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1. GRAM MATRIX, VOLUME

Definition 1.1. Let vy,...,v; be k vectors in a Euclidean space. The Gram matriz of these k vectors,
denoted by G(v1,...,vx), is the k x k matrix ((vi,v;))kxk. The Gram determinant is the determinant of the
Gram matrix.

Exercise 1.2. det G(v1,...,vx) =0 iff vq,..., v are linearly dependent.

Problem 186. Prove that the Gram matrix of a list of vectors is always positive semidefinite. Moreover,
prove that the Gram matrix is positive definite iff the list of vectors is linearly independent.

Problem 187. Prove that det G(vy,...,vx) = Volg(vy,...,v)? where Vol denotes the k-dimensional
volume.

Observation 1.3. If (Vi # j)(v; L v;), then Volg(v1,...,v) = Hf:1||vz|| and G(vy, . ..,v) = diag(|lv1]]?, . . ., [|vk|[?).
This solves Problem for the case when the vectors are orthogonal. To prove the general case, solve the
following exercise.

Exercise 1.4. Prove: Gram-Schmidt orthogonalization does not change the Gram determinant.

2. COUNTING SPANNING TREES OF A GRAPH

Definition 2.1. A spanning tree of a graph with n vertices is a subgraph which is a tree that contains all
n vertices.

Exercise 2.2. Every connected graph has a spanning tree. Every spanning tree of a graph with n vertices
has n — 1 edges.

Observation 2.3. Let NNV; denote the number of different spanning tree of the complete graph K;. We have
Ny =1,Ny=1,N3 =3,y :4’/24-4: 16, N5 = 125, . ...

Theorem 2.4 (Cayley). The number of spanning trees of the complete graph K, is n™ 2.

Definition 2.5. The Laplacian of a graph G, denoted by L¢, is defined as D — A where D¢ is the diagonal
matrix diag(deg(1),. .., deg(n)) with the degrees of the nodes on the diagonal and A¢ is the adjacency matrix
of the graph G.

Exercise 2.6. det Lg = 0.

Problem 188. (1) Prove that all cofactors of Lg are equal.
(2) * (Matrix-Tree Theorem, Kirchhoff 1848) Each cofactor of Lg equals the number of spanning trees
of G.

(3) Infer Cayley’s formula from the Matrix-tree Theorem.

A proof of the Matrix-Tree Theorem can be found in the |June 30 lecture notes of the instructor’s 2005
REU]| course on the Abelian Sandpile Model.


http://people.cs.uchicago.edu/~laci/REU05/notes/Jun30/7.pdf
http://people.cs.uchicago.edu/~laci/REU05
http://people.cs.uchicago.edu/~laci/REU05

3. FINITE MARKOV CHAINS, MIXING RATE, EIGENVALUE GAP

Suppose we have n states. Let X; denote the particle’s location among {1,...,n} at time ¢. Define
pij = P (Xpp1 = | Xy =1).

Exercise 3.1 (t-step transition probabilities). Let pg)) =P(Xpys=1i| Xy =73). Then Tt = (pg))nxn.

Definition 3.2. The transition matriz T is the n x n matrix (pi;)nxn-

Definition 3.3. The distribution of a particle’s location at time line ¢, denoted by ¢; = (g1, . . ., qtn) Where
qti = P(Xt = 7,)

Observation 3.4. ¢ > 0, Z?:l qi = 1.

Observation 3.5. For a transition matrix 7' = (p;;), we have p;; > 0 and (Vi)(zgzl pi; = 1) (all row sums
are zero). Such matrix is called a stochastic matriz.

Exercise 3.6. Prove: if A, B are stochastic matrices then AB is also a stochastic matrix.

Observation 3.7 (Evolution of the Markov Chain). ¢:11 = ¢:T by the “theorem of complete probability”
(a property of conditional probabilities). Hence q; = qoT".

Definition 3.8. The distribution q is stationary if ¢ = ¢T, i.e., q is a left eigenvector to eigenvalue 1.

Problem 189. Prove: for the simple random walk on a connected graph, the stationary probability of node
i is proportional to its degree deg(i).

Exercise 3.9. The right eigenvalues of a matrix are exactly the same as left eigenvalues of the same matrix.
(However, the eigenvectors may differ.)

Theorem 3.10 (Perron-Frobenius). Suppose A € M, (R) is a positive matriz, i.e., (Vi,j)(ai; > 0). Then
there exists a positive eigenvector.

Problem 190. (a) Prove the Perron-Frobenius Theorem.
(b) Use the Perron-Frobenius Theorem to prove that every Markov Chain has a stationary distribution.

Notation 3.11 (Transition digraph). Let Gt denote the digraph of possible transitions. The vertices of the
digraph correspond to the states of the Markoov Chain; and there is ¢ — j an edge (arrow) p;; # 0.

Definition 3.12. A Markov chain is called ergodic if G is strongly connected and aperiodic, i. e., the period
of the digraph (ged of the lengths of all closed walks) equals 1.

Problem 191 (Mixing of ergodic Markov Chains). If a Markov chain is ergodic, then the limit
limy oo Tt = L exists.

Exercise 3.13. If the limit matrix L exists then every row of L is a stationary distribution. If the Markov
Chain is ergodic then the stationary distribution is unique and therefore all rows of L are identical.

The convergence to L is called “mixing;” and the rate of convergence the “mixing rate” of the Markov
Chain. The mixing rate is a major current subject of study.

Let pug = 1, po, . . . pir, be the (in general, complex) eigenvalues of the transition matrix of a Markov Chain.
Under fairly general circumstances, the rate of convergence to stationary distribution is controlled by the gap
between py = 1 and max{|us|, ..., |un|}, referred to as the eigenvalue gap. Theorem below formalizes
this general phenomenon for the case of the simple random walk on an r-regular graph. Note that in this
case p; = \;/r where J); is the i-th eigenvalue of the adjacency matrix of the graph.

Observation 3.14. For a connected regular graph of degree r the transition matrix of the simple random
walk is T' = %A where A is the adjacency matrix.

Notation 3.15. Let A be the adjacency matrix of a connected regular graph of degree r. Let A have

eigenvalues A\ =r > -+ > A,,. Let XA := max{|\a],..., ||}
Exercise 3.16. We know that » > \. Prove that » = X if and only if either G is disconnected (in this case,
A2 = r, or G is bipartite (in this case, A,, = —\3). These are precisely the cases when our random walk is

not ergodic. In all other cases, A < r.



Theorem 3.17 (Mixing of simple random walk on a regular graph). Let G be a regular graph of degree r

with eigenvalues Ay = r > Ag > -+ > A\,. Let A = max{|Xza|,..., | \n|}. For the simple random walk on a
reqular graph of degree r we have |pl(;) — %| < (%)t

Problem 192. Use the Spectral Theorem to prove Theorem [3.17]
(The proof was given in class.)

Definition 3.18 (Operator norm). Suppose A € M,,(R). Then

A
14]] = max 1421
70 ||z
Observation 3.19. By definition, ||Az| < ||A]|||lz].
Problem 193 (Operator norm). (a) If A = A?, prove ||A|| = max {|\1],..., [ |}

(b) Prove (VA)(|All = v/ Amax (AT A)).

Exercise 3.20 (Cauchy-Schwarz). Prove |a' - b| < ||a||||b|| and ||Az| < ||a|||z]|-
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