REU APPRENTICE CLASS \#7

INSTRUCTOR: LÁSZLÓ BABAI
SCRIBE: DANIEL SCHÄPPI

Wednesday, July 6, 2011

Problem session

Today we solved the problems $13,22(\mathrm{~b}), 27,28,35,36,37,40,41(\mathrm{a}), 42$, and 44 . Here are some facts worth remembering.

There is a nice geometric proof for the fact that the sum of the n-th complex roots of unity is zero for $n>1$. Namely, this sum is invariant under rotation around the origin by the angle $\theta=2 \pi / n$. If $n>1$, this rotation has the origin as its unique fixed point.

While solving Problem 28 we noticed how choosing a good notation (e.g., writing ω instead $e^{2 \pi i / n}$) helps with the thinking and the exposition.

The solution to Problem 37 involved the Fibonacci numbers F_{n}, namely, for

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

the k-th power of A is given by

$$
A^{k}=\left(\begin{array}{cc}
F_{k-1} & F_{k} \\
F_{k} & F_{k+1}
\end{array}\right)
$$

From this, and from the fact that $A^{k+\ell}=A^{k} A^{\ell}$ we immediately infer the useful and nontrivial identity

$$
F_{k+\ell}=F_{k} F_{\ell-1}+F_{k+1} F_{\ell} .
$$

From the solution of Problem 22(b) we found the formula

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

for the n-th Fibonacci number. This shows in particular that the asymptotic equality

$$
F_{n} \sim \frac{\varphi^{n}}{\sqrt{5}}
$$

holds, where $\varphi=\frac{1+\sqrt{5}}{2}$ is the golden ratio. In fact, F_{n} is equal to the nearest integer to $\frac{\varphi^{n}}{\sqrt{5}}$.
While discussing Problem 44, we also asked whether or not a union of subgroups is a subgroup. We showed that for $A, B \leq G, A \cup B$ is a subgroup if and only if $A \subseteq B$ or $B \subseteq A$.

To solve Problem 40 we used the formula

$$
\operatorname{sgn}(\sigma)=\prod_{1 \leq i<j \leq n} \frac{\sigma(i)-\sigma(j)}{i-j}
$$

for the sign of a permutation. To see that this coincides with the original definition, we just have to check that both expression have the same sign and the same absolute value.

