REU APPRENTICE CLASS \#16

INSTRUCTOR: LASZLO BABAI SCRIBE: BOWEI ZHENG

Tuesday, July 19, 2011

1. Hermitian dot product, unitary matrices

Problem 160. If A is a self-adjoint complex matrix, i.e., $A=A^{*}$, then all the complex eigenvalues of A are real numbers.

Definition 1.1. The standard Hermitian dot product in \mathbb{C}^{n} is $a^{*} b=\sum_{i=1}^{n} \bar{a}_{i} b_{i}$.
Definition 1.2. For $a, b \in \mathbb{C}^{n}$ we say that $a \perp b$ if $a^{*} b=0$.
Observation 1.3. $\left(\forall a \in \mathbb{C}^{n}\right)(a \perp a$ iff $a=0)$.
Note: "iff" is shorthand for "if and only if."
Definition 1.4. An orthonormal system in \mathbb{C}^{n} is $e_{1}, e_{2}, \ldots, e_{k}$ such that $e_{i}^{*} e_{j}=\delta_{i j}$, i.e., $(\forall i)\left(\left\|e_{i}\right\|^{2}=1\right)$ and $(\forall i \neq j)\left(e_{i} \perp e_{j}\right)$.
Exercise 1.5. Every orthonormal system is linearly independent.
We often refer to the coordinates with respect to an orthonormal basis (ONB) e_{1}, \ldots, e_{n} as Fourier coefficients, and the expression of a vector v as $v=\sum_{i=1}^{n} \alpha_{i} e_{i}$ as the Fourier expansion.
Observation 1.6. The Fourier coefficients can be calculated using standard Hermitian dot product: $\alpha_{j}=$ $e_{j}^{*} v$.
Observation 1.7. \mathbb{C}^{n} has an orthonormal basis, namely, the standard basis $(1,0, \cdots, 0)^{*},(0,1,0, \cdots, 0)^{*}, \cdots,(0, \cdots, 0,1$
Definition 1.8. A unitary matrix is a matrix of which the columns form an orthonormal basis of \mathbb{C}^{n}.
Notation 1.9. $U(n)$ denotes the set of unitary matrices, which is a subset of $M_{n}(\mathbb{C})$.
Observation 1.10. Let $A=\left[a_{1}, \cdots, a_{n}\right]$ where $a_{i} \in \mathbb{C}^{n}, i=1, \cdots, n . A \in U(n)$ iff $(\forall i, j)\left(a_{i}^{*} a_{j}=\delta_{i j}\right)$ iff $A^{*} A=I$.

Exercise 1.11. $A \in U(n)$ iff the rows of A form an orthonormal basis of \mathbb{C}^{n}.
Observation 1.12. Unitary matrices preserve dot product. In other words, if $A \in U(n)$ then $(\forall u, v \in$ $\left.\mathbb{C}^{n}\right)\left(u^{*} v=(A u)^{*}(A v)\right.$.
Definition 1.13. A is unitarily similar to $B\left(A \sim_{u} B\right)$ if $\exists S \in U(n)$ such that $B=S^{-1} A S=S^{*} A S$.
Theorem 1.14. $\left(\forall A \in \mathbb{C}_{n \times n}\right)\left(\exists\right.$ upper triangular $\left.T \in M_{n}(\mathbb{C})\right)\left(A \sim_{u} T\right)$.
Problem 161. Prove Theorem 1.14.
Theorem 1.15. Every orthonormal system can be extended to an orthonormal basis.
Exercise 1.16. Pick an eigenvalue λ of $A \in M_{n}(\mathbb{C})$ and let b_{1} be its normalized eigenvector. Extend b_{1} to an orthonormal basis b_{1}, \cdots, b_{n} by theorem 1.15. Let $\left[b_{1}, \cdots, b_{n}\right]:=S \in U(n)$ and $S^{-1} A S=A^{\prime}=\left[a_{1}^{\prime}, \cdots, a_{n}^{\prime}\right]$. Prove that $a_{1}^{\prime}=(\lambda, 0, \cdots, 0)^{t}$.
Exercise 1.17 (Multiplication of upper-triangular block matrices). Note: the diagonal blocks must be square matrices, and the three matrices are identically partitioned.

$$
\left(\begin{array}{ccc}
A_{11} & A_{12} & A_{13} \\
0 & A_{22} & A_{23} \\
0 & 0 & A_{33}
\end{array}\right) \cdot\left(\begin{array}{ccc}
B_{11} & B_{12} & B_{13} \\
0 & B_{22} & B_{23} \\
0 & 0 & B_{33}
\end{array}\right)=\left(\begin{array}{ccc}
C_{11} & C_{12} & C_{13} \\
0 & C_{22} & C_{23} \\
0 & 0 & C_{33}
\end{array}\right)
$$

where $(\forall i)\left(C_{i i}=A_{i i} B_{i i}\right)$.

2. Normal Matrices, Orthogonal Matrices, Complex and Real Spectral Theorems

Definition 2.1. $A \in M_{n}(\mathbb{C})$ is normal if $A^{*} A=A A^{*}$.
Observation 2.2. Hermitian matrices $\left(A^{*}=A\right)$, unitary matrices $\left(A^{*}=A^{-1}\right)$, and diagonal matrices are all normal matrices.

Theorem 2.3 (Spectral Theorem'). Let $A \in M_{n}(\mathbb{C})$. A is unitarily similar to a diagonal matrix (A is unitarily diagonizable) iff A is normal.

Exercise 2.4. If $A \sim_{u} B$ and A is normal then B is also normal.
Problem 162. If a triangular matrix is normal, prove it is diagonal.
Problem 163. If A is unitary and λ is an eigenvalue of A, prove that $|\lambda|=1$.
Problem 164. If A is normal, prove
(1) A is Hermitian iff all eigenvalues of A are real.
(2) A is unitary iff all eigenvalues of A have unit absolute value.

Observation 2.5. Theorem 2.3 is equivalent to saying that A is normal iff A has an orthonormal eigenbasis.
Theorem 2.6 (Real Spectral Theorem). If $A \in M_{n}(\mathbb{R})$ and A is symmetric, i.e., $A=A^{t}$, then A has an orthonormal eigenbasis (over \mathbb{R}).

Definition 2.7. $B \in M_{n}(\mathbb{R})$ is an orthogonal matrix if $B^{t}=B^{-1}$, i. e., if the columns of B forms an orthonormal basis. In other words, B is a real unitary matrix. $O(n)$ denotes the set of orthogonal matrices; so $O(n)=M_{n}(\mathbb{R}) \cap U(n)$.
Definition 2.8. Let $A, B \in M_{n}(\mathbb{R})$. A is orthogonally similar to $B\left(A \sim_{o} B\right)$ if there exists an orthogonal matrix $S \in O(n)$ such that $B=S^{t} A S$.

Problem 165. Let $A \in M_{n}(\mathbb{R})$. Prove that A is similar to a triangular matrix iff A is orthogonally similar to a triangular matrix iff all (complex) eigenvalues of A are real.
Problem 166 (Real Spectral Theorem). Let $A \in M_{n}(\mathbb{R})$. Prove that A is orthogonally similar to diagonal matrix iff A is symmetric ($A=A^{t}$).

Problem 167. Prove A is an orthogonal matrix iff A is orthogonally similar to a block-diagonal matrix of the following form: each diagonal block is 1×1 or 2×2; the 1×1 blocks are ± 1; and the 2×2 blcoks are rotation matrices of the form $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right), \forall i=1, \cdots, n$.

Definition 2.9. Let A be a real symmetric matrix, $x \in \mathbb{R}^{n}, x \neq 0$. Then the Rayleigh quotient of A at x is $\frac{x^{t} A x}{x^{t} x}:=R(x)$.
Observation 2.10. If $x \neq 0 \in \mathbb{R}^{n}$ then $x^{t} x \neq 0 \in \mathbb{R}$. So the Rayleigh quotient is well defined.
Problem 168. Let the eigenvalues of the real symmetric matrix A be $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Prove $\lambda_{1}=\max _{x \in \mathbb{R}} R(x)$ and $\lambda_{n}=\min _{x \in \mathbb{R}} R(x)$.

3. Real Euclidean Space, Gram-Schmidt Orthogonalization, Complex Hermitian Space

Definition 3.1. A vector space V over \mathbb{R} with an inner product $V \times V \rightarrow \mathbb{R}, a, b \mapsto\langle a, b\rangle$ is a real Euclidean space if the inner product satisfies the following conditions
(1) (bilinear)
(a) $\left\langle a_{1}+a_{2}, b\right\rangle=\left\langle a_{1}, b\right\rangle+\left\langle a_{2}, b\right\rangle$.
(b) $\langle\lambda a, b\rangle=\lambda\langle a, b\rangle$.
(c) $\left\langle a, b_{1}+b_{2}\right\rangle=\left\langle a, b_{1}\right\rangle+\left\langle a, b_{2}\right\rangle$.
(d) $\langle a, \lambda b\rangle=\lambda\langle a, b\rangle$.
(2) (symmetric) $\langle a, b\rangle=\langle b, a\rangle$
(3) (positive definite) $\langle a, a\rangle>0$ unless $a=0$

Definition 3.2. The standard inner product on \mathbb{R}^{n} is defined as $\langle a, b\rangle=a^{t} b$.
Definition 3.3. A real matrix B is positive definite if $B=B^{t}$ and $(\forall x \neq 0)\left(x^{t} B x>0\right)$.
Observation 3.4. An inner product on \mathbb{R}^{n} can be obtained in the form $\langle a, b\rangle=a^{t} B b$ where B is a positive definite matrix.

Problem 169. $B=B^{t}$ is a positive definite matrix iff all eigenvalues of B are positive.
Problem 170. $B=B^{t}$ is a positive definite matrix iff all the corner determinants of B are positive, i. e., $(\forall k \leq n)\left(\operatorname{det}\left(\left(b_{i j}\right)_{i, j \leq k}\right)>0\right.$.
Observation 3.5. For the set of continuous function on $[0,1]$, denoted by $C[0,1]$, we can define an inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$.
Observation 3.6. For the set of continuous functions on any finite or infinite interval I, a positive weight function $\mu(x), I \rightarrow \mathbb{R}^{+}$, we can define an inner product $\langle f, g\rangle=\int_{I} f(x) g(x) \mu(x) d x$ assuming $(\forall n)\left(\int_{I} x^{2 n} \mu(x) d x\right)<$ ∞.

Problem 171. Prove that $1, \cos x, \sin x, \cos 2 x, \sin 2 x, \cdots \in C[0,2 \pi]$ is an orthogonal system under the inner product $\langle f, g\rangle=\int_{0}^{2 \pi} f(x) g(x) d x$. Infer that these trig. functions are linearly independent.
Definition 3.7. The norm of a vector a in a real Euclidean space is $\sqrt{\langle a, a\rangle}:=\|a\|$.
Definition 3.8. We say that a, b are orthogonal $(a \perp b)$ if $\langle a, b\rangle=0$.
Definition 3.9. Let V be a real Euclidean space. The (real) Gram-Schmidt Orthogonalization is a process that converts the input $v_{1}, v_{2}, \cdots \in V$ to the output $b_{1}, b_{2}, \cdots \in V n$ such that
(1) $(\forall i \neq j)\left(b_{i} \perp b_{j}\right)$.
(2) $(\forall k)\left(\operatorname{span}\left(v_{1}, \cdots, v_{k}\right)=\operatorname{span}\left(b_{1}, \cdots, b_{k}\right)\right.$. Let us denote this subspace by V_{k}.
(3) $(\forall k)\left(b_{k}-v_{k} \in V_{k-1}\right)$.

Theorem 3.10. $\forall v_{1}, v_{2}, \cdots$, there exist unique b_{1}, b_{2}, \cdots satisfying the conditions of the Gram-Schmidt Orthogonalization.

Corollary 3.11. Any orthogonal system that does not contain 0 can be extended to orthogonal basis.
Observation 3.12. $b_{k}=0$ iff $V_{k}=V_{k-1}$ iff $v_{k} \in \operatorname{span}\left(v_{1}, \ldots, v_{k-1}\right)$.
Problem 172. During the Gram-Schmidt orthogonalization process, we have $v_{k}-b_{k}=\sum_{j=1}^{k-1} \alpha_{k j} b_{j}$. Prove that

$$
\alpha_{k i}=\frac{\left\langle b_{i}, v_{k}\right\rangle}{\left\|b_{i}\right\|^{2}}, \forall k=1,2, \cdots, i=1, \cdots, k-1
$$

Definition 3.13. A complex Hermitian space is a vector space over \mathbb{C} with inner product satisfying all the properties of real Euclidean space with the modification

$$
\begin{aligned}
1(b)^{*} & \langle\lambda a, b\rangle=\bar{\lambda}\langle a, b\rangle . \\
2^{*} & \langle b, a\rangle=\overline{\langle a, b\rangle} .
\end{aligned}
$$

Problem 173. State and prove the Gram-Schmidt orthogonalization theorem in complex Hermitian space case.

Observation 3.14. In a real Euclidean space with orthonormal basis $b_{1}, \cdots, b_{n}, v=\sum_{i=1}^{n} \alpha_{i} b_{i}, w=$ $\sum_{i=1}^{n} \beta_{i} b_{i}$, then $\alpha_{i}=\left\langle b_{i}, v\right\rangle$ and $\beta_{i}=\left\langle b_{i}, w\right\rangle$. Moreover, $\langle v, w\rangle=\sum_{i=1}^{n} \alpha_{i} \beta_{i}=[\alpha]^{t}[\beta]$.
Corollary 3.15. If V is a Euclidean space, $\operatorname{dim} V=n$, then V is isometric to \mathbb{R}^{n} with standard dot product.

