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Abstract

Propositional proof complexity studies efficient provability of those state-
ments that can be expressed in propositional logic, in various proof systems and
under various notions of “efficiency”. Proof systems and statements of interest
come from a variety of sources that, besides logic and combinatorics, include
many other areas like combinatorial optimization and practical SAT solving.

This article is an expanded version of the ECM talk in which we will attempt
to convey some basic ideas underlying this vibrant area.
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1 General overview
Like with many other areas in theoretical computer science, the framework of propo-
sitional proof complexity can be easily explained to a mathematically advanced high
school student. In fact, its core definitions are so easy to give that we prefer to interlace
them with the discussion rather than to separate the two.

Definition 1.1 (preliminaries). We fix a set of Boolean (that is, 0-1 valued, where 0
stands for FALSE and 1 stands for TRUE) variables. A literal is either a variable x
or its negation that will be denoted by x̄. The alternate notation ¬x is also used in
the literature, and sometimes we will use the uniform notation xa, a ∈ {0,1}, where

x1 def
= x and x0 def

= x̄. A clause C is a disjunction of literals: C = xa1
i1
∨ . . .∨ xaw

iw in which
no variable appears twice. A conjunctive normal form (CNF in what follows) is a
conjunction of clauses τ =C1∧ . . .∧Cm, often identified with the set {C1, . . . ,Cm} it is
comprised of. Whenever n appears as a subscript in τn, it always stands for the number
of variables.

One very important complexity measure for this article is width. The width of a
clause is the number of literals w in it. The width of a CNF is the maximal width

University of Chicago and Steklov Mathematical Institute; email: razborov@uchicago.edu,
razborov@mi-ras.ru

1

mailto:razborov@uchicago.edu, razborov@mi-ras.ru
mailto:razborov@uchicago.edu, razborov@mi-ras.ru


2 Alexander Razborov

of a clause in it. A k-CNF is a CNF of width ≤ k. An assignment (sometimes called
truth assignment) is a mapping α : V −→ {0,1}. It is naturally extended to literals,
clauses and CNFs. For example, for the assignment α given by α(x1) = 1, α(x2) =
0, α(x3) = 1, α(x4) = 0 we have α(x̄2) = 1, α(x̄1∨ x2∨ x4) = 0, α(x2∨ x3) = 1 and
α((x̄1 ∨ x2 ∨ x4)∧ (x2 ∨ x3)) = 0. A CNF τ is satisfiable if there exists at least one
truth assignment α such that α(τ) = 1; α itself is called then a satisfying assignment.
Otherwise, τ is unsatisfiable.

The algorithmic problem SATISFIABILITY of determining whether a given CNF
τ is satisfiable or not is NP-complete. In fact, it is the most fundamental NP-complete
problem, as well as historically the first [4, Chapter 2.4]. It is central to the field of
computational complexity.

In proof complexity, accents are slightly shifted. Instead of deciding whether τ is
satisfiable or not, we want a proof of the answer, and we are interested in the resources
necessary to represent this proof, in most cases abstracting away from the complexity
of finding it.

If we want to certify the satisfiability of τ then the task becomes trivial: a proof
consists of a satisfying assignment α itself. Let us note in passing, however, that this
immediately changes once we impose additional restrictions on the verification pro-
cess. Significantly oversimplifying, any proof can be written in a special “holographic”
form such that, once submitted, its validity can be checked by verifying a small num-
ber of “lemmas” in it, selected randomly. This leads to one of the most beautiful and
difficult topics in the computational complexity theory called probabilistically check-
able proofs (PCPs). Unfortunately, this topic is way beyond the scope of our article,
we refer the reader to [4, Chapter 11].

The main question of interest in the propositional proof complexity is how to prove
efficiently that a CNF τ is unsatisfiable.

Remark. If we view τ itself as representing a mathematical statement, then what we
call a “proof” is actually its refutation. The reason why this change of direction is
very convenient will become clear below. For now, let us just warn the reader that
the terminology is unfortunately rather inconsistent. Say, an unsatisfiable CNF may
be called in the literature “a contradiction” or even “a tautology”. In what follows we
also may at times be sloppy about this.

Remark. We have restricted ourselves to CNFs mostly because this class is suffi-
ciently broad to easily encompass virtually all statements we will be interested in. It
will also be a must when we discuss so-called weak proof systems. But sometimes
people do consider more complicated Boolean (and not only Boolean in fact) expres-
sions to be proved/refuted.

Once we have determined that our goal is to study efficient provability of (the
unsatisfiability of) CNFs, the next task is to define what we mean by a “proof system”.
In the most abstract form this definition was given in the seminal paper [25] by Cook
and Reckhow.



Proof complexity 3

Definition 1.2 (proof systems). Let UNSAT be the set of all unsatisfiable CNFs. A
propositional proof system is a surjective polynomial-time computable function P :
{0,1}∗� UNSAT, where {0,1}∗ is the set of all finite binary strings.

The intuition is that proofs are encoded by binary strings w and the function P first
checks whether w is a legitimate proof (and outputs something trivial like x∧ x̄ if it is
not). Then P(w) is the theorem that the proof w proves, and the surjectivity of P is the
property of a proof system called completeness: every unsatisfiable CNF possesses at
least one proof (that is, refutation).

In this abstract form the definition has turned out very useful for general, “struc-
tural” studies in proof complexity, see e.g. [40, 55]. But the main focus of our article
is on concrete fixed proof systems that are interesting for some external reasons.

Before branching into specifics, we still can give a few crucial definitions at this
level of generality.

Definition 1.3 (size complexity). For a propositional proof system P and τ ∈UNSAT,
let SP(τ ` 0) be the size complexity of τ defined as the minimal possible bit length |w|
of w ∈ {0,1}∗ such that P(w) = τ . The proof system is p-bounded if SP(τ ` 0) is
bounded by a polynomial in the bit length |τ| of τ itself.

Whether p-bounded proof systems P exist is the main motivating question of proof
complexity. It is not hard to see, however, that in this generality (that is without any
other restrictions on P) this is equivalent to a major question in the computational
complexity.

Theorem 1.4 ([25]). A p-bounded proof system P exists if and only if NP= co−NP.

The following will allow us to compare different proof systems accordingly to their
strength, and arrange them into a hierarchy.

Definition 1.5 (simulation and equivalence). A proof system P p-simulates another
proof system Q if there is a polynomial-time computable function s such that the
following diagram commutes:

{0,1}∗ {0,1}∗

UNSAT

s

Q P

Informally, any Q-proof w can be efficiently converted into a P-proof s(w) of the same
theorem; note that the poly-time computability of s automatically implies that |s(w)| is
bounded by a polynomial in |w|. Two proof systems are p-equivalent if they p-simulate
each other.

We now move on to consider concrete proof systems.
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2 Strong proof systems
The classification of proof systems into “weak” and “strong” is loosely defined and
it is not universally agreed upon. Roughly speaking, a proof system P is considered
strong if we can not rule out that it is p-bounded, and it is sufficiently widely believed
that this inability is in a sense inherent. We will see below at least one proof system in
the “gray area”.

Strong proof systems are usually associated with original motivations for the propo-
sitional proof complexity coming from mathematical logic, more exactly from the
study of weak theories of bounded arithmetic. On this subject I will be very brief (as I
was in my ECM presentation); the reader willing to learn more about these fascinating
connections with classical proof theory is referred to the monographs [21, 38, 24, 39].
As before, we precede the discussion with a few definitions.

Definition 2.1 (Frege, informal). Take any textbook in the mathematical logic. It will
most likely begin with a description of propositional calculus given as a Hilbert-style
proof system. That is, it will contain finitely many axiom schemes like A =⇒ (A∨B)
or A∨¬A and inference rules like

A A =⇒ B
B

(modus ponens).

Here A,B,C, . . . are placeholders for which one can substitute an arbitrary Boolean
formula. This is a Frege proof system.

Remark. One very important distinction in propositional proof complexity is whether
we consider proofs in the tree-like form or allow arbitrary DAGs (directed acyclic
graphs). In other words, do we allow intermediate “lemmas” to be used more than
once or not? This is of little significance in the classical proof theory since any DAG
can be expanded into a tree (if you need to use a lemma more than once, just repeat
its inference). But this may result in an exponential increase in the size of the proof
and, as a result, for weak proof systems we should strictly distinguish between the two
possibilities. It is a non-trivial fact that for the Frege proof system these two versions
are actually p-equivalent [37].

Textbooks in the mathematical logic seldom use the same finite sets of axioms and
inference rules, and in many cases they use even different sets of Boolean connectives
(e.g. we have just seen the implication =⇒ that was not in our original de Morgan
language {¬,∧,∨}). But it turns out that modulo polynomial equivalence all these
choices are immaterial.

Theorem 2.2 ([60]). Any two Frege proof systems, understood as Hilbert-style com-
plete proof systems based on a finite number of axiom schemes and inference rules,
are p-equivalent.

The last remark, along with Theorem 2.2, strongly suggests that the concept of
Frege proof system is very robust and hence natural. This system is denoted by F;
thus, the function SF(τ ` 0) is well-defined up to a polynomial.
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Definition 2.3 (Extended Frege, informal). An Extended Frege proof system, denoted
by EF, is the Frege proof system augmented with the following extension rule. This
rule allows to introduce at any moment a fresh new propositional variable xA as an
abbreviation for a formula A. The proof then may proceed using also the extension
axioms xA ≡ A, and this can happen recursively.

All that has been said about the robustness of Frege proof systems fully applies to
EF as well. That is, SEF(τ ` 0) does not depend on whether it is DAG-like or tree-like
or on the choice of the underlying Frege proof system.

Returning to the connections with weak arithmetic, these theories capture various
complexity classes in the sense that, roughly speaking, all functions provably total
in such a theory T are precisely the functions from that class. Total provability of a
function f (x) means that it is representable by a formula A(x,y) such that T proves2

(∃!y ≤ t)A(x,y) and A(n, f (n)) is true for any n. It involves the bounded existential
quantifier (∃y ≤ t) in front. It turns out that if we are interested in the provability,
in the same theory T , of “almost” quantifier-free formulas (for experts, ∆b

0 formulas)
then such formulas can be translated into an increasing sequence {τn} of propositional
formulas. Then the provability of the original statement in T becomes “essentially
equivalent” to the efficient provability of its propositional translation in a proof system
PT naturally associated with T . In most cases, it simply means that SPT (τn ` 0) is
bounded by a polynomial in n, and F and EF happen to correspond to the most central
systems of weak arithmetic. For more details see the monographs [21, 38, 24, 39]
already cited above.

Showing that F or EF are not p-bounded is widely believed to be out of reach of the
current methods and in general even more difficult than solving notorious open prob-
lems in the computational complexity like NC1 6= P or P 6=NP. They are paradigmatic
strong systems in our informal classification. A good explanation, both philosophical
and heuristical, predicates that the most important feature of a proof system P is the
expressive (in the computational sense of the word) power of its lines, that is what
computational power is afforded to concepts underlying auxiliary statements appear-
ing in the proof. For a Frege proof system lines are just arbitrary Boolean expressions,
and they correspond to the complexity class NC1. For the Extended Frege we get arbi-
trary Boolean circuits, and those correspond to the class P. It appears to be even more
difficult, and usually way more difficult, to analyze what one can prove using concepts
definable by a complexity class than what we can compute within this class. I am not
aware of any good explanation of this fact, this is just what has been happening in the
area so far.

The final observation I would like to offer about F and EF strongly differentiates
the propositional proof complexity from its sister discipline, circuit complexity. Let
me remind the reader that in the latter field we know that almost all Boolean functions
are hard, this is the famous Shannon effect (see e.g. [36, Chapter 1.4]). Moreover, we
strongly believe that a variety of very natural Boolean functions corresponding to NP-

2the exclamation mark stands for “unique”
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complete problems are hard. That is, we have a host of natural and explicit candidates
for hardness, we simply do not know yet how to prove that they are actually hard.

Nothing like that happens in proof complexity, and potential candidates are few
and far between. In [16], Bonet, Buss and Pitassi set off for a slightly modified task
to find good tautologies separating F and EF, that is hard for F, easy for EF. Their
own conclusion, to which I fully concur, was that “no particularly good or convincing
examples are known”. If we relax the requirement and simply ask for tautologies that
would be good candidates to show that the Frege proof system is not p-bounded, I
believe there are only two principles that have passed the test of time even by loose
standards, and both are equally plausible to be hard for EF.

The first is random k-CNFs. Pick up sufficiently many clauses of width k at ran-
dom. Then the resulting CNF will be in UNSAT w.h.p. but there does not appear to be
even a good starting point for F or EF (or, for that matter, any other conceivable proof
system) to certify the unsatisfiability in particular instances.

The second kind of examples is made by CNFs expressing facts like “NP does
not have small size circuits”. For an extensive discussion of these statements and their
relations to other topics in proof and computational complexities I refer the reader to
[59, Section 1].

All proof systems in the remainder of this article will be weak (“potentially” weak
in one case).

3 Benchmarks
In computer science, a “benchmark” usually stands for a “good” standardized test, or
a family of tests, used to run competing pieces of software or hardware to compare
these pieces to each other. In the propositional proof complexity, it also turns out that
there is a handful of combinatorial principles, expressible as unsatisfiable CNFs, that
wander from one framework to another and appear in papers over and over again. This
uniformity turns out indispensable for understanding the general picture and trying
out new methods for proving both lower and upper bounds that can be then applied to
many other tautologies.

For now, let us define two such principles that, arguably, are the most prominent
and popular ones (we will see a few more later in the text).

Definition 3.1 (Pigeon-Hole-Principle). Let m> n be integers; introduce propositional
variables xi j (i ∈ [m], j ∈ [n]). The pigeonhole principle (sometimes also called the
Dirichlet’s principle, particularly in the Russian literature) is the unsatisfiable CNF
PHPm

n made of the following clauses:

• xi1∨ . . .∨ xin, for all “pigeons” i ∈ [m] (“every pigeon flies to a hole”);

• x̄i j ∨ x̄i′ j, for all pairs of different “pigeons” i 6= i′ ∈ [m] and all “holes” j ∈ [n]
(“no two pigeons fly to the same hole”).
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This is the so-called “basic” pigeonhole principle. One can also add to it dual ax-
ioms, the functionality axioms x̄i j∨ x̄i j′ or the surjectivity axioms x1 j∨ . . .xm j. Varying
the parameter m = m(n) as well, we obtain a large family of pigeonhole principles
and, somewhat surprisingly, they may display very different behavior with respect to
the same proof system. I refer the reader to the survey [57] entirely devoted to the pi-
geonhole principle, with the warning that several important results have been obtained
since its release.

Our second principle was introduced in [62] that, arguably, was the earliest paper
in the propositional proof complexity.

Definition 3.2 (Tseitin tautologies). Let G = (V,E) be a simple graph with odd num-
ber of vertices. Introduce propositional variables xe, one variable per edge e ∈ E. The
Tseitin tautology Tseitin(G) is the following system of linear equations over F2:⊕

e3v
xe = 1 (v ∈V )

(⊕ is the parity function, addition mod 2). This principle says that in any spanning
sub-graph of G (determined by the values (xe | e ∈ E )) there exists a vertex of even
degree.

Remark. The attentive reader may have observed that, as stated, Tseitin(G) is not a
CNF. It is usually converted into a CNF by straightforwardly expanding all parities into
a family of clauses. For example, x⊕y⊕z is the same as (x∨y∨z)∧(x̄∨ ȳ∨z)∧(x̄∨y∨
z̄)∧ (x∨ ȳ∨ z̄). This expansion incurs an increase in the size of the contradiction by a
factor of 2∆−1, where ∆ is the maximal vertex degree of G. This is often unacceptable
when ∆ is large so in most applications Tseitin tautologies are considered only for
constant-degree graphs that are also sometimes assumed to be regular (all vertices
have the same degree).

It turns out that Tseitin tautologies work best when G is a good expander. There are
several standard definitions of graph expansion, very much equivalent in the bounded-
degree case. Here we only remind that of edge expansion, as the most convenient for
our purposes.

Definition 3.3 (edge expansion). For a graph G = (V,E) and S⊆V , let E(S, S̄) be the

set of all cross-edges between S and S̄ def
= V \ S. The (edge) expansion c(G) of G is

defined as

c(G)
def
= min

{
|E(S, S̄)|
|S|

∣∣∣∣ S⊆V, 1≤ |S| ≤ |V |/2
}
.

4 Bounded-Depth Frege
In this section we will discuss several restrictions of the Frege proof system to which
Theorem 2.2 no longer applies. On the other hand the remark from Section 2 (that a
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proof system is largely determined by the expressive power of its lines) applies in full,
and a bounded-depth Frege proof system is determined by the bound on depth and the
set of propositional connectives (the basis) it employs.

Let us start with the standard de Morgan basis {¬,∨,∧}. The first useful obser-
vation is that using de Morgan rules ¬(A∨B) ≡ (¬A∧¬B), ¬(A∧B) ≡ (¬A∨¬B),
any formula can be converted into a formula with tight negations, that is a formula in
which negations occur only at the variables.

Definition 4.1 (bounded-depth Frege). The logical depth of a {¬,∨,∧}-formula with
tight negations is the maximum number of alternations ∨∨ . . .∧∧∧ . . .∨ of ∨ and
∧, where the maximum is taken over all paths from the root of the formula to its
leaves (i.e., literals). Alternatively, we can allow disjunctions and conjunctions with
an arbitrary number of arguments, and then logical depth becomes the ordinary depth
(= height) of the tree representing the formula.

The depth-d Frege proof system Fd is the fragment of a Frege proof system over
{¬,∧,∨} in which all lines are required to have logical depth ≤ d.

As in Definition 2.1, we do not specify axiom schemes and inference rules since all
“reasonable” choices lead to p-equivalent systems. For most of this section we view
the depth d as arbitrarily large but fixed constant; this is what we mean by “bounded
depth”.

The corresponding circuit class, made of sequences of Boolean functions that can
be computed by circuits of polynomial size and bounded depth, is well-known in cir-
cuit complexity. It is denoted by AC0 and by now it is relatively well understood,
beginning with exponential size lower bounds for bounded-depth circuits proved in
the celebrated series of papers [1, 63, 34].

While lower bounds for Fd were established with the same general method (so-
called restrictions), this required to overcome a great deal of additional difficulties as
compared to the case of circuits. But before we start discussing concrete results I find
it prudent to make the following disclaimer.

This short article is not intended to be a comprehensive survey in the propositional
proof complexity or its sub-areas; for more extended account see e.g. the monograph
[39] and historical remarks made therein. Its purpose is limited to giving the first
impression about the area to non-specialists, and my choice of illustrating examples is
necessarily incomplete and subjective.

That said, the first lower bounds for bounded-depth Frege were proved for the
pigeon-hole-principle.

Theorem 4.2 ([41, 48]). SFd (PHPn+1
n ` 0)≥ exp

(
Ω

(
n1/5d

))
.

Here, and in what follows, “Ω” is the notation dual to “big-O”: f ≥ Ω(g) means
that there exists an absolute constant ε > 0 such that f ≥ εg for all values of the
parameters appearing in f ,g.

Corollary 4.3. For any fixed d > 0, Fd is not p-bounded.
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To illustrate one point made in Section 3, let us note that once we increase the
number of pigeons to 2n, the situation changes dramatically.

Theorem 4.4 ([43, 5]). SFd (PHP2n
n ` 0) ≤ n(logn)O(1/d)

. For d = 2, this refines as
SF2(PHP2n

n ` 0)≤ nO(logn).

Whether this can be improved to polynomial, perhaps at the expense of using more
pigeons, is open despite decades of research:

Problem 4.5. Does there exist a fixed d > 0 such that SFd (PHP∞
n ` 0)≤ nO(1)?

As we noted above, once a method to analyze a proof system (in particular, to prove
lower bounds for it) is established, it usually can be extended to other contradictions
as well. As an illustration, the following was proved by a direct (albeit, very clever)
reduction from Theorem 4.2.

Theorem 4.6 ([13]). Let {Gn} be a sequence of bounded-degree graphs with c(Gn)≥
Ω(1). Then for any fixed d > 0, SFd (Tseitin(Gn) ` 0)≥ exp

(
Ω

(
n1/5d

))
.

But sometimes the next improvement/generalization requires a very serious en-
hancement of known techniques. Let us for example reverse the gears and instead of
asking about size lower bounds in any fixed depth, ask what is the largest depth, as a
function of the number of variables n, for which the bound still holds.

The bounds in Theorems 4.2, 4.6 work up to d = ε log logn. It was recently im-
proved to d = o

(√
logn

)
in [50]. While this is still the same basic method of restric-

tions the previous work was based upon, this improvement literally had to take it to a
new level of sophistication.

Theorem 4.7 ([50]). For {Gn} as in Theorem 4.6, SFd (Tseitin(Gn)` 0)≥ nΩ((logn)/d2).

Note that unlike Theorem 4.6, this bound is only quasi-polynomial. But it is good
enough to prove that Fd(n) is not p-bounded when d(n) = o

(√
logn

)
.

In conclusion of this section, let us briefly discuss one extension.

Definition 4.8 (bounded-depth Frege with modular gates, informal). Let m > 0 be a
fixed integer and MODm(x1, . . . ,xn) be the propositional connective with the intended
meaning MODm(x1, . . . ,xn) = 1 iff m|x1 + . . .+ xn. Let F(MODm) be a Frege system
(p-equivalent to F) in the language {¬,∧,∨,MODm}. The proof system Fd(MODm)
is its fragment in which the logical depth of all formulas is restricted to d, where
axioms schemes and inference rules are chosen in any reasonable way (in particular,
they should describe basic properties of the new connectives).

For some inspiration of what might be expected from this extension, we have to
look again into the circuit complexity. The corresponding complexity class is denoted
by ACC0[m], and it turns out that the story crucially depends on m.

When m is a prime power, exponential lower bounds for this class of circuits have
been known since [54, 61]. In all other cases (say, when m = 6) this is one of the most
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major and challenging open problems in circuit complexity: for all we know, ACC0[6]
may contain all of NP or, for that matter, EXPTIME. For details, see e.g. [36, Chapter
12].

Accordingly, when m has at least two different prime divisors, Fd(MODm) should
definitely be classified as “strong”. Somewhat embarrassingly, we have not been able
to adapt the proofs from [54, 61] (based on the so-called method of approximations)
to our context so far. The following is one of the main open problems in the area:

Problem 4.9. Prove that for any fixed d > 0 and any fixed prime m > 0 the system
Fd(MODm) is not p-bounded.

The only known partial results toward this problem pertain to its much weaker sub-
systems; we will now briefly mention one of them and another will appear in Section
6.1.

Definition 4.10 (counting principles). Let m 6 | n, and introduce propositional variables

xe, where e ∈
([n]

m

)
, the family of all m-element subsets of [n] def

= {1,2, . . . ,n}. The
counting principle Countn

m is the unsatisfiable CNF consisting of the following clauses:

• x̄e∨ x̄ f , for all e 6= f such that e∩ f 6= /0;

•
∨

e3i xe, for all i ∈ [n].

Intuitively, these clauses state that
(

xe

∣∣∣ e ∈ ([n]m

))
defines a partition of [n] into sets of

size m which may not exist since we assumed m 6 | n. The proof system Fd +Countm is
obtained from Fd by adding to it all substitutional (de Morgan!) instances of Countn

m,
for arbitrary n, that are of logical depth ≤ d.

The principle Countn
m is easily provable in Fd(MODm), hence Fd +Countm is in-

deed intermediate between Fd and Fd(MODm) in the sense of Definition 1.5.

Theorem 4.11 ([11, 18]). Let m,d, ` be fixed integers and assume that ` has a prime
factor which is not a prime factor of m. Then SFd+Countm(Countn

` ` 0)≥ exp
(

nΩ(1)
)

.

Note, however, that this result holds for all m including, say, m = 6. This might be
not so good sign for attempts to adapt these methods for solving Problem 4.9.

5 Resolution
In our notation, resolution is simply F1. It obviously does not make much sense to
consider terms xa1

i1
∧ . . .∧ xaw

iw as lines in a proof, they can be always split into w lines
consisting of single literals. Hence resolution uses clauses only and, given the impor-
tance of this proof system (that we will try to explain below), we prefer to break up
with our own tradition and formulate its inference rules (there are no default axioms)
very explicitly.
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Definition 5.1 (resolution). Resoluton is the proof system operating with clauses, de-
noted by R. It has the following inference rules

C
C∨D

(weakening)
C∨ x D∨ x̄

C∨D
(resolution rule).

A resolution proof is regular if on any path in this proof, no variable x is resolved more
than once. We will denote this subsystem of resolution by RR.

Remark. Resolution, as well as most systems we will see in the rest of this article, is
too weak to speak of CNFs directly. It is therefore paramount (cf. the remark on page
2) that from now on we strictly adopt the “refutational” perspective: all “proofs” will
be actually contradictions derived from a set of clauses.

Remark. The weakening rule is cosmetic and its removal does not change the com-
plexity SR(τ ` 0). Having this rule, however, is very convenient in many situations.

Resolution, as well as other proof systems that we will see below, is very relevant to
various scenarios with practical flavor. The paradigm is somewhat similar in all these
cases; let us spell it out for resolution in a few more details. Much more information
on the topic, as well as all definitions missing in our description below, can be found
e.g. in the very recent survey [19].

There is a large community of practice-oriented researchers working on finding
feasible algorithms (which in this context means “actually implemented and deliver-
ing concrete results”) for solving “interesting” instances of SATISFIABILITY. These
programs are called SAT solvers. Now, what will happen if we feed a CNF τ to a SAT
solver, it runs successfully and produces the correct answer?

When τ is satisfiable, in most cases the solver will be able to justify its answer by
producing an actual satisfying assignment. But this case is not very inspiring for our
purposes.

More interesting is the case when τ is unsatisfiable because if we understand the
code and believe in its correctness, then we also must accept the transcript of the
solver’s run as a proof of unsatisfiability of τ . In mathematical terms, any practical
scalable algorithm for solving SATISFIABILITY defines a propositional proof system
in terms of Definion 1.2.

It turns out that in many scenarios the proof systems automatically associated in
this way to algorithms are also mathematically elegant, and it is particularly visible in
the case of SAT solvers. Namely, the algorithmic technique that has been dominating
in that community for quite a while is called conflict-driven clause learning (CDCL).
Then, a transcript of a run of a CDCL solver can be identified with a resolution proof,
modulo a differing terminology. This connection is in fact so strong that it would not
be too much of an exaggeration to describe the operation of CDCL solvers in this way:
they search, in very ingenuous and specific ways, for resolution refutations of a CNF
τ and declare it satisfiable if the search fails.
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Thus, any lower bounds for the resolution proof system imply inherent limitations
on CDCL solvers that can not be overcome by any amount of clever engineering.
They can also be used as a rough guidance of what to expect and what to avoid when
building CDCL solvers.

An extremely interesting question is whether there is a connection in the oppo-
site direction, that is what algorithmic applications does the mere existence of a short
resolution proof entails.

When the word “algorithmic” is understood in its most theoretical sense (that is,
poly-time computable), this question is captured by the concept of “automatizability”
(or “automation”), and we have recently seen a major progress in this direction [8]
followed up in several other papers. Very loosely speaking, if P 6=NP then no efficient
algorithm will be able to find small resolution refutations in all cases when they exist,
ever.

Another meaningful interpretation is to consider only algorithms based on the
CDCL-architecture but allow them a limited amount of non-determinism in the choices
they make. It turns out that this question is very sensitive to the choice of the model
and, in my view, it is far from being answered conclusively. Some partial work in that
direction is reported e.g. in [12, 7, 44]; once again, much more information can be
found in [19].

Let us now return to mathematics, and we begin with several early prominent re-
sults.

Theorem 5.2 ([62]). SRR(Tseitin(Gridn,n) ` 0)≥ exp(Ω(n)), where Gridn,n is the n×
n grid graph.

Theorem 5.3 ([33]). SR(PHPn+1
n ` 0)≥ exp(Ω(n)).

Theorem 5.4 ([22]). Let τn be a random 3-CNF with O(n) clauses. Then with proba-
bility 1−o(1) we have SR(τn ` 0)≥ exp(Ω(n)).

As we already mentioned several times, it is highly desirable to have reasonably
general methods for analyzing proof complexity, as opposed to those that are tailored
to individual benchmarks. In that respect, the following prominent width-size relation
clearly stands out.

Given a resolution refutation, its width is defined as the maximum width of its
clauses, and let w(τn ` 0) be the minimum possible width of a resolution refutation
of τn. In other words, we are trying to refute τn using only narrow clauses as our
“lemmas”, disregarding the question of how many of them we use. Then the width-
size relation due to Ben-Sasson and Wigderson has the following neat and general
form:

Theorem 5.5 ([15]). For any sequence {τn} of unsatisfiable CNFs,

w(τn ≥ 0)≤ O
(√

n · logSR(τn ` 0)+w0

)
,

where w0 is the width of τn itself.
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Parsing this expression, when w0 is small (say, a constant) and w(τn ` 0)≥Ω(n),
we get SR(τn ` 0)≥ exp(Ω(n)). In words, linear lower bounds on width imply expo-
nential lower bounds on the resolution size.

And it turns out that width lower bounds are often much easier to prove. Say (recall
Definition 3.3),

Theorem 5.6 ([15]). For any sequence of bounded-degree graphs {Gn} with c(Gn)≥
Ω(1), w(Tseitin(Gn) ` 0)≥Ω(n) (and hence by Theorem 5.5, SR(Tseitin(Gn) ` 0)≥
exp(Ω(n))).

This recovers a stronger version of Theorem 4.6 for d = 1 but, again, the main
strength of Theorem 5.5 lies in its generality. Two more important points highlighted
by the width-size relation that have turned out very influential in proof complexity (we
will see some examples below) are this:

1. Diversity is good. Proof complexity measures more elaborated than the one stip-
ulated by Definition 1.3 are inspiring even if one is primarily interested in size.

2. Expansion is good as well. If a graph property imply hardness in the proof com-
plexity, the odds are that expansion will also do the job.

The width-size relation can be successfully applied to an impressive array of var-
ious contradictions τn, often after some massaging. But, as is the case with any good
method, it has its limitations. One notable principle it completely fails at is the pigeon-
hole-principle with many (say, infinitely many) pigeons, which is the special case of
Problem 4.5 for d = 1. For that, another technique of pseudo-width was developed in
[49, 53, 58]. Unfortunately, this concept is a bit too technical to meaningfully address
here so let us simply state the end result for PHP3:

Theorem 5.7. SR(PHP∞
n ` 0)≥ exp

(
Ω
(
n1/3

))
.

Remark. Surprisingly, the best known upper bound here is not the trivial exp(O(n))
but exp

(
O
(
n1/2

))
[20]. That would be nice to close the gap, particularly since most

likely this will require developing new methods:

Problem 5.8. Determine the smallest α ∈ [1/3,1/2] for which SR(PHP∞
n ` 0)≤ exp

(
nα+o(1)

)
.

Among other things, Theorem 5.7 implies resolution lower bounds for the state-
ment “NP does not have small size circuits” mentioned at the end of Section 2; see
again [59], as well as [52], for more details and the context. The former paper also
extends this to the proof system Res(O(1)) operating with O(1)−CNFs but the proof
is very indirect and complicated. On the other hand, Problem 4.5 remains wide open
even for the system (say) Res(2) intermediate between F1 and F2. Moreover, now the
upper bound of Theorem 4.4 no longer applies and we can state this conjecture in the
stronger form:

3The last paper in the series [58] generalized the method to a much wider class of general perfect
matching principles including, among others, the counting principles from Definition 4.10.
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Problem 5.9. Prove (or disprove) that SRes(2)(PHP∞
n ` 0)≥ exp

(
nΩ(1)

)
.

More applications of the pseudo-width method can be found in the recent paper
[28].

Are there prominent unsatisfiable CNFs that (in terms of their resolution complex-
ity) resist analysis by both the width-size and pseudo-width methods? Let me conclude
this section with my favorite example, the small clique problem.

Definition 5.10. Let G be a k-partite graph, that is its vertices can be partitioned into
k blocks, V (G) =V1

.
∪ . . .

.
∪Vk (let us also assume that |V1|= . . .= |Vk|) such that there

is no edge within each block. The CNF CliqueBlock(G,k) is defined as the following
set of clauses in the variables (xv | v ∈V (G)):

•
∨

v∈Vi
xv (1≤ i≤ k);

• x̄v∧ x̄w ((v,w) is not an edge of G).

This CNF says that (xv | v ∈V (G)) encodes a k-clique in G and when the clique num-
ber ω(G) is at most (k−1), this is a contradiction.

The obvious brute-force resolution refutation has size at most nk, and the question
is whether we can do any better. Motivated by the framework of parameterized (com-
putational) complexity [29] and some research in circuit complexity, it is natural to
ask about the existence of resolution refutations of size f (k) ·nO(1), where f (k) is any
function. Assuming that k is a fixed constant, the first term disappears and the question
is whether SR(CliqueBlock(G,k) ` 0) ≤ nO(1), where the degree of the polynomial in
the right-hand side must not depend on k.

The small clique problem is usually considered when G is the Erdös-Renyi random
graph, that is when every potential edge between v ∈ Vi and w ∈ Vj is included i.i.d.

with probability pkn > 0, n def
= |Vi|. Let us fix for definiteness

pkn
def
= n−C/(k−1), (5.1)

where C > 2 is an arbitrary constant, and let Gk,n be the corresponding Erdös-Renyi
graph. The value (5.1) is a (weak) threshold value, it guarantees that the probability of
the event ω(Gk,n) = k is bounded away from both 0 and 1.

Theorem 5.11 ([6]). For k ≤ n1/4−Ω(1), with probability 1−o(1) we have
SRR(CliqueBlock(Gk,n) ` 0)≥ nΩ(k).

Problem 5.12. Prove that for any fixed k > 0, SR(CliqueBlock(Gk,n) ` 0)≥ n2.

6 Algebraic and Semi-Algebraic Proof Systems
When you say 0 and 1, it is only mathematical logicians and computer scientists whose
first association would be FALSE and TRUE. For anyone else, these are distinguished
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elements of a ring with particular algebraic (or semi-algebraic if the ring is ordered)
properties. In this section we will review, very briefly, a prominent family of proof
systems heavily adopting this latter point of view and entirely abstracting from the
logical interpretation of the statements they are proving. Besides [39, Chapter 16], the
foundational material for this section, as well as a taxonomy of these proof systems,
can be found in the early paper [32].

The first thing to decide is how exactly we are going to translate logic to alge-
bra/geometry, and we should start with encoding clauses. There are essentially two
different ways of doing it, and this choice largely determines what kind of proof sys-
tems we are aiming at.

The first possibility is to encode clauses by polynomial equations over a ground
field F. This is done in a very straightforward way; for example, the clause C = x1 ∨
x̄2∨ x3 is encoded as the equation (1− x1)x2(1− x3) = 0.

For the second option we must assume that our ground field F is ordered, say F=Q
or F = R. In that case we can encode clauses by linear inequalities. For example,
C = x1∨ x̄2∨x3 will be translated as x1+(1−x2)+x3≥ 1 that can be further simplified
to x1 + x3 ≥ x2, if desired.

In either case, the original CNF is unsatisfiable if and only if the algebraic/semi-
algebraic set defined by the corresponding system of polynomial equations/inequalities
over F does not have 0-1 solutions. This reformulation allows us to employ tools from
algebra/geometry, and we now treat the two cases separately.

6.1 Algebraic models
If we are allowed to use non-linear polynomials, the assumption that we are interested
only in 0-1 solutions can be hardwired into the framework by introducing the default
axioms x2

i −xi = 0. It turns out to be very handy, albeit not strictly necessary, to factor
out these relations at once and work in the F-algebra

Λn
def
= F[x1, . . . ,xn]/

(
x2

i − xi |1≤ i≤ n
)
.

This algebra was introduced to complexity theory (apparently) in [54, 61]; it consists
of all multi-linear polynomials and hence has linear dimension 2n. On the other hand,
it is isomorphic to the algebra of all functions {0,1}n→ F; Hom(Λn,F) is the set of
all Boolean assignments to the variables x1, . . . ,xn etc.

Hilbert’s Nullstellensatz tells us that a polynomial system f1(x1, . . . ,xn) = . . . =
fm(x1, . . . ,xn) = 0 ( fi ∈ Λn) does not have 0-1 solutions if and only if there exist
Q1,Q2, . . . ,Qm ∈ Λn such that

f1Q1 + f2Q2 + . . .+ fmQm = 1. (6.1)

Every such system of polynomials (Q1, . . . ,Qm)∈Λn can thus be considered as a proof
of the statement that the algebraic set ( f1 = 0, . . . , fm = 0) does not contain 0-1 points.
This proof system is called the Nullstellensatz proof system (over the field F).
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Remark. The question whether this system formally fits Definition 1.2 is slightly non-
trivial. It may depend on the way the polynomials are represented, on their coefficients
etc. We prefer not to dwell into these details as it has become much more customary
(and it is way more clean mathematically, too) to measure the complexity of the proof
(Q1, . . . ,Qm) by its degree defined as max1≤i≤m(deg(Qi)+deg( fi)).

By now, the Nullstellensatz proof system is fairly well understood. But since most
results proved for it have been eventually generalized (and sometimes strengthened)
to a stronger system that we will consider next, let us confine ourselves to just one
prominent example.

Theorem 6.1 ([10]). Every Nullstellensatz refutation of PHP∞
n must have degree Ω(

√
n).

Remark. Both for this result and those below, Definition 2.1 should be slightly ad-
justed. Namely, to avoid polynomials of prohibitively high degree, the pigeon axioms
xi1∨ . . .∨ xin should be translated as xi1 + · · ·+ xin−1 = 0 (note that this also implies
that the funcionality axioms x̄i j1 ∨ x̄i j2 ( j1 6= j2 ∈ [n]) are also implicitly included).

The Polynomial Calculus (PC) is a dynamic version of this system in which we
attempt to prove that 1 is in the ideal ( f1, . . . , fm)⊆ Λn by generating its elements one
by one instead of writing down a single expression like (6.1).

Definition 6.2. Polynomial Calculus (over a ground field F) is the algebraic proof
system denoted by PC whose lines are elements of Λn. It has the following inference
rules:

f = 0 g = 0
α f +βg = 0

;α,β ∈ F (addition rule)
f = 0
f g = 0

(multiplication rule).

The degree of a PC proof is the maximum degree of its lines.

Remark. The main source of non-triviality of this system stems from the fact that at
every step we completely expand the result as a sum of terms. When doing this, can-
cellations may (and typically do) lead to a substantial decrease in degree. On the other
hand, there is a degree-size relation for the polynomial calculus perfectly analogous to
Theorem 5.5 (and actually proved earlier in [23]).

Remark. It is not very hard to see that every polynomial calculus over Fp can be
p-simulated by F2(MODp). Thus, polynomial calculus over a finite field can be rea-
sonably viewed as an “algebraic” component of F2(MODp) while F2 is its logical
part. The main reason why Problem 4.9 appears to be so difficult is that the existing
methods for understanding these two parts seem to be totally disjoint from each other.

There has been a fair amount of work attempting to build actual SAT solvers based
upon algebraic principles, primarily the Gröbner basis algorithm. These solvers relate
to the polynomial calculus in precisely the same way CDCL-based solvers are related
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to resolution, cf. our discussion in Section 5. It would be fair to say that so far they
have not been competitive with CDCL solvers but there does not seem to exist any
good theoretical explanation of this fact. So perhaps the true potential of algebraic
SAT solvers is yet to be revealed; we refer the reader to [19, Section 7.5.7] for more
details.

As usual, we conclude with a few sample results. Historically the first lower bound
for the polynomial calculus generalized and strengthened Theorem 6.1:

Theorem 6.3 ([56]). Every polynomial calculus refutation of PHP∞
n must have degree

Ω(n).

This also implies PC degree lower bounds for the statement “NP does not have
small size circuits” we already mentioned several times before.

The proof method of Theorem 6.3 is rather ad hoc, it is based on the so-called
“pigeon dance” specifically designed for the purpose. The next paper [17] introduced a
very nice and remarkably simple method of analyzing polynomial calculus refutations
from binomial4 axioms. Here is one concrete application that strengthens Theorem
5.6.

Theorem 6.4 ([17]). For any sequence of bounded-degree graphs {Gn} with c(Gn)≥
Ω(1), every polynomial calculus refutation of Tseitin(Gn) over any field of odd or
zero characteristic must have degree Ω(n).

The extension to random 3-CNFs, with the same restriction on the ground field
F, is not very difficult [14]. But the binomial method completely breaks down for
F = F2 which is one of the most interesting cases. Another method for proving PC
degree lower bounds over an arbitrary field based on a general hardness criterion was
proposed in [2]; see also [42] and the literature cited therein for more recent develop-
ments.

Theorem 6.5 ([14, 2]). Let τn be a random 3-CNF with O(n) clauses. Then any PC
refutation of τn over an arbitrary field F must have degree Ω(n).

Let us finally note that the degree-size relation mentioned above immediately im-
plies exponential size lower bounds for polynomial calculus refutations in Theorems
6.4, 6.5.

6.2 Semi-Algebraic Case
There are many prominent semi-algebraic proof systems: Sum-of-Squares, Cutting
Planes, Lovász-Schrijver, Sherali-Adams to name a few. We will only touch, very
briefly, on the first two; for a nicely organized exposition see [32]. Throughout this
section we assume that F=Q or F= R.

4in the Rademacher {±1} framework
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The Sum-of-Squares is also known under the name Positivestellensatz and is closely
related to the so-called Lassierre hierarchy. There are several slight variations in its
definition, we only present here (as many other authors do) the simplest version in
which the original axioms are given as polynomial equations, like in Section 6.1.

Definition 6.6. A SOS (or Positivestellensatz) refutation of a polynomial system ( f1 =
. . .= fm = 0) ( fi ∈ Λn) is a family of polynomials (Q1, . . . ,Qm,g1, . . . ,gt) in Λn such
that

f1Q1 + · · ·+ fmQm +
t

∑
j=1

g2
j =−1. (6.2)

Its degree is defined as max
(
max1≤i≤m deg( fi)+deg(Qi), 2max1≤ j≤t deg(g j)

)
.

The corresponding algorithmic technique has in recent years become extremely
important in combinatorial optimization and approximation algorithms, largely due
to the fact that it has turned out unexpectedly powerful. We refer the reader to the
expository paper [9] although a great deal of important work has been done since that.
The relation between combinatorial optimization and proof complexity follows the
familiar pattern, and in fact in this case it is even more transparent. But one important
difference is that unlike SAT solvers, algorithms in combinatorial optimization seldom
output the exact answer but only an optimistic approximation to it which in most cases
means relaxing the integrality constraints xi ∈ {0,1} to xi ∈ [0,1]. In any case, the
computation implies that one can not beat the value of the goal function delivered
by this relaxation, and then after a straightforward application of the PSD duality, it
becomes a SOS proof in the sense of Definition 6.6. See again [9] for more details.

As for degree lower bounds, SOS is also relatively well understood although some
important problems still remain open. The first lower bound had been proven by Grig-
oriev [31] and largely forgotten until the realization of the algorithmic significance
of the SOS method came. This is the same binomial method we saw in Section 6.1,
wisely put to a different use.

Theorem 6.7 ([31]). Every SOS refutation of Tseitin(Gn), where {Gn} is a sequence
of bounded-degree graphs with c(Gn)≥Ω(1), must have degree Ω(n).

More modern methods of handling SOS proofs are based upon the concept of a
pseudoexpectation which is essentially an object dual to the expression (6.2) (there-
fore, it exists if and only if the system (6.2) is not solvable in Qi,g j of given degree).

The last system we discuss is Cutting Planes.

Definition 6.8. Cutting Planes is the proof system operating with affine inequalities,
denoted by PC. It has default axioms x≥ 0 and x≤ 1 for all variables x, as well as the
following inference rules:

f ≥ 0 g≥ 0
α f +βg≥ 0

;α,β ≥ 0 (convex closure)
f ≥ a

f ≥ dae
; f ∈Z[x1, . . . ,xn] (cut rule).
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To explain this terminology, it is convenient to adapt the dual, more geometric point
of view. Namely, if we allow to apply all possible convex closure rules at once, then
the set of constraints inferrable in this way will form a (convex) polyhedra. Its dual
will be a polytope P that is actually a sub-polytope of [0,1]n (due to default axioms).
The task is to show that P∩{0,1}n = /0, that is that P does not contain any integer
points. In this language, applying the cut rule means cutting off a small piece from this
polytope (whence the name) guaranteed to not contain integer points.

From the algorithmic perspective, cutting planes correspond to the “geometric”
part of very prominent method in combinatorial optimization called Branch and Cut.
The full power of this method is captured by the proof system that, in the geometric
language above, operates with finite unions of polytopes. This system is currently out
of reach of the current methods although I would hesitate to classify it as “strong”.
A major development has been very recently reported on its sub-system Res(linR) in
which all polytopes are confined to the form H ∩ [0,1]n, H a hyperplane [47].

One proof complexity measure for cutting planes that has been extensively con-
sidered in the literature is their (Chvátal) rank (or depth). It is defined as follows: we
allow to apply in parallel not only all possible convex closure rules but cut rules as
well. Then the rank is simply the number of rounds that are necessary to arrive at
the empty polytope. This complexity measure is rather well understood due to a very
powerful technique called “protection lemmas”, see [36, Chapter 19] for an excellent
exposition.

As far as the size of cutting planes refutation is concerned, the situation is way
more intriguing and dynamic. The first lower bounds were proved by Pudlák [51] using
a prominent feasible interpolation method (or rather property). In the next theorem,
Clique-Coloring(n,k) is the principle that says that a graph on n vertices may not
simultaneously have a clique on k vertices and be k-colorable.

Theorem 6.9 ([51]). SCP(Clique-Coloring(n,
√

n))≥ exp
(

nΩ(1)
)

.

Remarkably, the method of feasible interpolation is not combinatorial or direct,
instead it reduces a difficult problem in proof complexity to a difficult problem in cir-
cuit complexity (lower bounds for monotone circuits) that we fortunately know how to
solve. As a by-side remark, let me mention that this kind of reductions is very impor-
tant and welcome for the proof complexity. Still, it is also natural to wonder whether
there are any “direct” methods (all other results in this article certainly qualify) to
handle cutting planes. On this frontier we have seen recent exciting developments that
defy several pieces of “common wisdom”.

Firstly, it somehow makes sense to assume that random O(logn)-CNFs and O(1)-
CNFs should be “morally similar”. Nonetheless, the proof method of the following
theorem (a very clever use of Feasible Interpolation) seems to completely break apart
for O(1)-CNFs.

Theorem 6.10 ([35, 30]). With probability 1− o(1), for a random Θ(logn)-CNF τn

with nO(1) clauses we have SCP(τn ` 0)≥ exp
(

nΩ(1)
)

.
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Even more striking and unexpected is the following recent result. In all our pre-
vious scenarios, random O(1)-CNFs and Tseitin tautologies for expanders went hand
in hand, and it was a general feeling that morally they should be sort of the same
(well, unless the characteristics of the field is 2). Given this feeling, the following
upper bound, very surprising in itself, also does not seem to generalize to random
O(1)-CNFs.

Theorem 6.11 ([26]). For any sequence {Gn} of bounded-degree graphs,
SCP(Tseitin(Gn) ` 0)≤ nO(logn).

All these developments make the following problem particularly exciting.

Problem 6.12. Is it true that for random O(1)-CNFs τn with O(n) clauses,

SCP(τn ` 0)≥ exp
(

nΩ(1)
)

w.h.p.?

It is expected that solving this in the affirmative would require development of
long-sought direct techniques, combinatorial or geometric, for analyzing the size
complexity of cutting planes. But then it also had been expected from the principles
featuring in the last two theorems.

7 In Lieu of Conclusion
There are several important topics in the modern proof complexity that, due to time and
space constraints, we have either skipped entirely or given them much less attention
than they deserve. Let me conclude with a list of such topics, saying (literally) a few
words about each of them and providing some pointers to the literature.

Space Complexity Size complexity measures roughly correspond to the framework
in which a complete proof is written as a single piece made ready for submis-
sion or verification. Space complexity deals with more dynamic, “classroom”
scenario when the proof is presented on a blackboard and lemmas that are no
longer needed can be erased to save space. See [45] for a nice exposition.

Feasible Interpolation and Automatizability These were already mentioned in Sec-
tions 5 and 6.1. The book [39] treats the subject extensively in Chapters 17, 18.

Relations between various proof systems and complexity measures We have already
seen some of those but, with the exception for Theorem 5.5, they were somewhat
straightforward. There are, however, many other realtions, particularly involving
space complexity measures, that are rather intricate and unexpected. The paper
[46] aims at providing a general picture using an appropriate notion of reduction.

Pseudo-random generators in proof complexity This is an ongoing effort to adjust
to the needs of proof complexity the concept that is omnipresent in computa-
tional complexity. It is largely motivated by studying (efficient) provability of
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the principle “NP does not possess small circuits” we already mentioned several
times. See (again) [59, Section 1] or [39, Chapter 19.4] for more details.

Lifting techniques This is a very recent general approach to lower bounds in cir-
cuit complexity, communication complexity and proof complexity remarkably
uniting the three themes. I am not aware of an expository source (this is very
much work in progress!) so let me instead refer to one of the latest papers in this
direction [27].

Ideal Proof System This is an intriguing and bold attempt to stretch the Cook-Reckhow
framework (Definition 1.2) and bring it closer to the concept of probabilistically
checkable proofs discussed earlier in Section 1. Again, this is one of the latest
texts on the subject: [3].
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