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1. Groups. The Symmetric Group

Recall that a permutation of a set A is a bijection π : A → A. For A = {1, 2, . . . , n} we can denote
permutations using the cylcle notation, e.g., we write

π = (156)(27)(34)

for the permutation of [8] = {1, 2, . . . , 8} given by
x 1 2 3 4 5 6 7 8

π(x) 5 7 4 3 6 1 2 8
Note that we omit the cycle (8) of length 1. We say that π has cycle structure (3, 2, 2). A cycle of length 2
is called a transposition.

Composition of functions defines an operation on the set Sn of permutations of [n] = {1, 2, . . . , n}. The
resulting structure is called a group.

Definition 1.1. A group is a set G together with an operation G × G → G, (a, b) 7→ a ∗ b satisfying the
axioms:

(1) For all a, b ∈ G, there exists a unique a ∗ b in G (that is, the operation is a function with the correct
domain and codomain).

(2) The operation is associative.
(3) (Identity) There exists an element e ∈ G such that for all a ∈ G, e ∗ a = a = a ∗ e.
(4) (Inverses) For all a ∈ G there exists a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e.

If, in addition, we have a ∗ b = b ∗ a for all a, b ∈ G, then G is called an abelian group.

Convention 1.2. We compose permutations in the same order as functions, i.e., (12)(23) = (123) and
(23)(12) = (132).

Sn is a group with ∗ given by composition of functions, called the symmetric group of degree n, and we
just noticed that Sn is not abelian for n ≥ 3. Examples of abelian groups are (Z,+), the nonzero elements
F× = F \ {0} of a number field F under multiplication, or the n-th roots of unity in C under multiplication.

While it is not true that all pairs of elements of the symmetric group commute, there are obviously some
pairs of elements that do, for example, disjoint cycles.

Definition 1.3. The support of a permutation σ of [n] is the set

supp(σ) = {x ∈ [n]|π(x) 6= x},
that is, the support is the set of elements that are not fixed by σ.

Exercise 1.4. If supp(π) ∩ supp(σ) = ∅, then πσ = σπ.

Problem 42. Find permutations π, σ such that supp(π) ∩ supp(σ) 6= ∅ and πσ = σπ.

The commutator of π and σ is [π, σ] = πσπ−1σ−1.

Problem 43. If |supp(π) ∩ supp(σ)| = 1, then the commutator [π, σ] of π and σ is a 3-cycle.

Definition 1.5. A subgroup H of a group G is a subset H ⊆ G such that
(1) H 6= ∅.
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(2) H is closed under the multiplication.
(3) H is closed under inverses.

We use the shorthand H ≤ G for the statement “H is a subgroup of G.”

Note that it follows immediately from the definition of a subgroup that the identity e lies in it, and that
H is itself a group under the restricted multiplication.

Problem 44. A (possibly infinite) intersection of subgroups is a subgroup.

Corollary 1.6. If T ⊆ G is a subset, then there exists a unique minimal subgroup containing T , denoted
by 〈T 〉 and called the subgroup generated by T . Moreover, this subgroup is in fact the smallest subgroup
containing T .

Here H being minimal among subgroups containg T means that for all subgroups K, if K ⊇ T , then
K ⊆ H ⇒ K = H, and H being the smallest subgroup containing T means that K ⊇ T implies K ⊇ H.

Observation 1.7. The subgroup 〈T 〉 consists of all finite products of elements of T and their inverses. Note
that 〈∅〉 = {e}. This agrees with our convention that the product of nothing is the identity element.

Theorem 1.8. The transpositions generate Sn. (The number of transpositions is
(
n
2

)
.)

Proof. Write a generic k-cycle as a product of k − 1 transpositions. �

Theorem 1.9. The n− 1 neighbour swaps (i, i+ 1) generate Sn.

Proof. Write the transposition (i, i+ k) as a product of 2k − 1 neighbour swaps. �

Can we generate Sn using n− 1 transpositions in a different way? Fix a set T of transpositions. In order
to study this question it is useful to consider the graph whose vertices are {1, 2, . . . , n}, with an edge between
i and j if and only if (ij) ∈ T .

Definition 1.10. Two graphs X = (V,E) and Y = (W,F ) are isomorphic if there exists an isomorphism
X → Y , i.e., a bijection ϕ : V →W such that (u, v) ∈ E ⇔

(
ϕ(u), ϕ(v)

)
∈ F .

Problem 45. (a) Show that there are many non-isomorphic arrangements of n− 1 transpositions that
generate Sn. (That is, the graphs of the respective generating sets are not isomorphic.)

(b) Show that Sn cannot be generated by fewer than n− 1 transpositions.

Problem 46. The identity cannot be written as a product of an odd number of transpositions.

Problem 47. Let σ = (1, 2, . . . , n) and let τ = (12). Then:
(a) Sn = 〈σ, τ〉
(b) Every permutation is a product of O(n2) instances of {σ, σ−1, τ}.
(c) For some permutations we need Ω(n2).

Recall that O(n2) means at most C · n2, Ω(n2) means at least C ′ · n2 for some constants C,C ′ > 0.

2. Fields

Notation 2.1. For an abelian group G we usually write a+ b for a ∗ b, 0 for the identity element, and −a
for the inverse of a ∈ G (additive notation). For a nonabelian group we instead write a · b or ab for a ∗ b,
1 for the identity element, and a−1 for the inverse of a ∈ G (multiplicative notation). The multiplicative
notation is also frequently used for abelian groups if we consider two group structures on the same set.

Definition 2.2. The order of a group is the number of elements, denoted by |G|. (Note that |G| ≥ 1.)

Fix n ≥ 1. The subgroup {z ∈ C | zn = 1} of (C×, ·) is a group of order n.

Definition 2.3. A field (F,+, ·) is a set two operations +, · : F × F → F such that
(1) (F,+) is an abelian group whose identity element we denote by 0.
(2) (F×, ·) is an abelian group, where F× = F \ {0}.
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(3) The distibutive law holds, i.e., for all a, b, c ∈ F , the equation

(a+ b)c = ac+ bc

holds.

Exercise 2.4. Let (F,+, ·) be a field. For all a ∈ F , a0 = 0a = 0. Thus ab = ba for all a, b ∈ F .

Exercise 2.5. Let (F,+, ·) be a field. For all a, b ∈ F , if ab = 0, then a = 0 or b = 0.

Note that the order |F | of a field is at least two: every field contains the two elements 0 6= 1. In order to
write down simple examples we can use multiplication tables for the respective group operations.

Problem 48. In the multiplication table of a group, every element appears exactly once in each row and
each column.

The set Zn = {0, 1, . . . , n− 1} of integers modulo n has two operations given by addition modulo n and
multiplication modulo n. Thus it is almost a field: (Zn,+) is obviously an abelian group, and the distributive
law already holds prior to reduction modulo p. Moreover, multiplication is clearly associative and has an
identity element 1. Thus it is a field if and only if every non-zero element has an inverse modulo n.

Problem 49. Prove that Zn is a field if and only if n is a prime number.

Notation 2.6. Let p be a prime number. We write Fp for the field (Zp,+, ·) of integers modulo p.

The set F4 = {0, 1, a, a−1} can be endowed with the structure of a field. The multiplication table for
(F4,+) is given by

+ 0 1 a a−1

0 0 1 a a−1

1 1 0 a−1 a
a a a−1 0 1
a−1 a−1 a 1 0

and the multiplication table for (F×4 , ·) is given by
· 1 a a−1

1 1 a a−1

a a a−1 1
a−1 a−1 1 a

Note that F4 6= Z4; indeed, F4 is a field, while Z4 is not.

Problem 50. If F is a finite field, then |F| is a prime power. (Note: the converse is also true: for every
prime power q there is a field of order q, and this field is unique up to isomorphism.)

Problem 51. Let Cp = {a+ bi | a, b ∈ Zp} be the “mod p complex numbers.” For what values of p is Cp a
field? (Experiment, conjecture, prove. Hint: use Problem 52.)

Definition 2.7. A ring (R,+, ·) is a set with two operations +, · : R×R→ R such that
(1) (R,+) is an abelian group.
(2) (R, ·) is associative.
(3) The two distributive laws hold.

A commutative ring is a ring such that ab = ba for all a, b ∈ R.

Examples of commutative rings are Z and Zn.

Exercise 2.8. Let (R,+, ·) be a ring. For all a ∈ R, a0 = 0a = 0.

Problem 52. A finite commutative ring R is a field if and only if |R| ≥ 2 and for all a, b ∈ R, ab = 0 implies
a = 0 or b = 0.

This concludes our discussion of finite fields. Note that every number field is a field, in fact, number fields
are precisely the subfields of C.

Problem 53. Give an example of an infinite field that is not isomorphic to a number field.
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3. Asymptotics

Definition 3.1. Let G be a group, a ∈ G. The order ord(a) of a is the smallest integer n > 0 such that
an = 1. If no such n exists we say that ord(a) =∞.

For example, the order of ord(123) = 3, ord(1, 2, . . . , n) = n and ord
(
(123)(45)

)
= 6. More generally, if

σ has cycle structure (n1, n2, . . . , nk), then ord(σ) = lcm(n1, n2, . . . , nk). In order to get elements with big
order, we could set ni to be 2, 3, 5, 7, 11, . . . What is the maximum order of a permutation of n elements?
We study the asymptotic behavior of this function.

Definition 3.2. Two sequences (an)n∈N and (bn)n∈N are asymptotically equal, an ∼ bn, if limn→∞ an/bn = 1.

Theorem 3.3 (Prime number theorem). Let π(x) be the number of primes ≤ x. Then

π(x) ∼ x

ln(x)
so the probability that a random number up to x is prime is asymptotically equal to 1/ ln(x).

For example, the probability that a random number with 200 digits is prime is roughly
1

ln(10200)
=

1
200 ln(10)

≈ 1
460

.

Problem 54. Prove that ln(x!) ∼ x ln(x).

Problem 55. Let
P (x) =

∏
p≤x prime

p

be the product of all primes of size at most x. Prove that the statement

ln
(
P (x)

)
∼ x

is equivalent to the Prime Number Theorem.

Problem 56. Find the log-asymptotics of the largest order of a permutation in Sn.
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