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1. Cyclic Groups, The Fundamental Theorem of Arithmetic, Greatest Common Divisors of
Polynomials

Recall the Division Theorem: If a, b ∈ Z, then there exist q, r ∈ Z such that a = q · b + r and 0 ≤ r < b.
This is the key ingredient for proving most of the results below.

Definition 1.1. d is a g.c.d. of a and b if (1) d is a common divisor of a and b (that is, d | a and d | b), and
(2) any common divisor of a and b divides d, that is (∀e)(if e | a and e | b then e | d).

Theorem 1.2. A g.c.d. of a and b always exists and can be written as d = ax+ by.

Definition 1.3. A group G is cyclic if (∃g ∈ G)(G = 〈g〉) where 〈g〉 denotes the subgroup generated by g.
That is,

〈g〉 = {. . . , g−2, g−1, 1, g, g2, g3, . . .} = {gn | n ∈ Z}.

Observe that |〈g〉| = ord(g). If ord(g) = t then gi = gj ⇔ i ≡ j (mod t) (this means t | i − j). (Take
t = 0 if ord(g) =∞.)

(Z,+) is a cyclic group: (Z,+) = 〈1〉 = 〈−1〉. Observe that Z = 〈a, b〉 if and only if gcd(a, b) = 1. This is
not entirely evident and we shall prove it.

Theorem 1.4. All subgroups of (Z,+) are cyclic. That is, the subgroups of (Z,+) are precisely the groups

dZ := {dn | n ∈ Z} = multiples of d = 〈d〉 = 〈−d〉 (d ∈ Z).

Convention 1.5. Observe that the g.c.d. of a and b is unique up to sign. When we write gcd(a, b), we
mean the positive sign.

Theorem 1.6. gcd(ac, bc) = |c| · gcd(a, b).

Theorem 1.7. If p is a prime then (∀a, b)(if p | ab then p | a or p | b). This is called the prime property.

(Note that 0 also has the prime property.) Note that the Fundamental Theorem of Arithmetic (unique
prime factorization) immediately follows from Theorem 1.7.

Our next goal is to prove uniqueness of factorization of polynomials over a field F into irreducible poly-
nomials.

For F a field, F [x] is the set of polynomials over F . We can define the gcd as above; this time it will be
unique up to nonzero constant factors.

Convention 1.8. When we write gcd(f, g) for f, g ∈ F [x], we mean the gcd with leading coefficient 1 (so
gcd(f, g) is a monic polynomial).

Theorem 1.9 (Existence of gcd). For all f, g ∈ F [x], there exists d ∈ F [x] such that
(1) d | f and d | g,
(2) (∀e ∈ F [x])(if e | f and e | g then e | d),
(3) (∃u, v ∈ F [x])(d = u · f + v · g).

Problem 114. Prove Theorem 1.9.

Problem 115. Let f ∈ Q[x]. Then f has a multiple root in C if and only if gcd(f, f ′) 6= 1.
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2. Euler-Fermat Congruence and Arithmetic Functions

Theorem 2.1 (Lagrange’s Theorem). If H is a subgroup of a finite group G, then |H| divides |G|.

Corollary 2.2. If G is a finite group, then ord(g) divides |G| for all g ∈ G.

Recall that ord(g) = min{k ≥ 1 | gk = 1}. Observe that if ord(g) = t, then (∀n ∈ Z)(qn = 1⇔ t | n).
Applying Corollary 2.2 to G = F×q , we find that if a ∈ Fq and a 6= 0, then aq−1 = 1. Taking q to be prime,

we get Fermat’s Little Theorem.

Theorem 2.3 (Fermat’s Little Theorem). For all a ∈ Z, if a does not divide p, then ap−1 ≡ 1 (mod p).

Exercise 2.4. There exists a−1 (mod m) if and only if gcd(a,m) = 1.

Problem 116. Prove that
Z×m := {1 ≤ a ≤ m | gcd(a,m) = 1}

is a group under multiplication modulo m. Observe that |Z×m| = ϕ(m).

Theorem 2.5 (Euler-Fermat congruence). If gcd(a,m) = 1 then aϕ(m) ≡ 1 (mod m).

Observe that ϕ(pk) = pk−1
(

1− 1
p

)
.

Problem 117. If gcd(a, b) = 1, then ϕ(ab) = ϕ(a)ϕ(b).

Corollary 2.6. If n = pk11 · · · pks
s , then

ϕ(n) = ϕ(pk11 ) · · ·ϕ(pks
s ) = n

(
1− 1

p1

)
· · ·
(

1− 1
ps

)
.

Thus,
ϕ(n)
n

=
∏
p|n

(
1− 1

p

)
.

Problem 118. Show that inf
n∈N

ϕ(n)
n

= 0.

Problem 119. Let d(n) be the number of positive divisors of n ∈ N. If gcd(a, b) = 1, then d(ab) = d(a)d(b).

Definition 2.7. d(n) is called the divisor function.

Problem 120. Give an explicit formula for d(n) given the prime factorization of n.

Definition 2.8. An arithmetic function is a function f : N→ C (where N = {1, 2, 3, . . . }).

Definition 2.9. f is multiplicative if whenever gcd(a, b) = 1, we have f(ab) = f(a)f(b).

Definition 2.10. The Möbius function is

µ(n) =

{
(−1)r if n = p1 · · · pr, pi 6= pj for i 6= j,

0 if n is not square-free.

Problem 121. Show the Möbius function is multiplicative: If gcd(a, b) = 1, then µ(ab) = µ(a)µ(b).

Definition 2.11. ω ∈ C is a primitive nth root of unity if ord(ω) = n.

Problem 122. (a) If ω ∈ G and ord(ω) = n, then for what j is ord(ωj) = n if and only if gcd(j, n) = 1?
(b) If ω ∈ G, then ord(ωj) = ord(ω)

gcd(j,n) .

Problem 123. Let Sn denote the sum of the primitive nth roots of unity. Show that Sn = µ(n).

Problem 124. Show that
∑
d|n

ϕ(d) = n.

Problem 125. If f is multiplicative, then so is g(n) =
∑
d|n

f(d).
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Problem 126 (Möbius inversion). Show that

f(n) =
∑
d|n

µ
(n
d

)
g(d)

for all f : N→ C and g(n) =
∑
d|n

f(d).

Problem 127. (a)
∑

primes 1/p =∞.
(b)

∑
p≤n 1/p = ln lnn+ θ∗n with |θ∗n| bounded.

3. Functions of Matrices

Definition 3.1. If A ∈Mn(F ) and f(x) = a0 + a1x+ · · ·+ akx
k ∈ F [x], then

f(A) := a0I + a1A+ · · ·+ akA
k.

Exercise 3.2. (∃f 6= 0)(f(A) = 0).

This amounts to showing there is k such that {I, A, ..., Ak} are linearly dependent in Mn(F). Indeed, we
can take k = n2 since {I, A, ..., An2} are n2 + 1 vectors and dim(Mn) = n2.

Theorem 3.3 (Cayley-Hamilton). Let fA be the characteristic polynomial of A. Then fA(A) = 0.

Problem 128. Prove the Cayley-Hamilton theorem (fA(A) = 0) for diagonalizable matrices.

Problem 129. If λ is an eigenvalue of A and f ∈ F [x], then f(λ) is an eigenvalue of f(A). (Is the converse
true?)

Problem 130. For a ∈ Mn(R), (a) define eA, and (b) prove that if λ is an eigenvalue of A, then eλ is an
eigenvalue of eA. (Is the converse true?)
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