Changes in nuclear receptor networks in cancer

Pratik Worah
Problem

1. **Gene network**: each gene is directly influenced by a handful of different genes and in turn directly influences other genes, this interaction map is the “gene network”.
 a. Note: one can replace “directly influences” by a weaker notion of influence, say influences within a small number of steps.

2. **Goal**: To compute critical pathological changes, i.e., perturbations, in nuclear receptor networks of metastasis vs. non-metastasis cases in breast cancer.

3. **Input**: RNA-seq data from brca_tcgca_2012.

4. **Output**:
 a. Heatmaps for:
 i. The gene network for a selected subset of ~50 genes amongst cancer patients in those datasets, and
 ii. The perturbations to the network for non-metastasis (M0) vs. metastasis (M1) cases.
 b. Predicted genomic pathways that may be responsible for metastasis (recovered using the perturbation map above)

5. **Summary**: perturbation map can give much more information about underlying mechanisms than differential gene expression.
Prominently perturbed pathways

Potential pathways for metastasis

NR1D1

NR1H3

NR2E6

NR1I2

NR2E3

NR4A3

RORA

HNF4A

RORC
Nuclear receptor network in M0 vs M1 in brca_tcga_2012

- As expected many entries are \(~0.0\), as most genes will not be closely influenced by many other genes.
- Each matrix/heatmap entry denotes the influence of a row gene on a column gene in the underlying dynamical system.
- Cyclin expression (CCNA1 and CCND1) was used to “timestamp” cell age/time to compute the interaction matrix.
- Note: The number of M1 cases was far smaller than M0 cases.
Perturbation to the network in metastasis
Cyclins vs scVelo latent time
Questions, limitations, …

● One can use the perturbation map to find genes or epigenetic information that differentiates M0 vs M1 breast cancer. What, if any, clinical purpose can we use it for?
 ○ If yes, what’s the next step?
 ○ Note that epigenetic information is not explicitly baked into the algorithm, but can be inferred from perturbation matrix entries

● The selected ~50 genes are nuclear receptors. We can use other subsets of genes. What’s a good set of genes to focus on?
 ○ Limited computational resources in google colab prevents use of all ~20K genes.

● Is there a dataset available with more M1 cases?
 ○ The brca_tcgag_2012 dataset has only 14 such cases.