REU APPRENTICE CLASS \#17

INSTRUCTOR: LÁSZLÓ BABAI
SCRIBE: ASILATA BAPAT

Wednesday, July 20, 2011

1. Problem solutions

Today we discussed problems 113,142 , 143(a), 162, 163, 168, 169.
Problem 113. (Presented by Zihao)
Let v_{1}, \ldots, v_{m} be eigenvectors of a matrix A with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$. Suppose that the vectors are linearly dependent, and let k be the smallest integer such that $v_{k} \in \operatorname{Span}\left\{v_{1}, \ldots, v_{k-1}\right\}$. Then we can write the following equation:

$$
v_{k}=\alpha_{1} v_{1}+\cdots+\alpha_{k-1} v_{k-1},
$$

for some scalars $\alpha_{1}, \ldots, \alpha_{k-1}$.
Now apply the matrix A to the preceding equation, and also multiply the equation by λ_{k} to obtain the following equations:

$$
\begin{aligned}
& \lambda_{k} v_{k}=\alpha_{1} \lambda_{1} v_{1}+\cdots+\alpha_{k-1} \lambda_{k-1} v_{k-1}, \\
& \lambda_{k} v_{k}=\alpha_{1} \lambda_{k} v_{1}+\cdots+\alpha_{k-1} \lambda_{k} v_{k-1} .
\end{aligned}
$$

Subtracting these two equations, we see that

$$
0=\alpha_{1}\left(\lambda_{1}-\lambda_{k}\right) v_{1}+\cdots+\alpha_{k-1}\left(\lambda_{k-1}-\lambda_{k}\right) v_{k-1}
$$

Since v_{1}, \ldots, v_{k-1} are linearly independent, it follows that $\alpha_{i}\left(\lambda_{i}-\lambda_{k}\right)=0$ for every $i<k$. However, $\lambda_{i} \neq \lambda_{k}$ for $i<k$. This means that $\alpha_{i}=0$ for all $i<k$.

Since $v_{k}=\sum_{i=1}^{k-1} \alpha_{i} v_{i}$, we have $v_{k}=0$. However, v_{k} was an eigenvector, so v_{k} cannot be zero. This is a contradiction.

Problem 142. Recall that the Cayley-Hamiton theorem says that an $n \times n$ matrix A satisfies its own characteristic polynomial f_{A}.

Consider A to be a matrix of variables, that is $A=\left(x_{i j}\right)$. Then the equation $f_{A}(A)=0$ is equivalent to a certain system of n^{2} identities in the variables $x_{i j}$.

Let us compute an example, namely the 2×2 case. In this case, the characteristic polynomial is the following:

$$
f_{A}(t)=\left(t-x_{11}\right)\left(t-x_{22}\right)-x_{12} x_{21}=t^{2}-\left(x_{11}+x_{22}\right) t+x_{11} x_{22}-x_{12} x_{21} .
$$

Plugging in the matrix A, we see that

$$
A^{2}-\left(x_{11}+x_{12}\right) A+\left(x_{11} x_{22}-x_{12} x_{21}\right) I=0 .
$$

Let us compute the entries of the left hand side of this equation (which is a 2×2 matrix of multivariate polynomials). We see that

$$
A^{2}=\left(\begin{array}{cc}
x_{11}^{2}+x_{12} x_{21} & x_{11} x_{12}+x_{12} x_{22} \\
x_{21} x_{11}+x_{22} x_{21} & x_{21} x_{12}+x_{22}^{2}
\end{array}\right) .
$$

Computing out the entries of the polynomial, we see that the top right entry is

$$
\left(x_{11} x_{12}+x_{12} x_{22}\right)-\left(x_{11}+x_{22}\right) x_{12},
$$

which is formally zero (all terms cancel).
The top left entry becomes

$$
x_{11}^{2}+x_{12} x_{21}-\left(x_{11}+x_{22}\right) x_{11}+\left(x_{11} x_{22}-x_{12} x_{21}\right)
$$

which is also formally zero.
We know that if a degree- n polynomial of one variable vanishes at more than n places, then it is the zero polynomial. If we can prove a similar result for multivariate polynomials, then it will follow that the n^{2} identities that we get from $f_{A}(A)$ are formal identities (all terms cancel). (Refer to problem 176 for this result.)

Assuming the result of Problem 176, we see that the n^{2} identities are formal identities in the ring $\mathbb{Z}\left[x_{11}, \ldots, x_{n n}\right]$.

Since the obvious map $\mathbb{Z}\left[x_{11}, \ldots, x_{n n}\right] \rightarrow \mathbb{F}_{q}\left[x_{11}, \ldots, x_{n n}\right]$ is a homomorphism, the formal identities on the left map to formal identities on the right. Therefore, once we know that the Cayley-Hamiton theorem is true over the integers (which we know because we proved it over the complex numbers), we have also proved it over \mathbb{F}_{q}. In fact, the same is true if we replace \mathbb{F}_{q} by any commutative ring with identity.

Problem 143. (Jenny)

- Find the traces of both sides. We know that $\operatorname{Tr}(A B-B A)=\operatorname{Tr}(A B)-\operatorname{Tr}(B A)=0$. However, $\operatorname{Tr}(I) \neq 0$ in characteristic zero.

Problem 162. Recall that an $n \times n$ complex matrix A is called normal if $A A^{*}=A^{*} A$. Recall from the complex spectral theorem that a matrix A is normal if and only if it is unitarily similar to a diagonal matrix.

Suppose that $A=\left(\alpha_{i j}\right)$ is an $n \times n$ normal triangular matrix. We will compute the top-left corner element of each of the two products $A^{*} A$ and $A A^{*}$ (which are supposed to be equal).

Let $A A^{*}=A^{*} A=\left(c_{i j}\right)$. If the columns of A are denoted by \underline{a}_{i}, then we evaluate $A^{*} A$ to get the following:

$$
c_{11}=\underline{a}_{1}^{*} \underline{a}_{1}=\left\|\underline{a}_{1}\right\|^{2}=\sum_{i=1}^{n}\left|\alpha_{i 1}\right|^{2} .
$$

However, $\alpha_{i 1}=0$ if $i>1$. Therefore $c_{11}=\left|\alpha_{11}\right|^{2}$.
Now we compute the same quantity using $A A^{*}$. Let $\underline{r}_{1}, \ldots, \underline{r}_{n}$ be the rows of A. Therefore we get

$$
c_{11}=\underline{r}_{1}^{*} \underline{r}_{1}=\left\|\underline{r}_{1}\right\|^{2}=\sum_{j=1}^{n}\left|\alpha_{1 j}\right|^{2} .
$$

Setting the two computed values of c_{11} to be equal, we see that $\alpha_{1 j}=0$ for all $j>1$, so α_{11} is the only nonzero entry in the first row. Now use induction to finish the proof.

Problem 163. Suppose that A is a unitary matrix with eigenvalue λ. This means that there is a nonzero vector v such that $A v=\lambda v$. Taking conjugate transposes, we see that

$$
v^{*} A^{*}=(A v)^{*}=\bar{\lambda} v^{*}
$$

Now consider the product $\left(v^{*} A^{*}\right)(A v)$:

$$
v^{*} A^{*} A v=v^{*} I v=v^{*} v=\bar{\lambda} \lambda \cdot v^{*} v
$$

Observe that $\bar{\lambda} \lambda=|\lambda|^{2}$. Also, $v^{*} v=\|v\|^{2}$, and this is a positive real number since $v \neq 0$. Dividing by this quantity on both sides, we see that $|\lambda|^{2}=1$.
Problem 168. (Presented by Nathan)
The Rayleigh quotient for a nonzero vector x is defined by $R_{A}(x)=\left(x^{t} A x\right) /\left(x^{t} x\right)$.
First let A be a diagonal matrix:

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

Then the Rayleigh quotient of this matrix A is

$$
R_{A}(x)=\frac{\sum_{i} \lambda_{i} x_{i}^{2}}{\sum_{i} x_{i}^{2}}
$$

Suppose that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.

We will first show that the maximum value of $R_{A}(x)$ is equal to λ_{1}. Observe that if $x=(1,0, \ldots, 0)$, then $R_{A}(x)=\lambda_{1}$. However, $\sum_{i} \lambda_{i} x_{i}^{2} \leq \sum_{i} \lambda_{1} x_{i}^{2}$, so $R_{A}(x) \leq \lambda_{1}$. This proves that the maximum value of $R_{A}(x)$ is exactly λ_{1}. A very similar argument works to show that the minimum value of $R_{A}(x)$ is equal to λ_{n}.

To finish the proof for a general real symmetric matrix A, observe that by the spectral theorem, A has an orthonormal eigenbasis, say e_{1}, \ldots, e_{n} with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$ respectively.

Let x be a nonzero vector. Write x as a linear combination of the e_{i} as follows: $x=\sum_{i} \alpha_{i} e_{i}$. Then

$$
\begin{aligned}
x^{t} x & =\sum_{i} \alpha_{i}^{2} \\
x^{t} A x & =x^{t}\left(\sum_{i} \alpha_{i} A e_{i}\right)=\left(\sum_{i} \alpha_{i} e_{i}^{t}\right)\left(\sum_{j} \alpha_{j} \lambda_{j} e_{j}\right) \\
& =\sum_{i} \lambda_{i} \alpha_{i}^{2} .
\end{aligned}
$$

Now it is clear that the same proof as before works.
Problem 169. (Presented by Hannah)
Recall that a matrix B is called positive definite if B is symmetric and if $x^{t} B x>0$ for all non-zero vectors x.

Let B be a positive-definite (real symmetric) matrix. Let λ be an eigenvalue of B. Then there is an eigenvector v with eigenvalue λ. So $B v=\lambda v$, and therefore $v^{t} B v=v^{t} \lambda v=\lambda\|v\|^{2}$. Since $v^{t} B v>0$, and $\|v\|^{2}>0$, we see that $\lambda>0$.

Now suppose that B is an $n \times n$ real symmetric matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Suppose that $\lambda_{i}>0$ for all i. We will show that B is positive definite.

Using the spectral theorem for real symmetric matrices, we know that B has an orthonormal eigenbasis, say v_{1}, \ldots, v_{n}, such that $B v_{i}=\lambda_{i} v_{i}$ for every i. Let x be some nonzero vector. Now write x as a linear combination of the v_{i}, that is, $x=\sum_{i=1}^{n} \alpha_{i} v_{i}$. Therefore $x^{t}=\sum_{j=1}^{n} \alpha_{j} v_{j}^{t}$. Therefore

$$
\begin{aligned}
x^{t} B x & =\left(\sum_{i=1}^{n} \alpha_{i} v_{i}^{t}\right) B\left(\sum_{j=1}^{n} \alpha_{j} v_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} v_{i}^{t} B v_{j} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \lambda_{j} v_{i}^{t} v_{j} .
\end{aligned}
$$

However, $v_{i}^{t} v_{j}=\delta_{i j}$. Therefore we see that

$$
x^{t} B x=\sum_{i=1}^{n} \alpha_{i}^{2} \lambda_{i} .
$$

Observe that every term is nonnegative, but at least one of the α_{i} is nonzero since $x \neq 0$. Therefore $x^{t} B x>0$.

2. New problems

Problem 175. Show that the set $U(n)=\left\{A \in M_{n}(\mathbb{C}) \mid A A^{*}=I\right\}$ of unitary matrices forms a group.
Problem 176. Suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ is a multivariate polynomial over a field F such that the degree of f is at most d in each variable. (E.g., the polynomial $x^{3} y^{3} z^{2}+7 x y z^{3}$ satisfies the degree bound $d=3$.) Let $\alpha_{0}, \ldots, \alpha_{d}$ be distinct elements of the field. Suppose that for every substitution of values $\beta_{i} \in\left\{\alpha_{0}, \ldots, \alpha_{d}\right\}$ we have $f\left(\beta_{1}, \ldots, \beta_{n}\right)=0$. Then $f=0$ (as a formal polynomial, i.e., all coefficients are zero.)
(Hint: Use induction on the number of variables.)
Problem 177. Show that in \mathbb{R}^{3}, every sense-preserving (orientation-preserving) congruence that fixes a point is a rotation.

