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1. Field Extensions

Definition 1.1. A subset F ⊆ H of a field H is a subfield if it is a field under the operations of H, i.e.,
if F is closed under sums, products, negation, nonzero reciprocals, and includes the multiplicative identity
element “1.”

If F is a subfield of H then H is an extension field of F . In this case, H is a vector space over F ; we call
the dimension of this vectorspace the degree of this extension and denote it by [H : F ] = dimF H. If [H : F ]
is finite, this is a finite extension.

Problem 74. The only finite extensions of R are R and C.

Problem 75. Find a field extension F of Q with [F : Q] = 10.

Problem 76. Suppose K ⊆ L ⊆ H are field extensions. Prove that [H : K] = [H : L] · [L : K].

Definition 1.2. Suppose F ⊆ H is a field extension, and α ∈ H. We say that α is algebraic over F if there
is an f ∈ F [x], f 6= 0, such that f(α) = 0.

Definition 1.3. If α ∈ C, and α is algebraic over Q, we say that α is an algebraic number.

Exercise 1.4.
√

2 +
√

3 is algebraic.

Problem 77. The algebraic numbers form a field.

Definition 1.5. A polynomial f ∈ F [x] is irreducible over F if deg f ≥ 1 and f cannot be factored into
polynomials (in F [x]) of smaller degree.

Theorem 1.6 (Division Theorem). For all a, b ∈ Z, b 6= 0, there exist q, r ∈ Z with 0 ≤ r < |b| and
a = bq + r.

Theorem 1.7 (Division Theorem for Polynomials). For all f, g ∈ F [x], g 6= 0, there exist q, r ∈ F [x] such
that deg r < deg g and f = gq + r.

Corollary 1.8. For all f ∈ F [x] and α ∈ F , there exists q ∈ F [x] such f(x) = (x− α)q(x) + f(α).

Proof: apply the Division Theorem with g = x− α. Then r must be a constant. Setteing x = α we find
that this constant is f(α) because f(α) = (α− α)q + r = r.

Corollary 1.9. f(α) = 0 if and only if x− α | f .

Corollary 1.10. If α1, . . . , αn are distinct roots of f , then f(x) = (x−α1) . . . (x−αn)s(x) for some s ∈ F [x].

Corollary 1.11. If a polynomial has degree n ≥ 0, it cannot have more than n distinct roots.

Corollary 1.12. If f, g ∈ F [x] with deg f, deg g ≤ n, and there are n+ 1 distinct elements α0, . . . , αn of F
with f(αi) = g(αi) for i = 0, . . . , n, then f = g.

Corollary 1.13. If F is infinite, and f, g are two polynomials over F for which the corresponding functions
f̃ , g̃ : F → F agree, then f = g.

Definition 1.14. If α is algebraic over F , the minimal polynomial of α is the nonzero monic g ∈ F [x] of
smallest degree such that g(α) = 0. Denote this polynomial by mα(x).
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Theorem 1.15. For all f ∈ F [x], f(α) = 0 if and only if mα | f .

Corollary 1.16. Minimal polynomials are unique.

Problem 78. If α is algebraic over F , the minimal polynomial is irreducible over F .

Definition 1.17. If α is algebraic over F , define degF (α) = deg(mα).

Definition 1.18. Suppose F ⊆ H is a field extension, and α ∈ H. F (α) denotes the smallest subfield of H
containing F and α.

Problem 79. F (α) exists and is unique. (Lemma: Any intersection of subfields is a subfield.)

Notation 1.19. We write F [α] for the set {f(α) | f ∈ F [x]}.

Problem 80. If α is algebraic, then F (α) = F [α], and [F (α) : F ] = degF (α).

Problem 81. Corollary: If H is a finite extension of F , then every α ∈ H is algebraic, and if α ∈ H, then
degF (α) | [H : F ].

Problem 82 (Doubling the cube: The Delian Problem). 3
√

2 cannot be constructed by straightedge and
compass.

2. Determinants

Notation 2.1. We write Mn(F ) for the space Fn×n of n× n square matrices over F . Recall that Sn is the
group of all permutations of the set [n] = {1, . . . , n}.

Definition 2.2. The determinant of a matrix A = (aij) ∈Mn(F ) is

detA =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i).

Observation 2.3. The determinant of a diagonal (or upper triangular) matrix is the product of the entries
on the diagonal.

Problem 83. sgn(σ) = sgn(σ−1)

Observation 2.4 (Properties of the Determinant).
• det(AT ) = detA.
• If any column of A is zero, detA = 0.
• Denote the matrix obtained by permuting the columns of the matrix A by the permutation π by Aπ.

Then det(Aπ) = sgn(π) detA.
• If two columns of A are equal, then detA = 0.

Problem 84. Prove (over an arbitrary field, including fields of characteristic 2) that if two columns of A
are equal, then detA = 0.

Definition 2.5. Let A ∈Mn(F ), i 6= j, and λ ∈ F . Writing the columns of A as

A =
[
a1, . . . , an

]
the matrix

A′ =
[
a1, . . . , ai−1, ai − λaj , ai+1, · · · , an

]
is obtained from A by an elementary column operation.

Theorem 2.6. If A′ is obtained from A by an elementary column operation, then detA = detA′.

Theorem 2.7. The determinant of A is zero if and only if the columns of A are linearly dependent.

Theorem 2.8. Let A ∈Mn(F ). Then rk(A) = n if and only if detA 6= 0.

Problem 85. Theorem: Let A be an n×m matrix. Prove: rk(A) is the largest r such that A has an r × r
submatrix with nonzero determinant.
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Definition 2.9. We say that A ∈Mn(F ) is nonsingular if detA 6= 0, and singular if detA = 0.

Definition 2.10. Let A ∈ F k×n. We say that B ∈ Fn×k is a right inverse of A if AB = Ik, and a left
inverse of A if BA = In.

Problem 86. Let A ∈ F k×n. Show that A has a right inverse if and only if A has full row-rank, i.e.,
rk(A) = k. Similarly, show that A has a left inverse if and only if A has full column rank, i.e., rk(A) = n.

Observation 2.11. If A ∈Mn(F ) has a right inverse B and a left inverse C, then B = C.

Problem 87. If k 6= n, |F | =∞, and A has a right inverse, then A has infinitely many right inverses.

Corollary 2.12. If A ∈Mn(F ) has a right inverse, this right inverse is unique.

Theorem 2.13. For a square matrix A ∈Mn(F ), the following are equivalent:

• A is nonsingular.
• detA 6= 0.
• rkA = n.
• The columns of A are linearly independent.
• The columns of A span Fn.
• The rows of A are linearly independent.
• The rows of A span Fn.
• A has a right inverse.
• A has a left inverse.
• A has a two-sided inverse.
• The nullity of A is zero.
• The system of homogenous equations Ax = 0 has only the trivial solution.
• For all b ∈ Fn, the system Ax = b has a solution.
• For all b ∈ Fn, the system Ax = b has a unique solution.
• For all b ∈ Fn, the system Ax = b has at most one solution.

Problem 88. Give a simple explicit formula for

det



a b b . . . b b b
b a b . . . b b b
b b a . . . b b b
...

...
...

. . .
...

...
...

b b b . . . a b b
b b b . . . b a b
b b b . . . b b a


.

The resulting expression should be completely factored.

Problem 89. Let x1, . . . , xn ∈ F , and define the Vandermonde matrix

V (x1, . . . , xn) =


1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n

 .

Show that

detV (x1, . . . , xn) =
∏
i<j

(xj − xi)
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Problem 90. What is

det



1 1 0 . . . 0 0 0
−1 1 1 . . . 0 0 0
0 −1 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 1 0
0 0 0 . . . −1 1 1
0 0 0 . . . 0 −1 1


?
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