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1. Vector spaces

Definition 1.1. A vector space over a field F is a set V along with two operations, namely addition (denoted
by +) from V ×V to V , and scalar multiplication (denoted by ·) from F ×V to V , that satisfy the following
properties.

(1) Addition is associative: (u+ v) + w = u+ (v + w) for every u, v, w ∈ V .
(2) There is an additive identity, denoted by 0.
(3) For every v ∈ V , there is an element v∗ ∈ V such that v+ v∗ = 0. The element v∗ is usually denoted

by −v.
(4) The addition operation is commutative.
(5) Pseudo-associativity holds: α · (β · v) = (αβ) · v for every α, β ∈ F and v ∈ V .
(6) For every α, β ∈ F and v ∈ V , we have (α+ β) · v = α · v + β · v.
(7) For all α ∈ F and u, v ∈ V , we have α · (u+ v) = α · u+ α · v.
(8) Normalisation axiom holds: 1 · v = v for every v ∈ V .

Proposition 1.2. For every v ∈ V , the equation 0 · v = 0 holds.

Proof. Let w = 0 · v. Observe that

w = 0 · v = (0 + 0) · v = 0 · v + 0 · v = w + w.

Now adding −w to both sides, we get 0 = w. �

Exercise 1.3. For every α ∈ F , the equation α · 0 = 0 holds.

The converse of these last two statement also holds:

Exercise 1.4. (∀α ∈ F )(∀v ∈ V )(αv = 0⇔ α = 0 or v = 0)

Recall that a list of vectors v1, . . . , vk is called linearly independent, if there is no nontrivial linear combi-
nation of the vectors that evaluates to the zero vector.

Definition 1.5. If v1, . . . , vk ∈ V is a list of vectors, then their span, denoted Span{v1, . . . , vk}, is the set
{
∑k

i=1 αivi | αi ∈ F}. A vector u is said to be dependent on the vectors v1, . . . , vk if u ∈ Span{v1, . . . , vk}.

The span of an infinite list is the set of all linear combinations of all finite sublists.

Exercise 1.6. If v1, . . . , vk is a linearly independent list of vectors, then so is every sublist.

Observe that the list consisting only of 0 ∈ V is linearly dependent, because 1 · 0 = 0. However for all
v 6= 0, the list consisting only of v is linearly independent.

Definition 1.7. Let V be a vector space over a field F . Then U ⊆ V is said to be a subspace if U is a
vector space over F under the same operations as that of V . We indicate this circumstance by the notation
U ≤ V .

Proposition 1.8. A subset U ⊆ V is a subspace if and only if it has the following properties:
(1) The set U is nonempty. (Equivalently, 0 ∈ U .)
(2) The set U is closed under addition.
(3) The set U is closed under multiplication by scalars.
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The dimension of a subspace U ≤ V is defined to be the rank of the set U .
A set of vectors whose span is equal to the entire vector space is known as a set of generators of the vector

space.

Definition 1.9. A list (b1, . . . , b`) of vectors is called a basis if it is a linearly independent set of generators.

We have the following examples of bases:
(1) The standard basis in Rn, consisting of vectors ei = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the ith

position.
(2) The space of polynomials with real coefficients (R[x]) has 1, x, x2, . . . as a basis.
(3) As a vector space over R, the set {1, i} forms a basis of C.
(4) The real numbers form vector space over the rational numbers. This space has uncountably large

dimension. It has a basis, but this basis has uncountably many elements and we cannot describe it
explicitly. This is called a Hamel basis.

Theorem 1.10. Every vector space has a basis.

We will prove this theorem via two lemmas.

Lemma 1.11. If v1, . . . , vk are linearly independent, and v1, . . . , vk, w are linearly dependent, then w depends
on w1, . . . , wk.

Proof. Since v1, . . . , vk, w are linearly dependent, there exists a non-trivial linear combination that evaluates
to 0. That is, there are elements α1, . . . , αk, β ∈ F such that:

α1v1 + · · ·+ αkvk + βw = 0.

If β 6= 0, then we can express w as the following linear combination:

w = −β−1α1v1 − · · · − β−1αkvk,

which proves the lemma.
If β = 0, then we see that

∑k
i=1 αivi = 0. However since v1, . . . , vk are linearly independent, we have

αi = 0 for every i. This is a contradiction, since we assumed that at least one of the α1, . . . , αk, β is non-zero.
Thus the proof is complete. �

Lemma 1.12. A maximal linearly independent set in a vector space is always a basis.

Proof. Consider some maximal linearly independent set S. If S is not a basis, then Span(S) is strictly smaller
than V . So there is a vector w ∈ V such that w /∈ Span(S). In particular, w does not depend on S. By
the contrapositive statement of the previous lemma, we see that S ∪ {w} is linearly independent. This is a
contradiction because S was assumed to be a maximal linearly independent set. �

Idea of proof of the theorem. By using the two lemmas, we observe that it is enough to exhibit a maximal
linearly independent set of vectors.

If a given set of linearly independent vectors is not maximal, we can add a vector and still keep it linearly
independent, by the definition of (non)maximality. Repeating this will give us a basis if there is a finite
upper bound on the size of linearly independent sets.

If there is no such upper bound, we refer to Zorn’s lemma from set theory which implies that any linearly
independent set can be extended to a maximal one. �

Exercise 1.13. Show that v1, . . . , vk is linearly independent if and only if for every i, the vector vi does not
depend on the rest.

2. The Fibonacci space

Consider the vector space V consisting of sequences (a0, a1, . . .) of real numbers. Consider the elements
fi = (0, . . . , 0, 1, 0, . . .), which has a 1 in the ith position. The set of all fi appears to be a basis for V , but
it is not a basis. In fact, the span of {f1, f2, . . .} consists of all sequences that are “eventually zero”. That
is, all sequences that have finitely many non-zero terms.

Say that s ∈ V is a Fibonacci-type sequence if for every n ∈ N, we have sn+2 = sn+1 + sn. For example,
the Fibonacci numbers form a Fibonacci-type sequence.
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Exercise 2.1. The set Fib, consisting of all the Fibonacci-type sequences, is a subspace of V with dimension
2. Show that the sequences s and t form a basis of Fib, where s0 = 1, s1 = 0, t0 = 0 and t1 = 1.

Problem 22. Find a basis of Fib consisting of two geometric progressions: (1, r, r2, . . .) and (1, s, s2, . . .).
Then if Fn is the nth Fibonacci number, we will have Fn = αrn + βsn. Find r, s, α, β.

3. The First Miracle of Linear Algebra

Theorem 3.1 (First miracle of linear algebra). If v1, . . . , vk are linearly independent, and v1, . . . , vk ∈
Span{w1, . . . , wl}, then k ≤ `.

We prove this via the following lemma.

Lemma 3.2 (Steinitz exchange principle). If v1, . . . , vk ∈ Span{w1, . . . , w`}, then for every i there exists a
j such that v1, . . . , vi−1, wj , vi+1, . . . , vk is linearly independent.

Proof. (Proof by contradiction.) Suppose this is not true. Then there is some i such that none of the wj can be
exchanged for vi. Therefore wj depends on v1, . . . , vi−1, vi+1, . . . , vk for every j. Since vi ∈ Span{w1, . . . , w`},
we infer vi ∈ Span{v1, . . . , vi−1, vi+1, . . . , vk}. This is a contradiction. �

Proof of the first miracle of linear algebra. Use the Steinitz exchange principle successively on v1, . . . , vk to
get a new list, namely wj1 , . . . , wjk

, which is linearly independent. Therefore wja
6= wjb

for a 6= b. From this
it follows that k ≤ `. �

As a corollary to this theorem, we deduce the fundamental fact that all bases have equal size. This is
equivalent to the Firsat Miracle.

If S ⊂ V is an arbitrary subset, then a basis of this set is a set B ⊂ S such that S ⊆ Span(B) and B is
linearly independent.

Exercise 3.3. All bases of a set of vectors have equal size.

4. Matrices; the Second Miracle of Linear Algebra

Let A = (αij)k×n be a k × n, with the entries αij lying in a fixed field F .

Definition 4.1. The column-rank of the matrix A is the rank of the list of its column vectors, which lie in
F k. The row-rank of the matrix A is the rank of the list of its row vectors, which lie in Fn.

Theorem 4.2 (Second miracle of linear algebra). The row-rank of a matrix is equal to its column-rank.

Definition 4.3. An elementary column operation for a matrix A = (a1, . . . , an) (where ai is the ith column)
replaces some ai by ai − λaj , where λ ∈ F and i 6= j. Elementary row operations are defined analogously
for rows.

Problem 23. Elementary row and column operations do not change either the row-rank or the column-rank
of the matrix.

The column space is defined as the span of the column vectors inside F k, while the row space is defined as
the span of the row vectors inside Fn. In fact, elementary row operations do not change the column space,
and elementary column operations do not change the row space.

Exercise 4.4. The column rank is exactly the dimension of the column space.
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Proof sketch of the second miracle of linear algebra. We will demonstrate the process of Gaussian elimina-
tion via an example, on which we carry out column operations:

A =

1 2 3 3
2 3 5 4
3 7 0 3


7→

1 0 0 0
2 −1 −1 −2
3 1 −9 −6

 [subtracted multiples of the first column from other columns]

7→

1 0 0 0
0 −1 0 0
5 1 −10 −8

 [subtracted multiples of the second column from other columns]

7→

1 0 0 0
0 −1 0 0
0 0 −10 0

 [subtracted multiples of the third column from other columns]

At the last step it is clear that the row rank is equal to the column rank. This algorithm works in general. �

Definition 4.5. The transpose of a matrix A, denoted At, is defined by (At)ij = Aij .

The row rank of a matrix A is equal to the column rank of At and vice-versa. Therefore the rank of A is
equal to the rank of At.

5. Systems of Linear Equations

Consider a system of k linear equations in n unknowns: αi1x1 + · · ·+ αinxn = βi for 1 ≤ i ≤ k. We can
consider the matrix A = (αij) with columns ai, and the column vector b consisting of βi.

Then the given system of equations is equivalent to the following vector equation:

x1a1 + · · ·+ xnan = b.

Therefore a solution exists if and only if b is in the span of the column vectors of A.
First consider the homogeneous case, when βi = 0 for every i. Then a nontrivial solution exists if and

only if the column vectors ai are linearly dependent, which is true if and only if rank(A) < n.

Definition 5.1. A k × n matrix A has full row rank if rank(A) = k. Similarly A has full column rank if
rank(A) = n.

Exercise 5.2. A matrix has full column-rank if and only if the columns are linearly independent.

So our system of homogeneous linear equations has a nontrivial solution if and only if the matrix does
not have full column rank.

Problem 24. The rows of a matrix are linearly independent if and only if the columns span F k. Similarly
the columns are linearly independent if and only if the rows span Fn.

Exercise 5.3. A solution to the equation
∑n

i=1 xiai = b exists if and only if

rank(A) = rank(A|b).
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