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1. Gram matrix, volume

Definition 1.1. Let v1, . . . , vk be k vectors in a Euclidean space. The Gram matrix of these k vectors,
denoted by G(v1, . . . , vk), is the k×k matrix (〈vi, vj〉)k×k. The Gram determinant is the determinant of the
Gram matrix.

Exercise 1.2. detG(v1, . . . , vk) = 0 iff v1, . . . , vk are linearly dependent.

Problem 186. Prove that the Gram matrix of a list of vectors is always positive semidefinite. Moreover,
prove that the Gram matrix is positive definite iff the list of vectors is linearly independent.

Problem 187. Prove that detG(v1, . . . , vk) = Volk(v1, . . . , vk)2 where Volk denotes the k-dimensional
volume.

Observation 1.3. If (∀i 6= j)(vi ⊥ vj), then Volk(v1, . . . , vk) =
∏k
i=1‖vi‖ andG(v1, . . . , vk) = diag(‖v1‖2, . . . , ‖vk‖2).

This solves Problem 187 for the case when the vectors are orthogonal. To prove the general case, solve the
following exercise.

Exercise 1.4. Prove: Gram-Schmidt orthogonalization does not change the Gram determinant.

2. Counting spanning trees of a graph

Definition 2.1. A spanning tree of a graph with n vertices is a subgraph which is a tree that contains all
n vertices.

Exercise 2.2. Every connected graph has a spanning tree. Every spanning tree of a graph with n vertices
has n− 1 edges.

Observation 2.3. Let Ni denote the number of different spanning tree of the complete graph Ki. We have
N1 = 1, N2 = 1, N3 = 3, N4 = 4!/2 + 4 = 16, N5 = 125, . . . .

Theorem 2.4 (Cayley). The number of spanning trees of the complete graph Kn is nn−2.

Definition 2.5. The Laplacian of a graph G, denoted by LG, is defined as DG−AG where DG is the diagonal
matrix diag(deg(1), . . . ,deg(n)) with the degrees of the nodes on the diagonal and AG is the adjacency matrix
of the graph G.

Exercise 2.6. detLG = 0.

Problem 188. (1) Prove that all cofactors of LG are equal.
(2) ∗ (Matrix-Tree Theorem, Kirchhoff 1848) Each cofactor of LG equals the number of spanning trees

of G.
(3) Infer Cayley’s formula from the Matrix-tree Theorem.

A proof of the Matrix-Tree Theorem can be found in the June 30 lecture notes of the instructor’s 2005
REU course on the Abelian Sandpile Model.

1

http://people.cs.uchicago.edu/~laci/REU05/notes/Jun30/7.pdf
http://people.cs.uchicago.edu/~laci/REU05
http://people.cs.uchicago.edu/~laci/REU05


3. Finite Markov Chains, mixing rate, eigenvalue gap

Suppose we have n states. Let Xt denote the particle’s location among {1, . . . , n} at time t. Define
pij = P (Xt+1 = j | Xt = i).

Exercise 3.1 (t-step transition probabilities). Let p(t)
ij ) = P (X`+t = i | X` = j). Then T t = (p(t)

ij )n×n.

Definition 3.2. The transition matrix T is the n× n matrix (pij)n×n.

Definition 3.3. The distribution of a particle’s location at time line t, denoted by qt = (qt1, . . . , qtn) where
qti = P (Xt = i).

Observation 3.4. qti ≥ 0,
∑n
i=1 qti = 1.

Observation 3.5. For a transition matrix T = (pij), we have pij ≥ 0 and (∀i)(
∑n
j=1 pij = 1) (all row sums

are zero). Such matrix is called a stochastic matrix.

Exercise 3.6. Prove: if A,B are stochastic matrices then AB is also a stochastic matrix.

Observation 3.7 (Evolution of the Markov Chain). qt+1 = qtT by the “theorem of complete probability”
(a property of conditional probabilities). Hence qt = q0T

t.

Definition 3.8. The distribution q is stationary if q = qT , i. e., q is a left eigenvector to eigenvalue 1.

Problem 189. Prove: for the simple random walk on a connected graph, the stationary probability of node
i is proportional to its degree deg(i).

Exercise 3.9. The right eigenvalues of a matrix are exactly the same as left eigenvalues of the same matrix.
(However, the eigenvectors may differ.)

Theorem 3.10 (Perron-Frobenius). Suppose A ∈ Mn(R) is a positive matrix, i. e., (∀i, j)(aij > 0). Then
there exists a positive eigenvector.

Problem 190. (a) Prove the Perron-Frobenius Theorem.
(b) Use the Perron-Frobenius Theorem to prove that every Markov Chain has a stationary distribution.

Notation 3.11 (Transition digraph). Let GT denote the digraph of possible transitions. The vertices of the
digraph correspond to the states of the Markoov Chain; and there is i→ j an edge (arrow) pij 6= 0.

Definition 3.12. A Markov chain is called ergodic if GT is strongly connected and aperiodic, i. e., the period
of the digraph (gcd of the lengths of all closed walks) equals 1.

Problem 191 (Mixing of ergodic Markov Chains). If a Markov chain is ergodic, then the limit
limt→∞ T t = L exists.

Exercise 3.13. If the limit matrix L exists then every row of L is a stationary distribution. If the Markov
Chain is ergodic then the stationary distribution is unique and therefore all rows of L are identical.

The convergence to L is called “mixing;” and the rate of convergence the “mixing rate” of the Markov
Chain. The mixing rate is a major current subject of study.

Let µ1 = 1, µ2, . . . µn be the (in general, complex) eigenvalues of the transition matrix of a Markov Chain.
Under fairly general circumstances, the rate of convergence to stationary distribution is controlled by the gap
between µ1 = 1 and max{|µ2|, . . . , |µn|}, referred to as the eigenvalue gap. Theorem 3.17 below formalizes
this general phenomenon for the case of the simple random walk on an r-regular graph. Note that in this
case µi = λi/r where λi is the i-th eigenvalue of the adjacency matrix of the graph.

Observation 3.14. For a connected regular graph of degree r the transition matrix of the simple random
walk is T = 1

rA where A is the adjacency matrix.

Notation 3.15. Let A be the adjacency matrix of a connected regular graph of degree r. Let A have
eigenvalues λ1 = r ≥ · · · ≥ λn. Let λ := max {|λ2|, . . . , |λn|}.

Exercise 3.16. We know that r ≥ λ. Prove that r = λ if and only if either G is disconnected (in this case,
λ2 = r, or G is bipartite (in this case, λn = −λ2). These are precisely the cases when our random walk is
not ergodic. In all other cases, λ < r.
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Theorem 3.17 (Mixing of simple random walk on a regular graph). Let G be a regular graph of degree r
with eigenvalues λ1 = r ≥ λ2 ≥ · · · ≥ λn. Let λ = max{|λ2|, . . . , |λn|}. For the simple random walk on a
regular graph of degree r we have |p(t)

ij − 1
n | ≤

(
λ
r

)t
.

Problem 192. Use the Spectral Theorem to prove Theorem 3.17.

(The proof was given in class.)

Definition 3.18 (Operator norm). Suppose A ∈Mn(R). Then

‖A‖ := max
x6=0

‖Ax‖
‖x‖

.

Observation 3.19. By definition, ‖Ax‖ ≤ ‖A‖‖x‖.

Problem 193 (Operator norm). (a) If A = At, prove ‖A‖ = max {|λ1|, . . . , |λn|}.
(b) Prove (∀A)(‖A‖ =

√
λmax(ATA)).

Exercise 3.20 (Cauchy-Schwarz). Prove |at · b| ≤ ‖a‖‖b‖ and ‖Ax‖ ≤ ‖a‖‖x‖.
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