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1. Algebraically closed fields

Definition 1.1. The field F is algebraically closed if any of the following equivalent conditions hold:
• For all polynomials f ∈ F [x] with deg f ≥ 1, there is an α ∈ F with f(α) = 0.
• Every nonzero polynomial over F factors into linear factors.
• The only irreducible polynomials over F are linear.

Theorem 1.2. If F is a field, there is an extension H ⊇ F of F such that H is algebraically closed.

Problem 131. Let F ⊆ H be a field extension, and let AlgF (H) = {α ∈ H |α is algebraic over F}. Then
• AlgF (H) is a subfield of H.
• If H is algebraically closed, then AlgF (H) is algebraically closed.
• In this case, AlgF (H) is the smallest algebraically closed field containing F . Call this field the

algebraic closure of F , and denote it by F .
• Show that F is unique up to an isomorphism fixing F .

Problem 132. If F is countable, then F is countable.

Definition 1.3. α is transcendental over F if α is not algebraic over F .

Problem 133 (Liouville). Show that
∞∑

n=0

1
2n!

is transcendental.

2. Irreducible polynomials

Definition 2.1. A polynomial f ∈ Z[x], f(x) = a0 + a1x+ · · ·+ anx
n is primitive if

gcd(a0, . . . , an) = 1.

Problem 134 (Gauss Lemma #1). Show that the product of primitive polynomials is primitive.

Definition 2.2. Two factorizations f = g1 . . . gk = h1 . . . h` are equivalent if k = ` and there exist
α1, . . . , αk ∈ Q such that hi = αigi.

Theorem 2.3 (Gauss Lemma #2). Let f ∈ Z[x] and f = g1 . . . gk be a factorization into polynomials
gi ∈ Q[x]. Then there is an equivalent factorization f = h1 . . . hk into polynomials hi ∈ Z[x].

Problem 135. Prove Theorem 2.3.

Theorem 2.4 (Schönemann-Eisenstein criterion). Let f ∈ Z[x], f = a0 + a1x+ · · ·+ anx
n. Suppose there

is a prime p such that p - an, p | a0, . . . , an−1, and p2 - a0. Then f is irreducible over Q.

Problem 136. Prove Theorem 2.4

Problem 137. Prove that x10 − 8 is irreducible.
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Definition 2.5. The nth cyclotomic polynomial is the polynomial

Φn(x) =
∏

ω a primitive nth root of unity

(x− ω).

Problem 138.
• Calculate Φn(x) for n ≤ 10.
• Prove that Φn(x) has integer coefficients.
• ∗ Prove that Φn(x) is irreducible.

Theorem 2.6. Φp(x) is irreducible.

Problem 139. Let A ∈Mn(Q). If fA(t) is irreducible over Q, then A is diagonalizable over C.

3. The Cayley-Hamilton Theorem

Definition 3.1. Let f ∈ F [x], A ∈ Mn(F ). If f(x) = a0 + a1x + · · · + akx
k, then we define f(A) =

a0I + a1A+ · · ·+ akA
k.

Theorem 3.2 (Cayley-Hamilton). For any A ∈Mn(A), fA(A) = 0.

Notation 3.3.

diag(r1, . . . , rn) =

r1 . . .
rn


Observation 3.4. Let ∗ denote either addition or multiplication. Then

(
diag(r1, . . . , rn)

)
∗
(

diag(s1, . . . , sn)
)

==
diag

(
r1 ∗ s1, . . . , rn ∗ sn

)
. In particular, diagonal matrices commute.

Corollary 3.5. Let f ∈ F [x]. Then f
(

diag(r1, . . . , rn)
)

= diag
(
f(r1), . . . , f(rn)

)
.

Corollary 3.6. The Cayley-Hamilton Theorem holds for diagonal matrices.

Observation 3.7. f(S−1AS) = S−1f(A)S, and hence if A ∼ B then f(A) ∼ f(B). Additionally, if A ∼ B,
fA(t) = fB(t).

Corollary 3.8. The Cayley-Hamilton theorem holds for all diagonalizable matrices.

Exercise 3.9. If Aj → A and Bj → B, then Aj +Bj → A+B and AjBj → AB.

Exercise 3.10. If Aj → A, then fAj
→ fA.

Exercise 3.11. If fj → f and Aj → A, then fj(Aj)→ f(A).

Corollary 3.12. The set of matrices for which the Cayley-Hamilton theorem holds is closed (in the topological
or analytic sense, i.e. closed under limits).

So to prove the Cayley-Hamilton Theorem for all complex matrices, it suffices to prove this:

Theorem 3.13. Diagonalizable matrices are dense in Mn(C), i.e. for all A ∈ Mn(C) there is a sequence
Aj in Mn(C) such that Aj → A and for all j, Aj is diagonalizable.

Actually something much stronger is true:

Problem 140. Almost all matrices in Mn(C) are diagonalizable. That is, the set of non-diagonalizable
matrices has Lebesgue measure zero.

We shall not use this result to prove Theorem 3.13. Instead, we will use the following result which is
important in its own right.

Theorem 3.14. For all A ∈Mn(C) there is an invertible S ∈Mn(C) such that S−1AS is upper triangular.

Problem 141. Prove Theorem 3.14.

Lemma 3.15. If A ∈Mn(C) and all eigenvalues of A are distinct, then A is diagonalizable.
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Observe that Lemma 3.15 combined with Theorem 3.14 prove that the diagonalizable matrices are dense
(Theorem 3.13) and therefore completes the proof of the Cayley-Hamilton Theorem for complex matrices
(except that we haven’t proved Theorem 3.14 yet).

Problem 142. Show that if the Cayley-Hamilton theorem holds over the integers, it holds over every
commutative ring with an identity element.

Problem 143.
• Show that if A,B ∈Mn(R), then AB −BA 6= I.
• Show the same is true over all fields of characteristic zero.
• Find a field for which this is not true.
• Find two linear transformations A and B of R[x] such that AB − BA = I. (In class I mistakenly

suggested trying the space `2(N); I thank Michael for pointing out that this choice does not work.)
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