REU APPRENTICE CLASS \#9

INSTRUCTOR: LÁSZLÓ BABAI
SCRIBE: MICHAEL SMITH

Friday, July 8, 2011

1. Field Extensions

Definition 1.1. A subset $F \subseteq H$ of a field H is a subfield if it is a field under the operations of H, i.e., if F is closed under sums, products, negation, nonzero reciprocals, and includes the multiplicative identity element "1."

If F is a subfield of H then H is an extension field of F. In this case, H is a vector space over F; we call the dimension of this vectorspace the degree of this extension and denote it by $[H: F]=\operatorname{dim}_{F} H$. If $[H: F]$ is finite, this is a finite extension.

Problem 74. The only finite extensions of \mathbb{R} are \mathbb{R} and \mathbb{C}.
Problem 75. Find a field extension F of \mathbb{Q} with $[F: \mathbb{Q}]=10$.
Problem 76. Suppose $K \subseteq L \subseteq H$ are field extensions. Prove that $[H: K]=[H: L] \cdot[L: K]$.
Definition 1.2. Suppose $F \subseteq H$ is a field extension, and $\alpha \in H$. We say that α is algebraic over F if there is an $f \in F[x], f \neq 0$, such that $f(\alpha)=0$.

Definition 1.3. If $\alpha \in \mathbb{C}$, and α is algebraic over \mathbb{Q}, we say that α is an algebraic number.
Exercise 1.4. $\sqrt{2}+\sqrt{3}$ is algebraic.
Problem 77. The algebraic numbers form a field.
Definition 1.5. A polynomial $f \in F[x]$ is irreducible over F if $\operatorname{deg} f \geq 1$ and f cannot be factored into polynomials (in $F[x]$) of smaller degree.

Theorem 1.6 (Division Theorem). For all $a, b \in \mathbb{Z}, b \neq 0$, there exist $q, r \in \mathbb{Z}$ with $0 \leq r<|b|$ and $a=b q+r$.

Theorem 1.7 (Division Theorem for Polynomials). For all $f, g \in F[x], g \neq 0$, there exist $q, r \in F[x]$ such that $\operatorname{deg} r<\operatorname{deg} g$ and $f=g q+r$.

Corollary 1.8. For all $f \in F[x]$ and $\alpha \in F$, there exists $q \in F[x]$ such $f(x)=(x-\alpha) q(x)+f(\alpha)$.
Proof: apply the Division Theorem with $g=x-\alpha$. Then r must be a constant. Setteing $x=\alpha$ we find that this constant is $f(\alpha)$ because $f(\alpha)=(\alpha-\alpha) q+r=r$.

Corollary 1.9. $f(\alpha)=0$ if and only if $x-\alpha \mid f$.
Corollary 1.10. If $\alpha_{1}, \ldots, \alpha_{n}$ are distinct roots of f, then $f(x)=\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{n}\right) s(x)$ for some $s \in F[x]$.
Corollary 1.11. If a polynomial has degree $n \geq 0$, it cannot have more than n distinct roots.
Corollary 1.12. If $f, g \in F[x]$ with $\operatorname{deg} f, \operatorname{deg} g \leq n$, and there are $n+1$ distinct elements $\alpha_{0}, \ldots, \alpha_{n}$ of F with $f\left(\alpha_{i}\right)=g\left(\alpha_{i}\right)$ for $i=0, \ldots, n$, then $f=g$.
Corollary 1.13. If F is infinite, and f, g are two polynomials over F for which the corresponding functions $\tilde{f}, \tilde{g}: F \rightarrow F$ agree, then $f=g$.

Definition 1.14. If α is algebraic over F, the minimal polynomial of α is the nonzero monic $g \in F[x]$ of smallest degree such that $g(\alpha)=0$. Denote this polynomial by $m_{\alpha}(x)$.

Theorem 1.15. For all $f \in F[x], f(\alpha)=0$ if and only if $m_{\alpha} \mid f$.
Corollary 1.16. Minimal polynomials are unique.
Problem 78. If α is algebraic over F, the minimal polynomial is irreducible over F.
Definition 1.17. If α is algebraic over F, define $\operatorname{deg}_{F}(\alpha)=\operatorname{deg}\left(m_{\alpha}\right)$.
Definition 1.18. Suppose $F \subseteq H$ is a field extension, and $\alpha \in H . F(\alpha)$ denotes the smallest subfield of H containing F and α.
Problem 79. $F(\alpha)$ exists and is unique. (Lemma: Any intersection of subfields is a subfield.)
Notation 1.19. We write $F[\alpha]$ for the set $\{f(\alpha) \mid f \in F[x]\}$.
Problem 80. If α is algebraic, then $F(\alpha)=F[\alpha]$, and $[F(\alpha): F]=\operatorname{deg}_{F}(\alpha)$.
Problem 81. Corollary: If H is a finite extension of F, then every $\alpha \in H$ is algebraic, and if $\alpha \in H$, then $\operatorname{deg}_{F}(\alpha) \mid[H: F]$.
Problem 82 (Doubling the cube: The Delian Problem). $\sqrt[3]{2}$ cannot be constructed by straightedge and compass.

2. Determinants

Notation 2.1. We write $M_{n}(F)$ for the space $F^{n \times n}$ of $n \times n$ square matrices over F. Recall that S_{n} is the group of all permutations of the set $[n]=\{1, \ldots, n\}$.

Definition 2.2. The determinant of a matrix $A=\left(a_{i j}\right) \in M_{n}(F)$ is

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{i, \sigma(i)}
$$

Observation 2.3. The determinant of a diagonal (or upper triangular) matrix is the product of the entries on the diagonal.
Problem 83. $\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(\sigma^{-1}\right)$
Observation 2.4 (Properties of the Determinant).

- $\operatorname{det}\left(A^{T}\right)=\operatorname{det} A$.
- If any column of A is zero, $\operatorname{det} A=0$.
- Denote the matrix obtained by permuting the columns of the matrix A by the permutation π by A^{π}. Then $\operatorname{det}\left(A^{\pi}\right)=\operatorname{sgn}(\pi) \operatorname{det} A$.
- If two columns of A are equal, then $\operatorname{det} A=0$.

Problem 84. Prove (over an arbitrary field, including fields of characteristic 2) that if two columns of A are equal, then $\operatorname{det} A=0$.
Definition 2.5. Let $A \in M_{n}(F), i \neq j$, and $\lambda \in F$. Writing the columns of A as

$$
A=\left[a_{1}, \ldots, a_{n}\right]
$$

the matrix

$$
A^{\prime}=\left[a_{1}, \ldots, a_{i-1}, a_{i}-\lambda a_{j}, a_{i+1}, \cdots, a_{n}\right]
$$

is obtained from A by an elementary column operation.
Theorem 2.6. If A^{\prime} is obtained from A by an elementary column operation, then $\operatorname{det} A=\operatorname{det} A^{\prime}$.
Theorem 2.7. The determinant of A is zero if and only if the columns of A are linearly dependent.
Theorem 2.8. Let $A \in M_{n}(F)$. Then $\operatorname{rk}(A)=n$ if and only if $\operatorname{det} A \neq 0$.
Problem 85. Theorem: Let A be an $n \times m$ matrix. Prove: $\operatorname{rk}(A)$ is the largest r such that A has an $r \times r$ submatrix with nonzero determinant.

Definition 2.9. We say that $A \in M_{n}(F)$ is nonsingular if $\operatorname{det} A \neq 0$, and $\operatorname{singular}$ if $\operatorname{det} A=0$.
Definition 2.10. Let $A \in F^{k \times n}$. We say that $B \in F^{n \times k}$ is a right inverse of A if $A B=I_{k}$, and a left inverse of A if $B A=I_{n}$.

Problem 86. Let $A \in F^{k \times n}$. Show that A has a right inverse if and only if A has full row-rank, i.e., $\operatorname{rk}(A)=k$. Similarly, show that A has a left inverse if and only if A has full column rank, i.e., $\operatorname{rk}(A)=n$.

Observation 2.11. If $A \in M_{n}(F)$ has a right inverse B and a left inverse C, then $B=C$.
Problem 87. If $k \neq n,|F|=\infty$, and A has a right inverse, then A has infinitely many right inverses.
Corollary 2.12. If $A \in M_{n}(F)$ has a right inverse, this right inverse is unique.
Theorem 2.13. For a square matrix $A \in M_{n}(F)$, the following are equivalent:

- A is nonsingular.
- $\operatorname{det} A \neq 0$.
- $\mathrm{rk} A=n$.
- The columns of A are linearly independent.
- The columns of A span F^{n}.
- The rows of A are linearly independent.
- The rows of A span F^{n}.
- A has a right inverse.
- A has a left inverse.
- A has a two-sided inverse.
- The nullity of A is zero.
- The system of homogenous equations $A x=0$ has only the trivial solution.
- For all $b \in F^{n}$, the system $A x=b$ has a solution.
- For all $b \in F^{n}$, the system $A x=b$ has a unique solution.
- For all $b \in F^{n}$, the system $A x=b$ has at most one solution.

Problem 88. Give a simple explicit formula for

$$
\operatorname{det}\left(\begin{array}{ccccccc}
a & b & b & \ldots & b & b & b \\
b & a & b & \ldots & b & b & b \\
b & b & a & \ldots & b & b & b \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
b & b & b & \ldots & a & b & b \\
b & b & b & \ldots & b & a & b \\
b & b & b & \ldots & b & b & a
\end{array}\right)
$$

The resulting expression should be completely factored.
Problem 89. Let $x_{1}, \ldots, x_{n} \in F$, and define the Vandermonde matrix

$$
V\left(x_{1}, \ldots, x_{n}\right)=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1}
\end{array}\right)
$$

Show that

$$
\operatorname{det} V\left(x_{1}, \ldots, x_{n}\right)=\prod_{i<j}\left(x_{j}-x_{i}\right)
$$

Problem 90. What is

$$
\operatorname{det}\left(\begin{array}{ccccccc}
1 & 1 & 0 & \ldots & 0 & 0 & 0 \\
-1 & 1 & 1 & \ldots & 0 & 0 & 0 \\
0 & -1 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 1 & 0 \\
0 & 0 & 0 & \ldots & -1 & 1 & 1 \\
0 & 0 & 0 & \ldots & 0 & -1 & 1
\end{array}\right)
$$

