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Wednesday, July 6, 2011

Problem session

Today we solved the problems 13, 22(b), 27, 28, 35, 36, 37, 40, 41(a), 42, and 44. Here are some facts
worth remembering.

There is a nice geometric proof for the fact that the sum of the n-th complex roots of unity is zero for
n > 1. Namely, this sum is invariant under rotation around the origin by the angle θ = 2π/n. If n > 1, this
rotation has the origin as its unique fixed point.

While solving Problem 28 we noticed how choosing a good notation (e.g., writing ω instead e2πi/n) helps
with the thinking and the exposition.

The solution to Problem 37 involved the Fibonacci numbers Fn, namely, for

A =
(

0 1
1 1

)
the k-th power of A is given by

Ak =
(
Fk−1 Fk
Fk Fk+1

)
From this, and from the fact that Ak+` = AkA` we immediately infer the useful and nontrivial identity

Fk+` = FkF`−1 + Fk+1F`.

From the solution of Problem 22(b) we found the formula

Fn =
1√
5

((
1 +
√

5
2

)n
+
(

1−
√

5
2

)n)
for the n-th Fibonacci number. This shows in particular that the asymptotic equality

Fn ∼
ϕn√

5

holds, where ϕ = 1+
√

5
2 is the golden ratio. In fact, Fn is equal to the nearest integer to ϕn

√
5
.

While discussing Problem 44, we also asked whether or not a union of subgroups is a subgroup. We
showed that for A,B ≤ G, A ∪B is a subgroup if and only if A ⊆ B or B ⊆ A.

To solve Problem 40 we used the formula

sgn(σ) =
∏

1≤i<j≤n

σ(i)− σ(j)
i− j

for the sign of a permutation. To see that this coincides with the original definition, we just have to check
that both expression have the same sign and the same absolute value.
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