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1. Adjacency matrix, eigenvalues of undirected graphs

Problem 178. Let A,B ∈Mn(C). Assume AB = BA. Prove that they have a common eigenvector.

Problem 179. Let A,B ∈ Mn(R), A = At, B = Bt and AB = BA. Prove that they have a common
orthonormal eigenbasis.

Exercise 1.1. Suppose f(x) = x4 + ax3 + bx2 + cx+ 15 with integer coefficients, i. e., a, b, c ∈ Z. Suppose
k ∈ Z is a root of f(x), i. e., f(k) = 0. What values could k be? Narrow down the possibilities to a finite
number of cases, independent of a, b, c.

Problem 180. Suppose f(x), g(x) ∈ Z[x] and g(x) has leading coefficient 1. Prove the division f(x) =
g(x)q(x) + r(x) has integer coefficients quotient and remainder, i. e., q(x), r(x) ∈ Z[x].

Recall: If A ∈Mn(C) and λi are its eigenvalues then we have
∑

i λi = TrA and
∏

i λi = detA.

Definition 1.2. The adjacency matrix A = (aij)n×n of an undirected graph G with vertex set {1, . . . , n} is
the n× n matrix with ai,j = 1 if i and j are adjacent and 0 otherwise.

Observation 1.3. The complete graph on n vertices, denoted by Kn, has
(
n
2

)
edges.

Observation 1.4. Given n vertices, there are 2(n
2) different possible graphs on these n vertices.

Observation 1.5. An undirected graph on n vertices has symmetric adjacency matrix and thus diagonal-
izable with n real eigenvalues, denoted by λ1 ≥ · · · ≥ λn.

Problem 181. Prove that 1
n

∑n
i=1 d(i) ≤ λ1 ≤ maxi d(i), where d(i) denotes the degree of vertex i.

Notation 1.6. AG denotes the adjacency matrix of the graph G and fG := fAG
denotes the characteristic

polynomial of the adjacency matrix AG.

Exercise 1.7. If G,H are isomorphic graphs, then AG is similar to AH . In particular, fG = fH .

Observation 1.8.

AKn
=


0 1 · · · 1

1 0
. . .

...
...

. . . . . . 1
1 · · · 1 0

 = Jn − In,

where

Jn =

 1 · · · 1
...

. . .
...

1 · · · 1


Observation 1.9. Suppose an n × n matrix A has eigenvalues λ1, . . . , λn (listed with multiplicity), then
the matrix A− I has eigenvalues λ1 − 1, · · · , λn − 1 with the same multiplicity for each eigenvalue of to A.

Observation 1.10. Jn has n − 1 dimensional null space and thus has eigenvalue 0 with (geometric) mul-
tiplicity n − 1. The remaining eigenvalue is n, using the trace of Jn. Hence, fJn

(t) = tn−1(t − n) and thus
fKn

(t) = (t+ 1)n−1(t+ 1− n).
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Problem 182. Suppose A has eigenvalues λ1, · · · , λn. Prove that aA + bI has eigenvalues aλi + b with
corresponding multiplicities.

Observation 1.11. Suppose B =


a b · · · b

b a
. . .

...
...

. . . . . . b
b · · · b a

 = bJn + (a − b)In, then B has eigenvalue a − b

with multiplicity n − 1 and another eigenvalue (n − 1)b + a with multiplicity 1. Hence, fB(t) = (t − (a −
b))n−1(t− (n− 1)b− a).

Observation 1.12. If G is a regular graph of degree r (every vertex has degree r), then r is an eigenvalue
with eigenvector (1, . . . , 1)t.

Problem 183. Assume A is a nonnegative matrix with a positive eigenvector x (all coordinates of x are
positive) with eigenvalue λ, i. e., x 6= 0 and Ax = λx. Prove (∀ eigenvalue µ )(|µ| ≤ λ).

Exercise 1.13. If a nonnegative symmetric matrix has a positive eigenvector, then all eigenvectors corre-
sponding to other eigenvalues have some negative coordinates.

Exercise 1.14. If x is a nonnegative eigenvector of the connected graph G then x is strictly positive.

Problem 184. Suppose an undirected graph has sorted eigenvalues λ1 ≥ · · · ≥ λn. Prove
(1) (∀i)(|λi| ≤ λ1)
(2) If the graph G is connected, then (∀i ≥ 2)(λi < λ1)
(3) If the graph G is connected, then |λn| = λ1 iff G is bipartite.
(4) If G is a bipartite graph, then (∀i)(λi = −λn−i+1).

Problem 185. Let g ∈ C[x] and A ∈Mn(C). Assume A has eigenvalues λ1, · · · , λn (listed with multiplicity,
i. e., fA(t) = Πn

i=1(t − λi)). Prove that the eigenvalues of g(A) are g(λ1), · · · , g(λn) (again, listed with
multiplicity).

Recall that we proved before, if a regular G with degree r has girth at least 5, then n ≥ r2 + 1. For such
graph, if a and b are two vertices that are not connected, then they share a unique common neighbor. Next
we have this amazing theorem.

Theorem 1.15 (Hoffman-Singleton). If a regular graph of degree r ≥ 1 has girth at least 5 and n = r2 + 1,
then we can only have r = {1, 2, 3, 7, 57}

Observation 1.16. K2 represents r = 1. C5 is the example for r = 2. Petersen’s graph demonstrates the
case r = 3. The “Hoffman – Singleton graph” shows r = 7 is possible. No example has been found for the
case r = 51. It remains open.
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