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1. Hermitian dot product, unitary matrices

Problem 160. If A is a self-adjoint complex matrix, i. e., A = A∗, then all the complex eigenvalues of A
are real numbers.

Definition 1.1. The standard Hermitian dot product in Cn is a∗b =
∑n
i=1 āibi.

Definition 1.2. For a, b ∈ Cn we say that a ⊥ b if a∗b = 0.

Observation 1.3. (∀a ∈ Cn)(a ⊥ a iff a = 0).

Note: “iff” is shorthand for “if and only if.”

Definition 1.4. An orthonormal system in Cn is e1, e2, . . . , ek such that e∗i ej = δij , i. e., (∀i)(‖ei‖2 = 1)
and (∀i 6= j)(ei ⊥ ej).
Exercise 1.5. Every orthonormal system is linearly independent.

We often refer to the coordinates with respect to an orthonormal basis (ONB) e1, . . . , en as Fourier
coefficients, and the expression of a vector v as v =

∑n
i=1 αiei as the Fourier expansion.

Observation 1.6. The Fourier coefficients can be calculated using standard Hermitian dot product: αj =
e∗jv.

Observation 1.7. Cn has an orthonormal basis, namely, the standard basis (1, 0, · · · , 0)∗, (0, 1, 0, · · · , 0)∗, · · · , (0, · · · , 0, 1)∗.

Definition 1.8. A unitary matrix is a matrix of which the columns form an orthonormal basis of Cn.

Notation 1.9. U(n) denotes the set of unitary matrices, which is a subset of Mn(C).

Observation 1.10. Let A = [a1, · · · , an] where ai ∈ Cn, i = 1, · · · , n. A ∈ U(n) iff (∀i, j)(a∗i aj = δij) iff
A∗A = I.

Exercise 1.11. A ∈ U(n) iff the rows of A form an orthonormal basis of Cn.

Observation 1.12. Unitary matrices preserve dot product. In other words, if A ∈ U(n) then (∀u, v ∈
Cn)(u∗v = (Au)∗(Av).

Definition 1.13. A is unitarily similar to B (A ∼u B) if ∃S ∈ U(n) such that B = S−1AS = S∗AS.

Theorem 1.14. (∀A ∈ Cn×n)(∃ upper triangular T ∈Mn(C))(A ∼u T ).

Problem 161. Prove Theorem 1.14.

Theorem 1.15. Every orthonormal system can be extended to an orthonormal basis.

Exercise 1.16. Pick an eigenvalue λ of A ∈Mn(C) and let b1 be its normalized eigenvector. Extend b1 to an
orthonormal basis b1, · · · , bn by theorem 1.15. Let [b1, · · · , bn] := S ∈ U(n) and S−1AS = A′ = [a′1, · · · , a′n].
Prove that a′1 = (λ, 0, · · · , 0)t.

Exercise 1.17 (Multiplication of upper-triangular block matrices). Note: the diagonal blocks must be
square matrices, and the three matrices are identically partitioned. A11 A12 A13

0 A22 A23

0 0 A33

 ·
 B11 B12 B13

0 B22 B23

0 0 B33

 =

 C11 C12 C13

0 C22 C23

0 0 C33


where (∀i)(Cii = AiiBii).
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2. Normal Matrices, Orthogonal Matrices, Complex and Real Spectral Theorems

Definition 2.1. A ∈Mn(C) is normal if A∗A = AA∗.

Observation 2.2. Hermitian matrices (A∗ = A), unitary matrices (A∗ = A−1), and diagonal matrices are
all normal matrices.

Theorem 2.3 (Spectral Theorem’). Let A ∈ Mn(C). A is unitarily similar to a diagonal matrix (A is
unitarily diagonizable) iff A is normal.

Exercise 2.4. If A ∼u B and A is normal then B is also normal.

Problem 162. If a triangular matrix is normal, prove it is diagonal.

Problem 163. If A is unitary and λ is an eigenvalue of A, prove that |λ| = 1.

Problem 164. If A is normal, prove
(1) A is Hermitian iff all eigenvalues of A are real.
(2) A is unitary iff all eigenvalues of A have unit absolute value.

Observation 2.5. Theorem 2.3 is equivalent to saying that A is normal iff A has an orthonormal eigenbasis.

Theorem 2.6 (Real Spectral Theorem). If A ∈ Mn(R) and A is symmetric, i. e., A = At, then A has an
orthonormal eigenbasis (over R).

Definition 2.7. B ∈ Mn(R) is an orthogonal matrix if Bt = B−1, i. e., if the columns of B forms an
orthonormal basis. In other words, B is a real unitary matrix. O(n) denotes the set of orthogonal matrices;
so O(n) = Mn(R) ∩ U(n).

Definition 2.8. Let A,B ∈ Mn(R). A is orthogonally similar to B (A ∼o B) if there exists an orthogonal
matrix S ∈ O(n) such that B = StAS.

Problem 165. Let A ∈Mn(R). Prove that A is similar to a triangular matrix iff A is orthogonally similar
to a triangular matrix iff all (complex) eigenvalues of A are real.

Problem 166 (Real Spectral Theorem). Let A ∈Mn(R). Prove that A is orthogonally similar to diagonal
matrix iff A is symmetric (A = At).

Problem 167. Prove A is an orthogonal matrix iff A is orthogonally similar to a block-diagonal matrix of
the following form: each diagonal block is 1× 1 or 2× 2; the 1× 1 blocks are ±1; and the 2× 2 blcoks are

rotation matrices of the form
(

cos θ − sin θ
sin θ cos θ

)
,∀i = 1, · · · , n.

Definition 2.9. Let A be a real symmetric matrix, x ∈ Rn, x 6= 0. Then the Rayleigh quotient of A at x is
xtAx
xtx := R(x).

Observation 2.10. If x 6= 0 ∈ Rn then xtx 6= 0 ∈ R. So the Rayleigh quotient is well defined.

Problem 168. Let the eigenvalues of the real symmetric matrix A be λ1 ≥ λ2 ≥ · · · ≥ λn. Prove
λ1 = maxx∈R R(x) and λn = minx∈R R(x).

3. Real Euclidean Space, Gram-Schmidt Orthogonalization, Complex Hermitian Space

Definition 3.1. A vector space V over R with an inner product V ×V → R, a, b 7→ 〈a, b〉 is a real Euclidean
space if the inner product satisfies the following conditions

(1) (bilinear)
(a) 〈a1 + a2, b〉 = 〈a1, b〉+ 〈a2, b〉.
(b) 〈λa, b〉 = λ〈a, b〉.
(c) 〈a, b1 + b2〉 = 〈a, b1〉+ 〈a, b2〉.
(d) 〈a, λb〉 = λ〈a, b〉.

(2) (symmetric) 〈a, b〉 = 〈b, a〉
(3) (positive definite) 〈a, a〉 > 0 unless a = 0
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Definition 3.2. The standard inner product on Rn is defined as 〈a, b〉 = atb.

Definition 3.3. A real matrix B is positive definite if B = Bt and (∀x 6= 0)(xtBx > 0).

Observation 3.4. An inner product on Rn can be obtained in the form 〈a, b〉 = atBb where B is a positive
definite matrix.

Problem 169. B = Bt is a positive definite matrix iff all eigenvalues of B are positive.

Problem 170. B = Bt is a positive definite matrix iff all the corner determinants of B are positive, i. e.,
(∀k ≤ n)(det ((bij)i,j≤k) > 0.

Observation 3.5. For the set of continuous function on [0, 1], denoted by C[0, 1], we can define an inner
product 〈f, g〉 =

∫ 1

0
f(x)g(x)dx.

Observation 3.6. For the set of continuous functions on any finite or infinite interval I, a positive weight
function µ(x), I → R+, we can define an inner product 〈f, g〉 =

∫
I
f(x)g(x)µ(x)dx assuming (∀n)(

∫
I
x2nµ(x)dx) <

∞.

Problem 171. Prove that 1, cosx, sinx, cos 2x, sin 2x, · · · ∈ C[0, 2π] is an orthogonal system under the inner
product 〈f, g〉 =

∫ 2π

0
f(x)g(x)dx. Infer that these trig. functions are linearly independent.

Definition 3.7. The norm of a vector a in a real Euclidean space is
√
〈a, a〉 := ‖a‖.

Definition 3.8. We say that a, b are orthogonal (a ⊥ b) if 〈a, b〉 = 0.

Definition 3.9. Let V be a real Euclidean space. The (real) Gram-Schmidt Orthogonalization is a process
that converts the input v1, v2, · · · ∈ V to the output b1, b2, · · · ∈ V n such that

(1) (∀i 6= j)(bi ⊥ bj).
(2) (∀k)(span(v1, · · · , vk) = span(b1, · · · , bk). Let us denote this subspace by Vk.
(3) (∀k)(bk − vk ∈ Vk−1).

Theorem 3.10. ∀v1, v2, · · · , there exist unique b1, b2, · · · satisfying the conditions of the Gram-Schmidt
Orthogonalization.

Corollary 3.11. Any orthogonal system that does not contain 0 can be extended to orthogonal basis.

Observation 3.12. bk = 0 iff Vk = Vk−1 iff vk ∈ span(v1, . . . , vk−1).

Problem 172. During the Gram-Schmidt orthogonalization process, we have vk − bk =
∑k−1
j=1 αkjbj . Prove

that

αki =
〈bi, vk〉
‖bi‖2

,∀k = 1, 2, · · · , i = 1, · · · , k − 1
.

Definition 3.13. A complex Hermitian space is a vector space over C with inner product satisfying all the
properties of real Euclidean space with the modification

1(b)∗ 〈λa, b〉 = λ̄〈a, b〉.
2∗ 〈b, a〉 = 〈a, b〉.

Problem 173. State and prove the Gram-Schmidt orthogonalization theorem in complex Hermitian space
case.

Observation 3.14. In a real Euclidean space with orthonormal basis b1, · · · , bn, v =
∑n
i=1 αibi, w =∑n

i=1 βibi, then αi = 〈bi, v〉 and βi = 〈bi, w〉. Moreover, 〈v, w〉 =
∑n
i=1 αiβi = [α]t[β].

Corollary 3.15. If V is a Euclidean space, dimV = n, then V is isometric to Rn with standard dot product.
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