REU APPRENTICE CLASS #6

INSTRUCTOR: LÁSZLÓ BABAI SCRIBE: DANIEL SCHÄPPI

Tuesday, July 5, 2011

1. GROUPS. THE SYMMETRIC GROUP

Recall that a permutation of a set A is a bijection $\pi: A \to A$. For $A = \{1, 2, ..., n\}$ we can denote permutations using the *cylcle notation*, e.g., we write

$$\pi = (156)(27)(34)$$

for the permutation of $[8] = \{1, 2, \dots, 8\}$ given by

Note that we omit the cycle (8) of length 1. We say that π has cycle structure (3, 2, 2). A cycle of length 2 is called a *transposition*.

Composition of functions defines an operation on the set S_n of permutations of $[n] = \{1, 2, ..., n\}$. The resulting structure is called a group.

Definition 1.1. A group is a set G together with an operation $G \times G \to G$, $(a, b) \mapsto a * b$ satisfying the axioms:

- (1) For all $a, b \in G$, there exists a unique a * b in G (that is, the operation is a function with the correct domain and codomain).
- (2) The operation is associative.
- (3) (Identity) There exists an element $e \in G$ such that for all $a \in G$, e * a = a = a * e.
- (4) (Inverses) For all $a \in G$ there exists $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$.

If, in addition, we have a * b = b * a for all $a, b \in G$, then G is called an *abelian* group.

Convention 1.2. We compose permutations in the same order as functions, i.e., (12)(23) = (123) and (23)(12) = (132).

 S_n is a group with * given by composition of functions, called the symmetric group of degree n, and we just noticed that S_n is not abelian for $n \geq 3$. Examples of abelian groups are $(\mathbb{Z}, +)$, the nonzero elements $F^{\times} = F \setminus \{0\}$ of a number field F under multiplication, or the *n*-th roots of unity in \mathbb{C} under multiplication.

While it is not true that *all* pairs of elements of the symmetric group commute, there are obviously some pairs of elements that do, for example, disjoint cycles.

Definition 1.3. The support of a permutation σ of [n] is the set

$$\operatorname{supp}(\sigma) = \{ x \in [n] | \pi(x) \neq x \},\$$

that is, the support is the set of elements that are not fixed by σ .

Exercise 1.4. If $\operatorname{supp}(\pi) \cap \operatorname{supp}(\sigma) = \emptyset$, then $\pi \sigma = \sigma \pi$.

Problem 42. Find permutations π , σ such that $\operatorname{supp}(\pi) \cap \operatorname{supp}(\sigma) \neq \emptyset$ and $\pi\sigma = \sigma\pi$.

The commutator of π and σ is $[\pi, \sigma] = \pi \sigma \pi^{-1} \sigma^{-1}$.

Problem 43. If $|\operatorname{supp}(\pi) \cap \operatorname{supp}(\sigma)| = 1$, then the commutator $[\pi, \sigma]$ of π and σ is a 3-cycle.

Definition 1.5. A subgroup H of a group G is a subset $H \subseteq G$ such that

(1) $H \neq \emptyset$.

- (2) H is closed under the multiplication.
- (3) H is closed under inverses.

We use the shorthand $H \leq G$ for the statement "*H* is a subgroup of *G*."

Note that it follows immediately from the definition of a subgroup that the identity e lies in it, and that H is itself a group under the restricted multiplication.

Problem 44. A (possibly infinite) intersection of subgroups is a subgroup.

Corollary 1.6. If $T \subseteq G$ is a subset, then there exists a unique minimal subgroup containing T, denoted by $\langle T \rangle$ and called the subgroup generated by T. Moreover, this subgroup is in fact the smallest subgroup containing T.

Here H being minimal among subgroups containg T means that for all subgroups K, if $K \supseteq T$, then $K \subseteq H \Rightarrow K = H$, and H being the smallest subgroup containing T means that $K \supseteq T$ implies $K \supseteq H$.

Observation 1.7. The subgroup $\langle T \rangle$ consists of all finite products of elements of T and their inverses. Note that $\langle \emptyset \rangle = \{e\}$. This agrees with our convention that the product of nothing is the identity element.

Theorem 1.8. The transpositions generate S_n . (The number of transpositions is $\binom{n}{2}$.)

Proof. Write a generic k-cycle as a product of k - 1 transpositions.

Theorem 1.9. The n-1 neighbour swaps (i, i+1) generate S_n .

Proof. Write the transposition (i, i + k) as a product of 2k - 1 neighbour swaps.

Can we generate S_n using n-1 transpositions in a different way? Fix a set T of transpositions. In order to study this question it is useful to consider the graph whose vertices are $\{1, 2, ..., n\}$, with an edge between i and j if and only if $(ij) \in T$.

Definition 1.10. Two graphs X = (V, E) and Y = (W, F) are *isomorphic* if there exists an isomorphism $X \to Y$, i.e., a bijection $\varphi \colon V \to W$ such that $(u, v) \in E \Leftrightarrow (\varphi(u), \varphi(v)) \in F$.

- **Problem 45.** (a) Show that there are many non-isomorphic arrangements of n-1 transpositions that generate S_n . (That is, the graphs of the respective generating sets are not isomorphic.)
 - (b) Show that S_n cannot be generated by fewer than n-1 transpositions.

Problem 46. The identity cannot be written as a product of an odd number of transpositions.

Problem 47. Let $\sigma = (1, 2, \dots, n)$ and let $\tau = (12)$. Then:

- (a) $S_n = \langle \sigma, \tau \rangle$
- (b) Every permutation is a product of $O(n^2)$ instances of $\{\sigma, \sigma^{-1}, \tau\}$.
- (c) For some permutations we need $\Omega(n^2)$.

Recall that $O(n^2)$ means at most $C \cdot n^2$, $\Omega(n^2)$ means at least $C' \cdot n^2$ for some constants C, C' > 0.

2. Fields

Notation 2.1. For an abelian group G we usually write a + b for a * b, 0 for the identity element, and -a for the inverse of $a \in G$ (additive notation). For a nonabelian group we instead write $a \cdot b$ or ab for a * b, 1 for the identity element, and a^{-1} for the inverse of $a \in G$ (multiplicative notation). The multiplicative notation is also frequently used for abelian groups if we consider two group structures on the same set.

Definition 2.2. The order of a group is the number of elements, denoted by |G|. (Note that $|G| \ge 1$.)

Fix $n \ge 1$. The subgroup $\{z \in \mathbb{C} \mid z^n = 1\}$ of $(\mathbb{C}^{\times}, \cdot)$ is a group of order n.

Definition 2.3. A field $(F, +, \cdot)$ is a set two operations $+, \cdot : F \times F \to F$ such that

- (1) (F, +) is an abelian group whose identity element we denote by 0.
- (2) (F^{\times}, \cdot) is an abelian group, where $F^{\times} = F \setminus \{0\}$.

(3) The distibutive law holds, i.e., for all $a, b, c \in F$, the equation

$$(a+b)c = ac + bc$$

holds.

Exercise 2.4. Let $(F, +, \cdot)$ be a field. For all $a \in F$, a0 = 0a = 0. Thus ab = ba for all $a, b \in F$.

Exercise 2.5. Let $(F, +, \cdot)$ be a field. For all $a, b \in F$, if ab = 0, then a = 0 or b = 0.

Note that the order |F| of a field is at least two: every field contains the two elements $0 \neq 1$. In order to write down simple examples we can use multiplication tables for the respective group operations.

Problem 48. In the multiplication table of a group, every element appears exactly once in each row and each column.

The set $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ of integers modulo n has two operations given by addition modulo n and multiplication modulo n. Thus it is almost a field: $(\mathbb{Z}_n, +)$ is obviously an abelian group, and the distributive law already holds prior to reduction modulo p. Moreover, multiplication is clearly associative and has an identity element 1. Thus it is a field if and only if every non-zero element has an inverse modulo n.

Problem 49. Prove that \mathbb{Z}_n is a field if and only if *n* is a prime number.

Notation 2.6. Let p be a prime number. We write \mathbb{F}_p for the field $(\mathbb{Z}_p, +, \cdot)$ of integers modulo p.

The set $\mathbb{F}_4 = \{0, 1, a, a^{-1}\}$ can be endowed with the structure of a field. The multiplication table for $(\mathbb{F}_4, +)$ is given by

+	0	1	a	a^{-1}
0	0	1	a	a^{-1}
1	1	0	a^{-1}	a
a	a	a^{-1}	0	1
a^{-1}	a^{-1}	a	1	0

and the multiplication table for $(\mathbb{F}_4^{\times}, \cdot)$ is given by

•	1	a	a^{-1}
1	1	a	a^{-1}
a	a	a^{-1}	1
a^{-1}	a^{-1}	1	a

Note that $\mathbb{F}_4 \neq \mathbb{Z}_4$; indeed, \mathbb{F}_4 is a field, while \mathbb{Z}_4 is not.

Problem 50. If \mathbb{F} is a finite field, then $|\mathbb{F}|$ is a prime power. (Note: the converse is also true: for every prime power q there is a field of order q, and this field is unique up to isomorphism.)

Problem 51. Let $\mathbb{C}_p = \{a + bi \mid a, b \in \mathbb{Z}_p\}$ be the "mod p complex numbers." For what values of p is \mathbb{C}_p a field? (Experiment, conjecture, prove. Hint: use Problem 52.)

Definition 2.7. A ring $(R, +, \cdot)$ is a set with two operations $+, \cdot : R \times R \to R$ such that

- (1) (R, +) is an abelian group.
- (2) (R, \cdot) is associative.
- (3) The two distributive laws hold.

A commutative ring is a ring such that ab = ba for all $a, b \in R$.

Examples of commutative rings are \mathbb{Z} and \mathbb{Z}_n .

Exercise 2.8. Let $(R, +, \cdot)$ be a ring. For all $a \in R$, a0 = 0a = 0.

Problem 52. A *finite* commutative ring R is a field if and only if $|R| \ge 2$ and for all $a, b \in R$, ab = 0 implies a = 0 or b = 0.

This concludes our discussion of finite fields. Note that every number field is a field, in fact, number fields are precisely the subfields of \mathbb{C} .

Problem 53. Give an example of an infinite field that is not isomorphic to a number field.

3. Asymptotics

Definition 3.1. Let G be a group, $a \in G$. The order $\operatorname{ord}(a)$ of a is the smallest integer n > 0 such that $a^n = 1$. If no such n exists we say that $\operatorname{ord}(a) = \infty$.

For example, the order of $\operatorname{ord}(123) = 3$, $\operatorname{ord}(1, 2, \ldots, n) = n$ and $\operatorname{ord}((123)(45)) = 6$. More generally, if σ has cycle structure (n_1, n_2, \ldots, n_k) , then $\operatorname{ord}(\sigma) = \operatorname{lcm}(n_1, n_2, \ldots, n_k)$. In order to get elements with big order, we could set n_i to be 2, 3, 5, 7, 11, ... What is the maximum order of a permutation of n elements? We study the asymptotic behavior of this function.

Definition 3.2. Two sequences $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ are asymptotically equal, $a_n \sim b_n$, if $\lim_{n \to \infty} a_n/b_n = 1$.

Theorem 3.3 (Prime number theorem). Let $\pi(x)$ be the number of primes $\leq x$. Then

$$\pi(x) \sim \frac{x}{\ln(x)}$$

so the probability that a random number up to x is prime is asymptotically equal to $1/\ln(x)$.

For example, the probability that a random number with 200 digits is prime is roughly

$$\frac{1}{\ln(10^{200})} = \frac{1}{200\ln(10)} \approx \frac{1}{460}.$$

Problem 54. Prove that $\ln(x!) \sim x \ln(x)$.

Problem 55. Let

$$P(x) = \prod_{p \le x \text{ prime}} p$$

be the product of all primes of size at most x. Prove that the statement

$$\ln(P(x)) \sim x$$

is equivalent to the Prime Number Theorem.

Problem 56. Find the log-asymptotics of the largest order of a permutation in S_n .