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Wednesday, June 29, 2011 – solving problems

1. Problem 2

Idea: Color the cells white and green in a checkerboard pattern. Each tile
(domino) covers one white and one green cell, so any number of tiles will always
cover the same number of white cells as green cells.

Note that this also shows that if we remove any two cells of the same color, we
still can’t tile the board.

Question: what if we remove two tiles of different colors? Can we always tile
in that case?

1.1. How could we have solved this? One approach: try removing one corner
and a different piece, and think about what positions you can remove to get a
board you actually can cover. By experimenting a bit, you’ll see the checkerboard
pattern.

Problem 26. What if we use triominoes (three in a row), and we have an n × n
square with one square removed? If n is divisible by 3 we clearly can’t do this, but
for all other n the numbers at least work out. In particular, why can’t we tile when
n = 101?

2. Problem 1

Conjecture: p = a2 + b2 ⇐⇒ p ≡ 1 (mod 4). (Recall that a ≡ v (mod m) if
and only if m|a− b.)

Observation: every odd prime number is congruent to 1 or −1 modulo 4.
We’ll prove that if p = a2 + b2, then p ≡ 1 (mod 4).
If x = 2m, then

x2 = 4m2 ≡ 0 (mod 4).

If x = 2m+ 1, then

x2 = 4(m2 −m+ 1) ≡ 1 (mod 4).

So a2 + b2 is 0, 1, or 2 modulo 4; for odd primes, then, it must be 1.
Note: the other direction is significantly harder!

3. Problem 5

Hint: Don’t panic!
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4. Problem 12

We want to prove that 1,
√

2,
√

3 are linearly independent over Q. Take a linear
combination

0 = p · 1 + q
√

2 + r
√

3

with p, q, r ∈ Q. We want to show that this implies p = q = r = 0.
We need to somehow take advantage of the square roots. Rearrange the equation

to get
p+ r

√
3 = −q

√
2.

Let’s try squaring both sides to get(
p+ r

√
3
)

=
(
−q
√

2
)

p2 + 2pr
√

3 + 3r2 = 2q2

2pr
√

3 = 2q2 − p2 − 3r2.

We can conclude that 2pr = 0 because otherwise
√

3 would have to be rational! We
now have two cases: either p = 0 or q = 0.

Let’s start with the case when p = 0. The original equation then becomes

r
√

3 = −q
√

2
3r2 = 2q2

3
2

=
(q
r

)2

.

Why can 3/2 not be written in this way? Assume for contradiction that it can.
Then for relatively prime integers A,B, we have

3
2

= (A/B)2

2A2 = 3B2.

But B must be even, which means B is divisible by 4. But then A has to be divisible
by 2, contradicting the assumption that A and B are relatively prime.

The q = 0 case can be handled in the same way.
Question: This shows us that a certain set of three numbers is linearly inde-

pendent over Q. Can we generalize this? For which sets of square roots does this
work?

Clearly if we have 1 and if any other is a square, they’re not. But even the set

{1,
√

2,
√

8}

isn’t, because
√

8 = 2
√

2. What if we only look at squarefree numbers (which are
not divisible by the square of any prime)?

It turns out that the set

{
√
n : n is squarefree}

is linearly independent over Q. This is a more difficult problem; as a start, show
that

{1,
√

2,
√

3,
√

6

is linearly independent.
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5. Problem 10

For part (1), we need to show that if a, b ∈ Q, not both zero, then
1

a+ b
√

2
is of the form

r + s
√

2
for some r, s ∈ Q.

Multiply by the conjugate:

1
a+ b

√
2

=
1

a+ b
√

2
a− b

√
2

a− b
√

2

=
a− b

√
2

a2 − 2b2

and so we can take r = a
a2−2b2 , and s = −b

a2−2b2 . The only thing left to show is that
a2 − 2b2 6= 0. But if it is zero, then

a = 2b2

which would imply that
√

2 is rational if a and b are not both zero.
For part (2), we need to show that

1
a+ b3

√
2 + c3

√
4

is in Q[ 3
√

2]. We use the fact that there is z ∈ C such that z 6= 1 but z3 = 1. The
three solutions to z3 = 1 lie on the unit circle on the complex plane, evenly spaced,
and are

z0 = 1

z1 = −1
2

+ i

√
2

2

z2 = −1
2
− i
√

2
2

Using the fact that z2
1 = z2, and z2

2 = z4
1 = z1 · z3

1 = z1, show that(
a+ b

3
√

2 + c
2
√

3
2
)(

a+ bz1
3
√

2 + cz2
1

2
√

3
2
)(

a+ bz2
3
√

2 + cz2
1

2
√

3
2
)

is rational (ideally without brute force multiplication!). This is analogous to mul-
tiplying (a+ b

√
2) by (a− b

√
2) to rationalize it.

Remark 1. Every complex number z = a + bi has a polar form z = reiθ, since
eiθ = cos θ+ i sin θ. Multiplication of complex numbers z1 = r1e

iθ1 and z2 = r2e
iθ2

in polar form is particularly nice:

z1z2 = r1r2e
i(θ1+θ2).

The conjugate of z = reiθ is
z = rei(−θ).

Note that adding or subtracting 2π to θ gives us the same complex number, so

reiθ = reiψ ⇐⇒ θ − ψ = 2πk
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for some k ∈ Z, assuming that r 6= 0.
If z = a+ bi, then

z + z = 2a
and

z − z = 2bi.
We write

a = Re(z)
and

b = Im(z).
We can write inverses as

1
a+ bi

=
a− bi
a− bi

1
a+ bi

=
a− bi
r2

.

As far as roots of unity go: we’re looking for solutions to zn = 1. If

z = reiθ,

then
zn = rneinθ = 1 = 1 · e0.

Therefore einθ = e0 and so θ = 2kπ/n for appropriate k, and r = 1. Therefore

θ0 = 0
θ1 = 2π/n
θ2 = 2 · 2π/n

...
θn−1 = (n− 1)2π/n.

These form n evenly spaced points on the unit circle on the complex plane.

Problem 27. The sum z0 + z1 + · · · + zn−1 of all the nth roots of unity is 0 if
n ≥ 2, and 1 if n = 1. Prove this!

Problem 28. For what k is the sum
n−1∑
i=0

zki = 0?

Definition 1. z is a primitive nth root of unity if

zn = 1

and when 1 ≤ j ≤ n− 1, then
zj 6= 1.

For example, the fourth roots of unity are 1, i,−1,−i, but only i and −i are
primitive fourth roots of unity (we have to raise both of them to the fourth power
to get 1).

The sixth roots of unity are positioned along a regular hexagon. Going around
the circle, the smallest exponents we need to raise each one to get 1 are 1, 6, 3, 2, 3, 6.
Only the ones that must be raised to the sixth power are primitive roots

Problem 29. If z is a primitive nth root of unity, then for what values of k is zk

a primitive nth root of unity? How many powers of z will be primitive nth roots
of unity?
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Problem 30. Study

Sn =
∑

primitive nth roots of unity.

What can you say or conjecture about Sn? We can see that S3 = −1, S4 = 0, and
S5 = 1; what are the rest?

6. More complex numbers

Definition 2. Let z ∈ C, |z| = 1. The order of z is the smallest positive n such
that zn = 1. If no such n exists, then the order of z is ∞. We write the order of z
as ord(z).

The complex numbers on the unit circle which have finite order are those of the
form

z = eiθ

with θ a rational multiple of π.
Exercise: prove that eiθ has finite order if and only if θ/π ∈ Q.
If ord(z1) = 8 and ord(z2) = 9, we know that ord(z1z2) is at most 72.
Exercise: if ord(z) = t then zn = 1 ⇐⇒ t|n.
Note that ord(z) = n is equivalent to saying that z is a primitive nth root of

unity.
So, going back to the question about the order of the product of two complex

numbers: suppose ord(z1) = t1 and ord(z2) = t2. Is it the case that

ord(z1z2) = lcm(t1, t2)?

Let t = lcm(t1, t2). There are two things we need to prove. First, that (z1z2)t = 1,
but (z1z2)n 6= 0 for any n < t. The first of these is clear, which also tells us that
ord(z1z2)|t. But are they equal?

Problem 31.

(1) Show that ord(z1z2) is not necessarily equal to lcm(t1, t2).
(2) Show that if t1 and t2 are relatively prime, then ord(z1z2) = t1t2.

7. Problem 8

We want to show that the polynomials f1, . . . , fn are linearly independent.
Note that the set of polynomials of degree k is not a subspace of the vector

space of all polynomials: the zero polynomial isn’t included, and it’s not closed
under addition. But if we take the set of polynomials of degree at most k the we
do get a subspace.

Definition 3. Let R≤k[x] be the vector space of polynomials of degree ≤ k.

We can see that dim R≤k[x] = k+1, because the set {1, x, . . . , xk} forms a basis.
This means that if we can prove that f1, . . . , fn are linearly independent, then we’ll
in fact have shown that they form a basis for R≤k[x]! This fact is important to
Lagrange interpolation.

Back to the original problem. We want to show that if∑
aifi = 0
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then ai = 0 for all i. Substitute x = αj . Then

fi(αj) =
{
6= 0 i = j
0 i 6= j

,

so
0 =

∑
aifi(αj) = ajfj(αj)

and so aj = 0.
A polynomial is a formal expression, which we can think of as a sequence of

numbers with
(a0, a1, . . .)

corresponding to
∞∑
i=0

aix
i.

It is a polynomial if all but finitely many of the ai are zero; we can define addition
and multiplication in the usual way. We can also define divisibility:

f |g ⇐⇒ ∃h ∈ R[x] such that g = f · h.

In this way, we can define quotients of polynomials, in the case when the denom-
inator is a factor of the numerator, without actually doing a division; this is how
we can think of the polynomials fi(x) in problem 8.

It’s clearly true that if two polynomials are formally equal (have the same co-
efficients), then they are equal as functions. Is the converse true? That is, if two
polynomials have the same value everywhere, is it necessarily the case that they
have the same coefficients? We can even simplify the question a bit: if f and g are
two polynomials that agree on all values of x, and we let h(x) = f(x)− g(x), must
it be the case that h(x) is the zero polynomial?

Problem 32. If h(x) = 0 for all values of x, is h the zero polynomial?

8. Problem 3

Hint: Try it for integers first.

9. Problem 16

Call the clubs C1, . . . , Ck.

Lemma 1. We can represent a club by its membership vector, which was defined
as

vi =


α1i

α2i

...
αki


where αji = 1 if j ∈ Ci and αji = 0 if j /∈ Ci. Under the rules of Oddtown,
v1, v2, . . . , vk are linearly independent over Q, so there can be no more than n of
them.
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Observe that |Ci ∩ Cj | = vi · vj (where · here is the dot product of vectors). So
we can rewrite the two conditions as

vi · vj =
{

even i 6= j
odd i = j

.

Use this to prove the lemma.

10. Matrices

Problem 33. Show that

rank(A+B) ≤ rank(A) + rank(B).

Definition 4. Let
A = (αij),

be k × l,
B = (βjk),

be l ×m, and
C = (γrt)

be k ×m. Then C = A ·B means that

γrt =
l∑

s=1

αrsβst.

Note that we can multiply two matrices A,B in either direction as long as one
is k × l and the other l × k.

Problem 34. Find two 2× 2 matrices A,B such that A ·B 6= B ×A.

Definition 5. The trace of a matrix A = (αij) is

tr(A) =
∑

αii.

Problem 35. Show that
tr(AB) = tr(BA),

even if A and B aren’t necessarily square.


