REU APPRENTICE CLASS \#18

INSTRUCTOR: LÁSZLÓ BABAI SCRIBE: BOWEI ZHENG

Thursday, July 21, 2011

1. Adjacency matrix, eigenvalues of undirected graphs

Problem 178. Let $A, B \in M_{n}(\mathbb{C})$. Assume $A B=B A$. Prove that they have a common eigenvector.
Problem 179. Let $A, B \in M_{n}(\mathbb{R}), A=A^{t}, B=B^{t}$ and $A B=B A$. Prove that they have a common orthonormal eigenbasis.

Exercise 1.1. Suppose $f(x)=x^{4}+a x^{3}+b x^{2}+c x+15$ with integer coefficients, i. e., $a, b, c \in \mathbb{Z}$. Suppose $k \in \mathbb{Z}$ is a root of $f(x)$, i.e., $f(k)=0$. What values could k be? Narrow down the possibilities to a finite number of cases, independent of a, b, c.

Problem 180. Suppose $f(x), g(x) \in \mathbb{Z}[x]$ and $g(x)$ has leading coefficient 1. Prove the division $f(x)=$ $g(x) q(x)+r(x)$ has integer coefficients quotient and remainder, i. e., $q(x), r(x) \in \mathbb{Z}[x]$.
Recall: If $A \in M_{n}(\mathbb{C})$ and λ_{i} are its eigenvalues then we have $\sum_{i} \lambda_{i}=\operatorname{Tr} A$ and $\prod_{i} \lambda_{i}=\operatorname{det} A$.
Definition 1.2. The adjacency matrix $A=\left(a_{i j}\right)_{n \times n}$ of an undirected graph G with vertex set $\{1, \ldots, n\}$ is the $n \times n$ matrix with $a_{i, j}=1$ if i and j are adjacent and 0 otherwise.
Observation 1.3. The complete graph on n vertices, denoted by K_{n}, has $\binom{n}{2}$ edges.
Observation 1.4. Given n vertices, there are $2\binom{n}{2}$ different possible graphs on these n vertices.
Observation 1.5. An undirected graph on n vertices has symmetric adjacency matrix and thus diagonalizable with n real eigenvalues, denoted by $\lambda_{1} \geq \cdots \geq \lambda_{n}$.

Problem 181. Prove that $\frac{1}{n} \sum_{i=1}^{n} d(i) \leq \lambda_{1} \leq \max _{i} d(i)$, where $d(i)$ denotes the degree of vertex i.
Notation 1.6. A_{G} denotes the adjacency matrix of the graph G and $f_{G}:=f_{A_{G}}$ denotes the characteristic polynomial of the adjacency matrix A_{G}.

Exercise 1.7. If G, H are isomorphic graphs, then A_{G} is similar to A_{H}. In particular, $f_{G}=f_{H}$.
Observation 1.8.

$$
A_{K_{n}}=\left(\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
1 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 0
\end{array}\right)=J_{n}-I_{n}
$$

where

$$
J_{n}=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right)
$$

Observation 1.9. Suppose an $n \times n$ matrix A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (listed with multiplicity), then the matrix $A-I$ has eigenvalues $\lambda_{1}-1, \cdots, \lambda_{n}-1$ with the same multiplicity for each eigenvalue of to A.

Observation 1.10. J_{n} has $n-1$ dimensional null space and thus has eigenvalue 0 with (geometric) multiplicity $n-1$. The remaining eigenvalue is n, using the trace of J_{n}. Hence, $f_{J_{n}}(t)=t^{n-1}(t-n)$ and thus $f_{K_{n}}(t)=(t+1)^{n-1}(t+1-n)$.

Problem 182. Suppose A has eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$. Prove that $a A+b I$ has eigenvalues $a \lambda_{i}+b$ with corresponding multiplicities.
Observation 1.11. Suppose $B=\left(\begin{array}{cccc}a & b & \cdots & b \\ b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a\end{array}\right)=b J_{n}+(a-b) I_{n}$, then B has eigenvalue $a-b$ with multiplicity $n-1$ and another eigenvalue $(n-1) b+a$ with multiplicity 1 . Hence, $f_{B}(t)=(t-(a-$ b) $)^{n-1}(t-(n-1) b-a)$.

Observation 1.12. If G is a regular graph of degree r (every vertex has degree r), then r is an eigenvalue with eigenvector $(1, \ldots, 1)^{t}$.

Problem 183. Assume A is a nonnegative matrix with a positive eigenvector x (all coordinates of x are positive) with eigenvalue λ, i. e., $x \neq 0$ and $A x=\lambda x$. Prove (\forall eigenvalue $\mu)(|\mu| \leq \lambda)$.
Exercise 1.13. If a nonnegative symmetric matrix has a positive eigenvector, then all eigenvectors corresponding to other eigenvalues have some negative coordinates.

Exercise 1.14. If x is a nonnegative eigenvector of the connected graph G then x is strictly positive.
Problem 184. Suppose an undirected graph has sorted eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Prove
(1) $(\forall i)\left(\left|\lambda_{i}\right| \leq \lambda_{1}\right)$
(2) If the graph G is connected, then $(\forall i \geq 2)\left(\lambda_{i}<\lambda_{1}\right)$
(3) If the graph G is connected, then $\left|\lambda_{n}\right|=\lambda_{1}$ iff G is bipartite.
(4) If G is a bipartite graph, then $(\forall i)\left(\lambda_{i}=-\lambda_{n-i+1}\right)$.

Problem 185. Let $g \in \mathbb{C}[x]$ and $A \in M_{n}(\mathbb{C})$. Assume A has eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ (listed with multiplicity, i. e., $f_{A}(t)=\Pi_{i=1}^{n}\left(t-\lambda_{i}\right)$). Prove that the eigenvalues of $g(A)$ are $g\left(\lambda_{1}\right), \cdots, g\left(\lambda_{n}\right)$ (again, listed with multiplicity).

Recall that we proved before, if a regular G with degree r has girth at least 5 , then $n \geq r^{2}+1$. For such graph, if a and b are two vertices that are not connected, then they share a unique common neighbor. Next we have this amazing theorem.

Theorem 1.15 (Hoffman-Singleton). If a regular graph of degree $r \geq 1$ has girth at least 5 and $n=r^{2}+1$, then we can only have $r=\{1,2,3,7,57\}$
Observation 1.16. K_{2} represents $r=1 . C_{5}$ is the example for $r=2$. Petersen's graph demonstrates the case $r=3$. The "Hoffman - Singleton graph" shows $r=7$ is possible. No example has been found for the case $r=51$. It remains open.

