REU APPRENTICE CLASS #19

INSTRUCTOR: LÁSZLÓ BABAI SCRIBE: BOWEI ZHENG

Friday, July 22, 2011

1. Gram matrix, volume

Definition 1.1. Let v_1, \ldots, v_k be k vectors in a Euclidean space. The *Gram matrix* of these k vectors, denoted by $G(v_1, \ldots, v_k)$, is the $k \times k$ matrix $(\langle v_i, v_j \rangle)_{k \times k}$. The *Gram determinant* is the determinant of the Gram matrix.

Exercise 1.2. det $G(v_1, \ldots, v_k) = 0$ iff v_1, \ldots, v_k are linearly dependent.

Problem 186. Prove that the Gram matrix of a list of vectors is always positive semidefinite. Moreover, prove that the Gram matrix is positive definite iff the list of vectors is linearly independent.

Problem 187. Prove that $\det G(v_1, \ldots, v_k) = \operatorname{Vol}_k(v_1, \ldots, v_k)^2$ where Vol_k denotes the k-dimensional volume.

Observation 1.3. If $(\forall i \neq j)(v_i \perp v_j)$, then $\operatorname{Vol}_k(v_1, \ldots, v_k) = \prod_{i=1}^k ||v_i||$ and $G(v_1, \ldots, v_k) = \operatorname{diag}(||v_1||^2, \ldots, ||v_k||^2)$. This solves Problem 187 for the case when the vectors are orthogonal. To prove the general case, solve the following exercise.

Exercise 1.4. Prove: Gram-Schmidt orthogonalization does not change the Gram determinant.

2. Counting spanning trees of a graph

Definition 2.1. A spanning tree of a graph with n vertices is a subgraph which is a tree that contains all n vertices.

Exercise 2.2. Every connected graph has a spanning tree. Every spanning tree of a graph with n vertices has n-1 edges.

Observation 2.3. Let N_i denote the number of different spanning tree of the complete graph K_i . We have $N_1 = 1, N_2 = 1, N_3 = 3, N_4 = 4!/2 + 4 = 16, N_5 = 125, \dots$

Theorem 2.4 (Cayley). The number of spanning trees of the complete graph K_n is n^{n-2} .

Definition 2.5. The Laplacian of a graph G, denoted by L_G , is defined as $D_G - A_G$ where D_G is the diagonal matrix diag(deg(1),...,deg(n)) with the degrees of the nodes on the diagonal and A_G is the adjacency matrix of the graph G.

Exercise 2.6. $\det L_G = 0$.

Problem 188. (1) Prove that all cofactors of L_G are equal.

- (2) * (Matrix-Tree Theorem, Kirchhoff 1848) Each cofactor of L_G equals the number of spanning trees of G.
- (3) Infer Cayley's formula from the Matrix-tree Theorem.

A proof of the Matrix-Tree Theorem can be found in the June 30 lecture notes of the instructor's 2005 REU course on the Abelian Sandpile Model.

1

3. Finite Markov Chains, mixing rate, eigenvalue gap

Suppose we have n states. Let X_t denote the particle's location among $\{1, \ldots, n\}$ at time t. Define $p_{ij} = P(X_{t+1} = j \mid X_t = i)$.

Exercise 3.1 (t-step transition probabilities). Let $p_{ij}^{(t)} = P(X_{\ell+t} = i \mid X_{\ell} = j)$. Then $T^t = (p_{ij}^{(t)})_{n \times n}$.

Definition 3.2. The transition matrix T is the $n \times n$ matrix $(p_{ij})_{n \times n}$.

Definition 3.3. The distribution of a particle's location at time line t, denoted by $q_t = (q_{t1}, \dots, q_{tn})$ where $q_{ti} = P(X_t = i)$.

Observation 3.4. $q_{ti} \geq 0$, $\sum_{i=1}^{n} q_{ti} = 1$.

Observation 3.5. For a transition matrix $T = (p_{ij})$, we have $p_{ij} \ge 0$ and $(\forall i)(\sum_{j=1}^{n} p_{ij} = 1)$ (all row sums are zero). Such matrix is called a *stochastic matrix*.

Exercise 3.6. Prove: if A, B are stochastic matrices then AB is also a stochastic matrix.

Observation 3.7 (Evolution of the Markov Chain). $q_{t+1} = q_t T$ by the "theorem of complete probability" (a property of conditional probabilities). Hence $q_t = q_0 T^t$.

Definition 3.8. The distribution q is stationary if q = qT, i. e., q is a left eigenvector to eigenvalue 1.

Problem 189. Prove: for the simple random walk on a connected graph, the stationary probability of node i is proportional to its degree deg(i).

Exercise 3.9. The right eigenvalues of a matrix are exactly the same as left eigenvalues of the same matrix. (However, the eigenvectors may differ.)

Theorem 3.10 (Perron-Frobenius). Suppose $A \in M_n(\mathbb{R})$ is a positive matrix, i. e., $(\forall i, j)(a_{ij} > 0)$. Then there exists a positive eigenvector.

Problem 190. (a) Prove the Perron-Frobenius Theorem.

(b) Use the Perron-Frobenius Theorem to prove that every Markov Chain has a stationary distribution.

Notation 3.11 (Transition digraph). Let G_T denote the digraph of possible transitions. The vertices of the digraph correspond to the states of the Markoov Chain; and there is $i \to j$ an edge (arrow) $p_{ij} \neq 0$.

Definition 3.12. A Markov chain is called ergodic if G_T is strongly connected and *aperiodic*, i. e., the period of the digraph (gcd of the lengths of all closed walks) equals 1.

Problem 191 (Mixing of ergodic Markov Chains). If a Markov chain is ergodic, then the limit $\lim_{t\to\infty} T^t = L$ exists.

Exercise 3.13. If the limit matrix L exists then every row of L is a stationary distribution. If the Markov Chain is ergodic then the stationary distribution is unique and therefore all rows of L are identical.

The convergence to L is called "mixing," and the rate of convergence the "mixing rate" of the Markov Chain. The mixing rate is a major current subject of study.

Let $\mu_1 = 1, \mu_2, \dots \mu_n$ be the (in general, complex) eigenvalues of the transition matrix of a Markov Chain. Under fairly general circumstances, the rate of convergence to stationary distribution is controlled by the gap between $\mu_1 = 1$ and $\max\{|\mu_2|, \dots, |\mu_n|\}$, referred to as the *eigenvalue gap*. Theorem 3.17 below formalizes this general phenomenon for the case of the simple random walk on an r-regular graph. Note that in this case $\mu_i = \lambda_i/r$ where λ_i is the i-th eigenvalue of the adjacency matrix of the graph.

Observation 3.14. For a connected regular graph of degree r the transition matrix of the simple random walk is $T = \frac{1}{r}A$ where A is the adjacency matrix.

Notation 3.15. Let A be the adjacency matrix of a connected regular graph of degree r. Let A have eigenvalues $\lambda_1 = r \ge \cdots \ge \lambda_n$. Let $\lambda := \max\{|\lambda_2|, \ldots, |\lambda_n|\}$.

Exercise 3.16. We know that $r \ge \lambda$. Prove that $r = \lambda$ if and only if either G is disconnected (in this case, $\lambda_2 = r$, or G is bipartite (in this case, $\lambda_n = -\lambda_2$). These are precisely the cases when our random walk is not ergodic. In all other cases, $\lambda < r$.

Theorem 3.17 (Mixing of simple random walk on a regular graph). Let G be a regular graph of degree r with eigenvalues $\lambda_1 = r \geq \lambda_2 \geq \cdots \geq \lambda_n$. Let $\lambda = \max\{|\lambda_2|, \ldots, |\lambda_n|\}$. For the simple random walk on a regular graph of degree r we have $|p_{ij}^{(t)} - \frac{1}{n}| \leq \left(\frac{\lambda}{r}\right)^t$.

Problem 192. Use the Spectral Theorem to prove Theorem 3.17.

(The proof was given in class.)

Definition 3.18 (Operator norm). Suppose $A \in M_n(\mathbb{R})$. Then

$$||A|| := \max_{x \neq 0} \frac{||Ax||}{||x||}.$$

Observation 3.19. By definition, $||Ax|| \le ||A|| ||x||$.

Problem 193 (Operator norm). (a) If $A = A^t$, prove $||A|| = \max\{|\lambda_1|, \dots, |\lambda_n|\}$. (b) Prove $(\forall A)(||A|| = \sqrt{\lambda_{\max}(A^T A)})$.

Exercise 3.20 (Cauchy-Schwarz). Prove $|a^t \cdot b| \le ||a|| ||b||$ and $||Ax|| \le ||a|| ||x||$.