REU APPRENTICE CLASS \#4

INSTRUCTOR: LÁSZLÓ BABAI
SCRIBE: MATTHEW WRIGHT

Thursday, June 30, 2011

1. Matrices

Problem 36. Let

$$
A=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)
$$

with $|a|<1$ and $|d|<1$. Show that

$$
\lim _{k \rightarrow \infty} A^{k}=0
$$

Problem 37. Let

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) .
$$

What is A^{k} ?
Exercise: matrix multiplication is associative and distributive. Verify it; that is, check that

$$
\begin{aligned}
(A B) C & =A(B C) \\
A(B+C) & =A B+A C
\end{aligned}
$$

and

$$
(A+B) C=A C+B C .
$$

Homogeneous systems of equations are those of the form

$$
\underline{A} \cdot \underline{x}=\underline{0} .
$$

The solution set is

$$
U=\left\{\underline{x} \in F^{n} \mid \underline{A} \cdot \underline{x}=\underline{0}\right\} \subseteq F^{n},
$$

which is a subspace of F^{n}. We showed that

$$
\operatorname{dim} U=n-\operatorname{rank} A .
$$

Definition 1. The transpose of a matrix $A=\left(\alpha_{i j}\right)$ is $A^{T}=\left(\alpha_{j i}\right)$.
Observe that $(A B)^{T}=B^{T} A^{T}$.
Useful fact: If A is $r \times s$ and $B=\left(\underline{b}_{1}, \ldots, \underline{b}_{t}\right)$ is $s \times t$, then

$$
A \times B=\left(A \underline{b}_{1}, \ldots, A \underline{b}_{t}\right)
$$

Verify this!

2. Directed Graphs

Definition 2. A directed graph (also called a digraph) is a set of "vertices"

$$
V=\left\{v_{1}, \ldots, v_{n}\right\}
$$

with a set of "egdes" (ordered pairs, arrows)

$$
E=\left\{\left(v_{a}, v_{b}\right), \ldots,\left(v_{t}, v_{u}\right)\right\}
$$

between them.
Definition 3. Each directed graph can be represented by a matrix, called the adjacency matrix. If there are n vertices in the graph, the adjacency matrix is an $n \times n$ matrix. If we call this matrix $A=\left(a_{i j}\right)$, then $a_{i j}=1$ if there is an edge from i to j, and 0 otherwise.

Problem 38. Let A be the adjacency matrix of a directed graph. Show that the (ij)-entry of A^{t} counts the t-step walks from i to j. Note that a walk is allowed to repeat vertices and edges, unlike a path!

3. Finite Markov Chains

Definition 4. A stochastic matrix is an $n \times n$ matrix $T=\left(p_{i j}\right)$ where $p_{i j} \geq 0$ (all entries are nonnegative), and

$$
\forall i\left(\sum_{j} p_{i j}=1\right)
$$

(that is, each row sums to 1).
A stochastic matrix defines the transition probabilities for a particle moving from state to state (vertex to vertex). Let X_{t} denote the location of the particle at time t. (This is always one of the vertices).

$$
p_{i j}=P\left(X_{t+1}=j \mid X_{t}=i\right)
$$

that is, $p_{i j}$ gives the probability that the particle will be at vertex j at time t given that it was in location i at time t. We can define the ℓ-step transition probability as

$$
p_{i j}^{(\ell)}=P\left(X_{t+\ell}=j \mid X_{t}=i\right) .
$$

Problem 39. Verify that

$$
\left(p_{i j}^{(\ell)}\right)=T^{\ell} ;
$$

that is, taking the ℓ-th power of the one-step transition matrix of a finite Markov Chain gives us the ℓ-step transition matrix.

4. Linear Maps and Matrices

Given a basis $\underline{b}=\left(b_{1}, \ldots, b_{n}\right)$, we can assign coordinates to each vector with respect to that basis. We write these coordinates as a column vector.
Definition 5. We write $[v]_{\underline{b}} \in F^{n}$ to mean the column vector of coordinates of v in the basis \underline{b}.

Definition 6. Let V and W be vector spaces over the same field F. Let

$$
\phi: V \rightarrow W
$$

We say that ϕ is a linear function or linear map if it preserves linear combinations; that is,

$$
(\forall x, y \in V) \phi(x+y)=\phi(x)+\phi(y)
$$

and

$$
(\forall v \in V)(\forall \alpha \in F)(\phi(\alpha x)=\alpha \phi(x)) .
$$

Theorem 1. If b_{1}, \ldots, b_{n} is a basis for V and w_{1}, \ldots, w_{n} are any vectors in W, then there is a unique linear map

$$
\phi: V \rightarrow W
$$

such that

$$
(\forall i)\left(\phi\left(b_{i}\right)=w_{i}\right)
$$

Definition 7. (The matrix associated with a linear map) Let $\phi: V \rightarrow W$ be a linear map, $\underline{e}=\left(e_{1}, \ldots, e_{n}\right)$ a basis in V, and $\underline{f}=\left(f_{1}, \ldots, f_{n}\right)$ a basis in W. Let $[\phi]_{\underline{e}, \underline{f}}$ denote the $k \times n$ matrix of which the j-th column is $\left[\phi\left(e_{j}\right)\right]_{\underline{f}}$, for $1 \leq j \leq n$.

Exercise: Show that

$$
[\phi]_{\underline{e}, \underline{f}} \cdot[v]_{\underline{e}}=[\phi(v)]_{\underline{f}}
$$

Also, if $\phi: x \mapsto A x$, show that $[\phi]_{s t_{n}, s t_{k}}=A$ where $s t_{n}$ denote the standard basis of F^{n}.
Definition 8. A linear transformation is a linear map $\phi: V \rightarrow V$. In this case we write $[\phi]_{\underline{e}}$ instead of $[\phi]_{\underline{e}, \underline{e}}$.

Let $\underline{e}=\left(e_{1}, e_{2}\right)$ be the standard basis in the plane (two perpendicular unit vectors). Let ρ_{θ} denote the rotation of the plane by angle θ about the origin (counterclockwise). Then

$$
\left[\rho_{\theta}\right]_{\underline{e}}=\left(\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Let $\underline{f}=\left(f_{1}, f_{2}\right)$ be another basis in the plane, defined by taking $f_{1}=e_{1}$ and $f_{2}=\rho_{\theta}\left(f_{1}\right)$. Then

$$
\left[\rho_{\theta}\right]_{\underline{e}}=\left(\begin{array}{ll}
0 & -1 \\
1 & 2 \cos \theta
\end{array}\right)
$$

We observed that these two matrices have the same determinant (1) and the same trace $(2 \cos \theta)$.

