REU APPRENTICE CLASS #7

INSTRUCTOR: LÁSZLÓ BABAI SCRIBE: DANIEL SCHÄPPI

Wednesday, July 6, 2011

PROBLEM SESSION

Today we solved the problems 13, 22(b), 27, 28, 35, 36, 37, 40, 41(a), 42, and 44. Here are some facts worth remembering.

There is a nice geometric proof for the fact that the sum of the *n*-th complex roots of unity is zero for n > 1. Namely, this sum is invariant under rotation around the origin by the angle $\theta = 2\pi/n$. If n > 1, this rotation has the origin as its unique fixed point.

While solving Problem 28 we noticed how choosing a good notation (e.g., writing ω instead $e^{2\pi i/n}$) helps with the thinking and the exposition.

The solution to Problem 37 involved the Fibonacci numbers F_n , namely, for

$$A = \left(\begin{array}{cc} 0 & 1\\ 1 & 1 \end{array}\right)$$

the k-th power of A is given by

$$A^k = \left(\begin{array}{cc} F_{k-1} & F_k \\ F_k & F_{k+1} \end{array}\right)$$

From this, and from the fact that $A^{k+\ell} = A^k A^\ell$ we immediately infer the useful and nontrivial identity

$$F_{k+\ell} = F_k F_{\ell-1} + F_{k+1} F_{\ell}.$$

From the solution of Problem 22(b) we found the formula

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n + \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

for the n-th Fibonacci number. This shows in particular that the asymptotic equality

$$F_n \sim \frac{\varphi^n}{\sqrt{5}}$$

holds, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden ratio. In fact, F_n is equal to the nearest integer to $\frac{\varphi^n}{\sqrt{5}}$.

While discussing Problem 44, we also asked whether or not a union of subgroups is a subgroup. We showed that for $A, B \leq G, A \cup B$ is a subgroup if and only if $A \subseteq B$ or $B \subseteq A$.

To solve Problem 40 we used the formula

$$\operatorname{sgn}(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(i) - \sigma(j)}{i - j}$$

for the sign of a permutation. To see that this coincides with the original definition, we just have to check that both expression have the same sign and the same absolute value.