it is trivial that the algebraic and geometric multiplicities are the same.

Now observe that if A,B are similar matrices then every λ has the same algebraic multiplicity for A
as for B (because A and B have the same characteristic polynomial); and λ has the same geometric
multiplicity for the two matrices as well, because the geometric multiplicity of λ is n − rk(λI − A)
for A and n− rk(λI −B) for B, and λI −A ∼ λI −B (why?). So the equality of the algebraic and
geometric multiplicities carries over to diagonalizable matrices.

(⇐) Recall that A is diagonalizable if and only if A has an eigenbasis. Write the characteristic
polynomial as

fA(t) =
k∏
i=1

(t− λi)ki ,

where λ1, ..., λk are the distinct eigenvalues and ki is the algebraic multiplicity of λi. Then
∑k
i=1 ki =

n. This implies that
∑k
i=1 geom.mult.(λi) = n by the hypothesis. Now pick a basis for each

eigenspace Uλi
and combine all these bases. We claim that the union of the eigenbses of each

eigenspace forms an eigenbasis for A. We have the right number of vectors, so all we need to verify
is that they are linearly independent. To complete the verification, solve Problem 113 below.

Some New Problems

Problem 110. If a1, ..., ak ∈ Zn, then volumek(para.(a1, ..., ak) =
√

integer, where

para.(a1, ..., ak) =

{
n∑
i=1

αiai | 0 ≤ αi ≤ 1

}
is the parallelepiped spanned by a1, . . . , ak.

Problem 111. For what primes p does there exist
√
−1 in Fp?

Problem 112. If U is a totally isotropic subspace of Fn2 and dimU < bn2 c, then U is not maximal, that is,
there exists a totally isotropic subspace U ′ ≤ Fn2 such that U ′ ) U .
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Problem 113. If v1, ..., vk are eigenvectors of A to distinct eigenvalues (vi 6= 0, Avi = λivi, λi 6= λj for
i 6= j), then the vi are linearly independent.
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