REU APPRENTICE CLASS #9

INSTRUCTOR: LÁSZLÓ BABAI SCRIBE: MICHAEL SMITH

Friday, July 8, 2011

1. Field Extensions

Definition 1.1. A subset $F \subseteq H$ of a field H is a *subfield* if it is a field under the operations of H, i.e., if F is closed under sums, products, negation, nonzero reciprocals, and includes the multiplicative identity element "1."

If F is a subfield of H then H is an extension field of F. In this case, H is a vector space over F; we call the dimension of this vectorspace the degree of this extension and denote it by $[H : F] = \dim_F H$. If [H : F] is finite, this is a finite extension.

Problem 74. The only finite extensions of \mathbb{R} are \mathbb{R} and \mathbb{C} .

Problem 75. Find a field extension F of \mathbb{Q} with $[F : \mathbb{Q}] = 10$.

Problem 76. Suppose $K \subseteq L \subseteq H$ are field extensions. Prove that $[H:K] = [H:L] \cdot [L:K]$.

Definition 1.2. Suppose $F \subseteq H$ is a field extension, and $\alpha \in H$. We say that α is *algebraic* over F if there is an $f \in F[x], f \neq 0$, such that $f(\alpha) = 0$.

Definition 1.3. If $\alpha \in \mathbb{C}$, and α is algebraic over \mathbb{Q} , we say that α is an *algebraic number*.

Exercise 1.4. $\sqrt{2} + \sqrt{3}$ is algebraic.

Problem 77. The algebraic numbers form a field.

Definition 1.5. A polynomial $f \in F[x]$ is *irreducible* over F if deg $f \ge 1$ and f cannot be factored into polynomials (in F[x]) of smaller degree.

Theorem 1.6 (Division Theorem). For all $a, b \in \mathbb{Z}$, $b \neq 0$, there exist $q, r \in \mathbb{Z}$ with $0 \leq r < |b|$ and a = bq + r.

Theorem 1.7 (Division Theorem for Polynomials). For all $f, g \in F[x]$, $g \neq 0$, there exist $q, r \in F[x]$ such that deg $r < \deg g$ and f = gq + r.

Corollary 1.8. For all $f \in F[x]$ and $\alpha \in F$, there exists $q \in F[x]$ such $f(x) = (x - \alpha)q(x) + f(\alpha)$.

Proof: apply the Division Theorem with $g = x - \alpha$. Then r must be a constant. Setteing $x = \alpha$ we find that this constant is $f(\alpha)$ because $f(\alpha) = (\alpha - \alpha)q + r = r$.

Corollary 1.9. $f(\alpha) = 0$ if and only if $x - \alpha \mid f$.

Corollary 1.10. If $\alpha_1, \ldots, \alpha_n$ are distinct roots of f, then $f(x) = (x - \alpha_1) \ldots (x - \alpha_n) s(x)$ for some $s \in F[x]$.

Corollary 1.11. If a polynomial has degree $n \ge 0$, it cannot have more than n distinct roots.

Corollary 1.12. If $f, g \in F[x]$ with deg f, deg $g \leq n$, and there are n + 1 distinct elements $\alpha_0, \ldots, \alpha_n$ of F with $f(\alpha_i) = g(\alpha_i)$ for $i = 0, \ldots, n$, then f = g.

Corollary 1.13. If F is infinite, and f, g are two polynomials over F for which the corresponding functions $\tilde{f}, \tilde{g}: F \to F$ agree, then f = g.

Definition 1.14. If α is algebraic over F, the *minimal polynomial* of α is the nonzero monic $g \in F[x]$ of smallest degree such that $g(\alpha) = 0$. Denote this polynomial by $m_{\alpha}(x)$.

Theorem 1.15. For all $f \in F[x]$, $f(\alpha) = 0$ if and only if $m_{\alpha} \mid f$.

Corollary 1.16. Minimal polynomials are unique.

Problem 78. If α is algebraic over F, the minimal polynomial is irreducible over F.

Definition 1.17. If α is algebraic over F, define deg_F(α) = deg(m_{α}).

Definition 1.18. Suppose $F \subseteq H$ is a field extension, and $\alpha \in H$. $F(\alpha)$ denotes the smallest subfield of H containing F and α .

Problem 79. $F(\alpha)$ exists and is unique. (Lemma: Any intersection of subfields is a subfield.)

Notation 1.19. We write $F[\alpha]$ for the set $\{f(\alpha) \mid f \in F[x]\}$.

Problem 80. If α is algebraic, then $F(\alpha) = F[\alpha]$, and $[F(\alpha) : F] = \deg_F(\alpha)$.

Problem 81. Corollary: If *H* is a finite extension of *F*, then every $\alpha \in H$ is algebraic, and if $\alpha \in H$, then $\deg_F(\alpha) \mid [H:F]$.

Problem 82 (Doubling the cube: The Delian Problem). $\sqrt[3]{2}$ cannot be constructed by straightedge and compass.

2. Determinants

Notation 2.1. We write $M_n(F)$ for the space $F^{n \times n}$ of $n \times n$ square matrices over F. Recall that S_n is the group of all permutations of the set $[n] = \{1, \ldots, n\}$.

Definition 2.2. The determinant of a matrix $A = (a_{ij}) \in M_n(F)$ is

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

Observation 2.3. The determinant of a diagonal (or upper triangular) matrix is the product of the entries on the diagonal.

Problem 83. $\operatorname{sgn}(\sigma) = \operatorname{sgn}(\sigma^{-1})$

Observation 2.4 (Properties of the Determinant).

- $\det(A^T) = \det A$.
- If any column of A is zero, $\det A = 0$.
- Denote the matrix obtained by permuting the columns of the matrix A by the permutation π by A^{π} . Then $\det(A^{\pi}) = \operatorname{sgn}(\pi) \det A$.
- If two columns of A are equal, then $\det A = 0$.

Problem 84. Prove (over an arbitrary field, including fields of characteristic 2) that if two columns of A are equal, then det A = 0.

Definition 2.5. Let $A \in M_n(F)$, $i \neq j$, and $\lambda \in F$. Writing the columns of A as

$$A = \begin{bmatrix} a_1, \dots, a_n \end{bmatrix}$$

the matrix

$$A' = \left[a_1, \dots, a_{i-1}, a_i - \lambda a_j, a_{i+1}, \cdots, a_n\right]$$

is obtained from A by an *elementary column operation*.

Theorem 2.6. If A' is obtained from A by an elementary column operation, then $\det A = \det A'$.

Theorem 2.7. The determinant of A is zero if and only if the columns of A are linearly dependent.

Theorem 2.8. Let $A \in M_n(F)$. Then $\operatorname{rk}(A) = n$ if and only if det $A \neq 0$.

Problem 85. Theorem: Let A be an $n \times m$ matrix. Prove: rk(A) is the largest r such that A has an $r \times r$ submatrix with nonzero determinant.

Definition 2.9. We say that $A \in M_n(F)$ is nonsingular if det $A \neq 0$, and singular if det A = 0.

Definition 2.10. Let $A \in F^{k \times n}$. We say that $B \in F^{n \times k}$ is a right inverse of A if $AB = I_k$, and a left inverse of A if $BA = I_n$.

Problem 86. Let $A \in F^{k \times n}$. Show that A has a right inverse if and only if A has full row-rank, i.e., rk(A) = k. Similarly, show that A has a left inverse if and only if A has full column rank, i.e., rk(A) = n.

Observation 2.11. If $A \in M_n(F)$ has a right inverse B and a left inverse C, then B = C.

Problem 87. If $k \neq n$, $|F| = \infty$, and A has a right inverse, then A has infinitely many right inverses.

Corollary 2.12. If $A \in M_n(F)$ has a right inverse, this right inverse is unique.

Theorem 2.13. For a square matrix $A \in M_n(F)$, the following are equivalent:

- A is nonsingular.
- det $A \neq 0$.
- $\operatorname{rk} A = n$.
- The columns of A are linearly independent.
- The columns of A span F^n .
- The rows of A are linearly independent.
- The rows of A span F^n .
- A has a right inverse.
- A has a left inverse.
- A has a two-sided inverse.
- The nullity of A is zero.
- The system of homogenous equations Ax = 0 has only the trivial solution.
- For all $b \in F^n$, the system Ax = b has a solution.
- For all $b \in F^n$, the system Ax = b has a unique solution.
- For all $b \in F^n$, the system Ax = b has at most one solution.

Problem 88. Give a simple explicit formula for

	a	b	$b \\ b$		b	b	b	
	b	a			b	b	b	
	b	b	a		b	b	b	
\det	:	÷	÷	···· ··.	÷	÷	÷	
	b	b	$b \\ b$		a	b	b	
	b	b	b		b	a	b	
	b	b	b		b	b	a)	

The resulting expression should be completely factored.

Problem 89. Let $x_1, \ldots, x_n \in F$, and define the Vandermonde matrix

$$V(x_1, \dots, x_n) = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}.$$

Show that

$$\det V(x_1, \dots, x_n) = \prod_{i < j} (x_j - x_i)$$

Problem 90. What is

$$\det \begin{pmatrix} 1 & 1 & 0 & \dots & 0 & 0 & 0 \\ -1 & 1 & 1 & \dots & 0 & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 1 & 0 \\ 0 & 0 & 0 & \dots & -1 & 1 & 1 \\ 0 & 0 & 0 & \dots & 0 & -1 & 1 \end{pmatrix}$$
?