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1. Introduction. Analysis of the usefulness of proof search heuristics and au-
tomated theorem proving procedures based on a proof system P amounts (on the
theoretical level) to the following two basic questions:

Question 1. Which theorems in principle possess efficient P-proofs?

Question 2. How to find the optimal (or, at least, a nearly optimal) proof of a given

theorem in P?

Traditional proof complexity mostly dealt, and still deals with the first question. How-
ever, there has been a growing interest in the second one, too. An additional motiva-
tion to study the complexity of finding optimal proofs comes from deep connections
with efficient interpolation theorems; we refer the reader to the surveys [9, 19, 22]
for more details. These surveys also serve as a good starting point for learning more
about propositional proof complexity in general.

One convenient framework for the theoretical study of Question 2 was proposed in
[13]. Namely, they called a proof system P automatizable if there exists a deterministic
algorithm A which, given a tautology 7, returns its P-proof in time polynomial in
the size of the shortest P-proof of 7. The definition of a quasi-automatizable proof
system is given in the same way, but we only require the algorithm A to run in time
which is quasi-polynomial (in the same parameter).

One advantage of this definition is that it allows us to completely disregard the
first basic question on the existence of efficient P-proofs and indeed concentrate on
finding efficient proofs provided they exist. In particular, the notion of automatizabil-
ity makes perfect sense for those (weak) proof systems for which hard tautologies are
already known. Moreover, the weaker is our system the more likely it seems to be
automatizable. One possible explanation of this phenomenon comes from the connec-
tion between automatizability and efficient interpolation (every automatizable proof
system has efficient interpolation, and the property of having efficient interpolation is
indeed anti-monotone w.r.t. the strength of the system). Anyway, given this connec-
tion, the results from [20, 13] imply that Extended Frege and T'C°-Frege proof systems
respectively are not automatizable assuming some widely believed cryptographic as-
sumptions. [11] extended the latter result to bounded-depth Frege but under a much
stronger assumption.
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In this paper we are primarily interested in the automatizability of Resolution and
tree-like Resolution. It is worth noting that both systems possess efficient interpola-
tion, therefore their non-automatizability can not be proved via techniques similar to
[20, 13, 11]. Nonetheless, [18] proved that it is NP-hard to find the shortest resolu-
tion refutation. [3] proved that if P # NP then the length of the shortest resolution
refutation can not be approximated to within a constant factor (both for general and
tree-like Resolution). Under the stronger assumption NP ¢ QP they were able to

improve the ratio from an arbitrary constant to 2!°8" " (later [16] obtained a better
PCP characterization of NP that allows to prove the same bound for arbitrary e — 0
modulo P # NP).

In the opposite direction, [8] observed that tree-like Resolution is quasi-automatizable.
Thus, it is unlikely to show that this system is not automatizable modulo P # NP
conjecture, because it would imply quasi-polynomial algorithms for NP (in case of
general Resolution this goal seems also tricky at the moment because there is only
one! known example [12] for which the proof search algorithm of [10] requires more
than quasi-polynomial time). Therefore, any result establishing non-automatizability
of tree-like Resolution needs to be formulated within a complexity framework in which
the asymptotics n©(®) and n'°¢™ are essentially different.

One natural example of such a framework is parameterized complexity introduced
by Downey and Fellows (see [17]) in which algorithms working in time f(k)n®™) and
n* are considered different from the point of view of effectiveness (here k is an in-
teger input parameter that is supposed to be an “arbitrarily large” constant). In
this paper we prove that neither Resolution nor tree-like Resolution is automatizable
unless the class W[P] (lying very high in the hierarchy of parameterized problems)
is fixed-parameter tractable by a randomized algorithm with one-sided error (Theo-
rem 2.7). Our proof goes by a reduction from the optimization problem MINIMUM
MONOTONE CIRCUIT SATISFYING ASSIGNMENT (MMCSA for short) whose
decision version is complete for the class W[P]. An alternative hardness assumption is
that there is no deterministic fixed-parameter algorithm which approzimates MMCSA
within any constant factor (Theorem 2.5). It is worth noting in this connection that
we were able to relate to each other the hardness of finding exact and approzximate
solutions for MMCSA without using the PCP Theorem (see the proof of Theorem 2.7
given in Section 4). This result can be interesting in its own.

The paper is organized as follows. Section 2 contains necessary preliminaries and
definitions, in Section 3 we present our core reduction from MMCSA to automatiz-
ability of Resolution, and in Section 4 we use (sometimes non-trivial) self-improving
techniques to prove our main results, Theorems 2.5 and 2.7. The paper is concluded
with some open problems in Section 5.

1.1. Recent developments. Since the preliminary version of this paper was
released, the following related developments have occurred.

Atserias and Bonet [6] studied a slightly different variant of automatizability
that they called weak automatizability. Using their techniques, they were also able
to produce more examples of poly-size tautologies for which the width based proof
search algorithm from [10] requires more than quasi-polynomial time. In the opposite
direction, Alekhnovich and Razborov [4] introduced an enhancement of that algorithm
called by them BWBATP (for Branch-Width Based Automated Theorem Prover).

1See, however, Section 1.1 below.



This algorithm performs better than the width based algorithm for several important
classes of tautologies, and for at least one such class it even achieves complete (that
is, polynomial) automatization. Finally, quite unexpectedly our techniques turned
out to be useful in the totally different area of computational learning, where they
inspired a number of strong hardness results for the so-called model of proper learning

[2].
2. Preliminaries and main results.

2.1. Resolution and automatizability. Let z be a Boolean variable, i.e. a
variable that ranges over the set {0,1}. A literal of x is either z (denoted sometimes
as z1) or  (denoted sometimes as z°). A clause is a disjunction of literals. A CNF
is a conjunction of pairwise different clauses.

Let f(z1,...,x,) be an arbitrary function (possibly, partial) from {0, 1}" to some
finite domain D. An assignment to f is a mapping « : {z1,...,2,} — {0,1}. A
restriction of f is a mapping p : {z1,...,2,} — {0,1,%}. We denote by |p| the number

of assigned variables, |p| ef lp~1({0,1})|. The restriction of a function f or CNF
by p, denoted by f|, [7],] is the function [CNF] obtained from f [, respectively] by
setting the value of each z € p~1({0,1}) to p(x), and leaving each z € p~!(x) as a
variable.

The general definition of a propositional proof system was given in the seminal
paper [15]. But since we are interested only in Resolution (which is one of the simplest
and most widely studied concrete systems), we prefer to skip this general definition.
Resolution operates with clauses and has one rule of inference called resolution rule:
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A resolution proof is tree-like if its underlying graph is a tree. A resolution refutation
of a CNF 7 is a resolution proof of the empty clause from the clauses appearing in 7.

The size of a resolution proof is the overall number of clauses in it. For an
unsatisfiable CNF 7, S(7) [S7(7)] is the minimal size of its resolution refutation [tree-
like resolution refutation, respectively]. Clearly, S(7) < St(7).

The width w(C) of a clause C is the number of literals in C. The width w(7)
of a set of clauses T (in particular, the width of a resolution proof) is the maximal
width of a clause appearing in this set. For a CNF 7, let n(7) be the overall number
of distinct variables appearing in it, and let |7| be the overall number of occurrences

of variables in 7, i.e., |7| def > cer w(C). For an unsatisfiable CNF 7, w(7 F () will
denote the minimal width of its resolution refutation.

For a non-negative integer n, let [n] o {1,2,...,n}, and let [n]* e {ICn||I=

We will recall the general definition of automatizability from [13] for the special
cases of Resolution and tree-like Resolution.

DEFINITION 2.1. Resolution [tree-like Resolution] is (quasi-)automatizable if
there exists a deterministic algorithm A which, given an unsatisfiable CNF T, returns
its resolution refutation [tree-like resolution refutation, respectively] in time which is
(quasi-)polynomial in || + S(7) [|7| + ST(7), respectively].

REMARK 1. Note that we do not require that all clauses from T must necessarily
appear in the refutation, therefore, we can not a priori expect the inequality n(r) -
S(7) > |7|. This is why we must introduce the term |T| into the bound on the running
time of A when adapting the general definition of automatizability from [13] to the
case of Resolution.



2.2. Parameterized complexity and MMCSA problem. We refer the reader
to [17] for a good general introduction to the topic of parameterized complexity.
DEFINITION 2.2 ([17, Definition 2.4]). The class FPT (that stands for fixed
parameter tractable) of parameterized problems consists of all languages L C ¥* x N
for which there exists an algorithm ®, a constant ¢ and a recursive function f : N —
N such that:
1. the running time of ®({x, k)) is at most f(k) - |x|¢;
2. (x,k) € L iff 2({z,k)) = 1.

Thus, an algorithm is considered to be feasible if it works in time polynomial

in n & |z| and f(k), where k is supposed to be much smaller than n, and f is an
arbitrarily large (recursive) function. A similar feasibility requirement arises in the
theory of polynomial time approximation schemes (PTAS) for NP-hard problems:
assume that we have an algorithm that approximates a given problem within arbitrary
error € > 0 working in time n®(1/¢). Is it possible to get rid of 1/e in the exponent
and do it in time f(1/€)n®®) (the algorithms which obey the latter bound on the
running time are called EPTAS, efficient polynomial time approximation schemes)?

It turns out that this question is tightly related to the fixed parameter tractability.
Namely, the existence of EPTAS for a given problem implies an ezact algorithm for
the corresponding fixed parameter version (see [7, 14]).

To study the complexity of parameterized problems, the following parameterized
reduction (that preserve the property of being in FPT) is used:

DEFINITION 2.3 ([17, Definition 9.3]). A parameterized problem L C ¥* x N
reduces to another parameterized problem L' C X* X N if there exist (arbitrary!) func-
tions f,g: N — N, and a function h : ¥* X N — ¥* such that h(z, k) is computable
in time f(k)|2|°0), and (x, k) € L iff (h(x,k),g(k)) € L’. For any integer t, the
parameterized problem WEIGHTED ¢-NORMALIZED SATISFTIABILITY is defined
by restricting the ordinary SATISFIABILITY to a certain class of Boolean formu-
las depending on ¢ (we omit the exact definition since it is a little bit technical and
not needed for our results), and the parameter k bounds the Hamming weight of the
satisfying assignment we are searching for. The complexity class W[t] consists of all
problems that can be reduced to WEIGHTED-t-NORMALIZED-SATISFIABILITY
via parameterized reduction, and the class W[P] (where P stands for polynomial) in-
cludes all problems reducible to WEIGHTED CIRCUIT SATISFIABILITY described
as:

WEIGHTED CIRCUIT SATISFIABILITY:

Instance: A circuit C.

Parameter: A positive integer k.

Question: Does C have a satisfying assignment of Hamming weight (defined as the
number of ones) k?

These definitions lead to the following parameterized hierarchy, in which every
inclusion is believed to be strict:

FPT C W[1] C W[2]... C W[P].

In our paper we construct a randomized parameterized reduction from the au-
tomatizability of Resolution to the following optimization problem (MMCSA in what
follows) that was introduced in [3].



Monotone Minimum Circuit Satisfying Assignment:
Instance: A monotone circuit C in n variables over the basis {A, V}.
Solution: An assignment a € {0,1}" such that C(a) = 1.

Objective function: k(a), defined as its Hamming weight.

By k(C) we will denote the minimal value k(a) of a solution a for an instance C
of MMCSA.

The following easy observation was made in [3] (“self-improvement”).

PROPOSITION 2.4. For every fized integer d > O there exists a poly-time com-
putable function w™ which maps monotone circuits into monotone circuits and such
that k(m(C)) = k(C)? for all C.

Our first result can be now formulated as follows:

THEOREM 2.5. If either Resolution or tree-like Resolution is automatizable then
for any fixed € > 0 there exists an algorithm ® receiving as inputs monotone circuits
C which runs in time exp (k(C)°W) - |C|°M) and approzimates the value of k(C) to
within a factor (14 ¢).

The decision version of MMCSA was considered in [17] (under the name WEIGHTED
MONOTONE CIRCUIT SATISFIABILITY) in the context of parameterized com-
plexity and was shown to be complete in the class W[P].

In order to formulate our second (and main) result, we need to introduce the
obvious hybrid of the classes R and FPT:

DEFINITION 2.6. The class FPR. of parameterized problems consists of all lan-
guages L C ¥* x N for which there exists a probabilistic algorithm ®, a constant ¢ and
a recursive function f: N — N such that:

1. the running time of ®({x, k)) is at most f(k) - |x|°;
2. if (x,k) € L then P[®((z,k)) = 1] > 1/2;
3. if (x,k) € L then P[®({z,k)) =1] =0.

Then we have:

THEOREM 2.7. If either Resolution or tree-like Resolution is automatizable then
WIP] C co — FPR.

3. Main reduction from MMCSA to automatizability of Resolution.
This section is entirely devoted to the proof of the following technical lemma.

LEMMA 3.1. There exists a poly-time computable function T which maps any pair
(C,1™), where C is a monotone circuit and m is an integer, to an unsatisfiable CNF
7(C,m) such that:

ST(T(C, m)) < |C| .mO(min{k(C), logm})
and

S(T(C, m)) > mﬂ(min{k(C), logm})' (31)

We begin the proof of Lemma 3.1 by describing CNF's that form the main building
block 7(C,m) and establishing their necessary properties. From now on fix a mono-
tone circuit C' in n variables py,...,p,. Let A C {0,1}™. We will call vectors from
A (usually represented as columns) admissible and call an 0-1 matrix with m rows
A-admissible if all its columns are so. Consider the following combinatorial principle
Pc.a (that may be true or false, depending on the choice of C and A):

Pc.a: every (m x n) 0-1 A-admissible matriz A = (a;;) contains a row i € [m]
such that C(a;1, iz, .., ain) = 1.



Let us formulate one sufficient condition for P¢ 4 to be true (regardless of proof
complexity considerations.)

DEFINITION 3.2. di(A) is the maximal d such that for every d vectors from A
there exists a position i € [m] in which all these vectors have 1.  di(A) can be
also easily characterized in terms of minimum covers. Namely, if we associate with

a
every € A the subset {i € [m]|a; =0} of [m] then d; (A) + 1 is exactly the

am

minimal number of such sets needed to cover the whole [m].

LEMMA 3.3. If k(C) < dy(A) then Pc 4 is true.

Proof. Let A be an (m x n) 0-1 A-admissible matrix. Let ¢ = (ay,...,a,) be

aij
such that C(ay,...,a,) = 1 and k(a) = k(C). Let Ao o a; =1
Qmj

be the set of all columns in A corresponding to those positions j for which a; = 1.
Since |Ap| < k(a) = k(C) < di(A), there exists ¢ € [m] such that a;; = 1 whenever
a; = 1. This means a;; > a; for all j € [n] and implies C(a;1, ..., a) = 1 since C' is
monotone. O

The proof of Lemma 3.3 suggests that if C' and A with the property k(C) <
dy(A) are “generic enough”, then the optimal propositional proof of the principle
Pc, 4 should exhaustively search through all \A|k(c) possible placements of admissible
vectors to the columns {j|a; = 1} and thus have size roughly [A*(©). Our task is
to find an encoding of (the negation of) Pc 4 as a CNF so that we can prove tight
upper and lower bounds on St(7(C,.A)) and S(7(C, A)) of (roughly) this order. This
encoding is somewhat technical and involves several auxiliary functions (see Definition
3.4 below). In order to convey some intuition why do we need all of these, let us briefly
discuss two “naive” attempts at a simpler proof.

Attempt 1 (no encoding at all.)

Suppose that we simply enumerate elements of A by binary strings of length
log | A|, and introduce propositional variables expressing their bits. The main problem
with this encoding is that it does not behave well with respect to (random) restrictions.
The standard width-reducing argument from [8] that we use in part 3 of Lemma 3.8
below assumes a “reasonably uniform” distribution on the set of those restrictions that
“reasonably preserve” the complexity of the tautology. But with the straightforward
encoding, any restriction of propositional variables used for enumerating the set A
results in shrinking this set and completely destroys its useful properties.

We circumvent this in a standard way, by using “excessive encodings” Fy,..., F, :
{0,1}* — A, where F;(z1,...,xs) are surjective and remain so after restricting not
too many variables (Definition 3.5). It is worth noting that even if we may have
assumed in our definition of 7(C, .A) that F; = F» = ... = F,, this property will not
be invariant under restrictions (and this is why it is more convenient not to make this
assumption).

Attempt 2 (same encoding for A and C'.)

The naive encoding of the circuit C' (that is, by propositional variables z;, encod-
ing the intermediate result of the computation by the circuit C' at the gate v when its
input is the ith row of A) suffers from the same drawback as above: we do not want
the values of z;, to be exposed by a random restriction. But why don’t we apply to
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the variables z;, just the same excessive encodings we used above for the elements of
A?

It turns out that with this “lighter” version our lower bounds already go through,
and the upper bound holds for general Resolution (in particular, the reader interested
only in this case can safely assume this simplification). In the tree-like case, however,
the upper bound becomes problematic. Namely, when formalizing the proof of Lemma
3.3, we need to prove the fact C(a;,,...,a;, ) = 1, and the natural way of doing this in
tree-like Resolution assumes full access to clauses of the from (z;,, A... A Ziw, O Ziw)
(cf. the proof of part 1 in Lemma 3.8). This is not a problem if the variables z; ,, are
not encoded, but if we encode them in a non-trivial way, then we no longer will have
a resolution proof.

In order to balance between these two conflicting requirements, we introduce a
more sophisticated encoding scheme that intuitively looks as follows. Imagine that we
have many independent copies C1, ..., C, of the circuit C; indices ¢ € {1,2,...,r} will
be called controls. The (unencoded!) variables z{, will again express the protocol of
computing the value C.(a;,, ..., a;,). But for every individual row i € [m], our axioms
will require this protocol to be valid only for one of these r circuits (say, C¢,), and the
values ¢; are excessively encoded by surjective mappings fi,..., fm : {0,1}* — [r]
in the same way as we did with the elements of A.

In order to not obstruct the proof with irrelevant details, we will define our CNFs
7(C, A, F , f) and establish their necessary properties in a situation which is more
general than what will be actually needed for completing the proof of Lemma 3.1
(see page 11). If the reader prefers, he/she may think during the course of the proof
that A is an arbitrary set of vectors such that di(A) > Q(logm) and (see Definition
3.6) do(A) > Qlogm). Furthermore, r = logm, s = O(logm) and F}, f; will be
(log m)-surjective in the sense of Definition 3.5.

DEFINITION 3.4. Let C(p1,...,pn) be a monotone circuit, A C {0,1}™ be a set
of vectors and Fy,...,F, : {0,1}* — A, f1,..., fm : {0,1}° — [r] be surjective
functions, where f;s are possibly partial. For every j € [n] and v € [s] we introduce a
propositional variable z¥, for every i € [m] and v € [s] introduce a variable y;, and
for every i € [m], every c € [r] (elements of this set will be sometimes referred to as
controls) and every vertex v of the circuit C introduce a variable z§,.

Forj € [n] andd € A, let us denote by [Column; = a) the predicate Fj(x}, ..., x5) =
a@. Likewise, fori € [m] and c € [r], let [Control; = c] denote the predicate “fi(y}, ..., y5)
is defined and f;(y},...,y5) =c”.

The CNF 7(C, A, ﬁ,f) consists of all clauses that result from the expansion of
the following Boolean predicates as CNFs:

(},...,y}) € dom(f;), for alli € [m]; (3.2)

([Column; = d] A [Control; = c]) D 2{,. (3.3)

foralla € A, i € [m] such that a; =1 and all j € [n], ¢ € [r];
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([Controly = c] A (25 * 2§ i) D 2,

for alli € [m], ¢ € [r] and all internal nodes v (3.4)

corresponding to the instruction v «— v' x v, x € {\,V};

[Control; = ¢] D Zj vy, Where vay is the output node of C. (3.5)

It is easy to see that 7(C, A, F, f) is unsatisfiable (for arbitrary surjective F.f)if
and only if Pc 4 is true. Also, as we already mentioned, the only thing we need from
F", f is that they remain surjective after restricting a few variables.

DEFINITION 3.5. We say that an onto (possibly partial) function g : {0,1}* — D
is r-surjective if for any restriction p with |p| < r the function g|, is still onto.

Finally, for the lower bound we need a notion dual to di(A).

DEFINITION 3.6. do(A) is the mazimal d such that for every d positionsiy, ..., iq €
[m] there ezists @ € A such that a;, = ... = a;;, =0.

Now we are ready to formulate our main technical lemma that provides upper
and lower bounds on the size of optimal resolution refutations of 7(C, A, F , f) Like
many similar proofs in the area, the lower bound is naturally split into two fairly
independent parts. The first part provides lower bounds on w(7(C, A, F', f) F 0), but
for technical reasons we need a slightly stronger statement based on a modified notion
of width.

DEFINITION 3.7. For a clause D in the variables of the CNF 7(C, A, F, f), let
wg (D), wy (D) and w.(D) (¢ € [r]) be the numbers of xz-variables, y-variables and

z-variables of the form z{,, respectively, appearing in D. We define the controlled
width w(D) as

w(D) = wz(D) + wy(D) + 1 - min w.(D).

c€[r]

—

The minimal controlled width @((C, A, F, f) - 0) is defined similarly to the minimal
refutation width. Lo

Clearly, w(D) < w(D) for any clause D, and thus w(r(C, A, F,f) F 0) <
w(r(C, A F, f) = 0).

LEMMA 3.8. Let C be a monotone circuit in n variables, A C {0,1}"™ and
Fi,...,F,:{0,1}* — A, f1,..., fm : {0,1}* — [r] be r-surjective functions, where
fis are possibly partial; m,r, s arbitrary integer parameters. Then the following bounds
hold. o

(i) (¢f. Lemma3.3) Ifk(C) < di(A) then Sp(r(C, A, F, f)) < O (|C] - 25O+,
(i) @(r(C, A F, [) - 0) > § - min{k(C), do(A)}.

(iii) S(r(C, A, F,f)) > exp (Q (g ~min{k;(C'),d0(.A)}))

Proof. (Lemma 3.8)

Part 1. By formalizing the proof of Lemma 3.3. Let k &ef k(C) and ay,...,a, be

such that C(ay,...,an) =1 and k(a) = k. Assume for simplicity that a; = ... =ap =
Qi1

1, ax+1 = ... = a, = 0. Fix arbitrary admissible vectors @y def : sy Qg def
Am1



and, using the inequality d; (A) > k, pick up an arbitrary ¢ € [m] (depend-
Amk

ing in general on dy,...,d) such that a;; = a2 = ... = a;x = 1. We want to infer

from 7(C, A, F, f) all clauses in the CNF expansion of

[Columny # @]V ...V [Columny # dj] V [Control; # ] (3.6)

for all ¢ € [r]. Tt is fairly obvious how to do this efficiently in general Resolution.
Namely, let V' be the set of all nodes of the circuit C' that are evaluated to 1 by the
assignment (1%,0"~%). Then we may proceed by induction on the construction of C
and subsequently infer
([Columny = @] A ... A [Columny = d] A [Control; = ¢]) D z5,
for all v € V until we reach vgy,.
In order to get a tree-like proof, however, we should employ a dual (top-down)
strategy. Namely, enumerate the set V' in some order which is consistent with the

topology of C: V = (v1 = p1,U3 = P2y ..., Vk = Dy Vkt1, Uk+2, - - - , Ut = VUgin); all wires
between vertices in V' go from the left to the right. Then, by a reverse induction
on u=t,t—1,...,k we infer (all clauses in the CNF expansion of) [Control; = ¢] D

(zfyvl V...V Z;v“) For p = t this is (a weakening of) (3.5), and for the inductive step

we resolve with the appropriate axiom in (3.4). When we descend to [Control; = ¢] D
(éfml V...V Efm), we consecutively resolve with the corresponding axioms (3.3) to
get rid of 2, and arrive at (3.6). Clearly, this resolution inference of every individual
clause in (3.6) is tree-like and has size O(|CY).

Finally, for every i € [m], every clause in the variables {y? |1 < v < s} appears
in one of the CNF's resulting from the predicates { [Control; # ]| ¢ € [r] } or in (3.2),
and every clause in the variables {x;’ |1 <v < s} appears in one of [Column; # @;].
This gives us an obvious tree-like refutation of the set of clauses (3.2), (3.6) that has
size O(2°*+1)). Combining this refutation with previously constructed inferences of

(3.6) from 7(C, A, F, f), we get the desired upper bound.

Part 2. We follow the general strategy proposed in [10]. Note that every one
of the axioms (3.2)-(3.5) “belongs” to an uniquely defined row; let Row; be the set
of axioms in 7(C, A, F, f) that correspond to the row i. For a clause D, let u(D) be
the smallest cardinality of I C [m] such that U{Row; |i € I} (semantically) implies
D. pu(D) is subadditive, that is u(D) < u(D1) + n(D2) whenever D is obtained from
D1, Dy via a single application of the resolution rule. It is also obvious that u(A) =1
for any axiom A € 7(C, A, F, f)

We claim that p(0) > do(A). Indeed, fix any I C [m] with |I] < do(A). We
need to construct an assignment that satisfies all axioms in U{Row; |7 € I'}. Pick
@ accordingly to Definition 3.6 in such a way that Vi € I(a; = 0). Assign every xy
to o, where ajl., ...,a% is an arbitrary vector such that Fj(a}, ..., Q) = d@; assign
yY in an arbitrary way with the only requirement that they satisfy (3.2), and assign
all z-variables to 0. This assignment will satisfy all axioms in U{Row; | ¢ € I} which
proves p(0) > do(A).

Thus, any resolution refutation of 7(C, A, F , f) must contain a clause D with
1do(A) < (D) < do(A), and we only need to show that this implies w(D) > % -

9

S



min{k(C),do(A)}. Fix I C [m] such that U{Row;|i € I} semantically implies D
and |I| is minimal with this property; 2do(A) < |I| < do(A).

If for every ¢ € I at least one of the following two events is true:

1. the clause D contains at least r variables amongst {y! | v € [s] }
2. for every control ¢ € [r] the clause D contains at least one variable amongst
{#§,| v is a node},
then we are done. Indeed, if h is the number of indices ¢ for which 1) is true, then
wy (D) > rh. For those ¢ € I for which 1) does not hold, we apply 2) to conclude
mingc(y we(D) > (|I|—h), and altogether we have w(D) > wy (D)+r-min.c(,) we(D) >
roI] > 5do(A)

Thus, suppose that for some ig € I neither of these two is true. In particular,
there exists a control ¢y € [r] such that no variable of the form 27’ = appears in D.
Fix an arbitrary assignment o that satisfies all axioms in {Row;|i € I\ {ip}} and
falsifies D (such an assignment exists due to the minimality of |I]).

Let Jp consist of those j € [n] for which the clause D contains at least r variables
from {:c;’ |ve[s]}. If |Jo| > k(C), we are also done. If this is not the case, we will
show how to alter the assignment « so that it will satisfy all axioms in U{Row; |i € I'}
(including Row;, ) but still will falsify D, and this will give us the contradiction.

According to Definition 3.6, there exists @ € A such that a; =0 for all ¢ € I. We
alter a as follows.

Step 1. Using that Fj is r-surjective, we change for every j & Jy the values of the vari-
ables {2 | v € [s] } not appearing in D in such a way that Fj(z},...,z5) = d.
Step 2. Using the fact that f;, is r-surjective, change the values of variables {yfo |lvels]}
not appearing in D in such a way that f;, (yilo, .., ¥; ) = co. Finally, re-assign
every zf{?u to the value computed by the node v on the characteristic vector
of the set Jo. Note that zj; , is set to 1 for j € Jo whereas 27, is set to 0
since |Jo| < k(C).

We claim that this altered assignment o’ satisfies all axioms in U{Row; |i € I }.
Indeed, we made sure in our construction that it satisfies all axioms in Row;, of types
(3.2), (3.4), (3.5), and for ¢ € I'\ {ip} axioms of these types are satisfied since we have
not touched any variable appearing in them. Thus, we only have to check the axioms
(3.3). If j € Jy and i # ip, this axiom has not been touched, and if j & Jy, it becomes
satisfied because of the first step in our construction of o/, and due to the condition
a; =0 (i € I). Finally, if j € Jy and ¢ = ip, the axiom (3.3) gets satisfied during the
second step (in which we set 2], to 1).

But o/ also falsifies D since we have not touched variables appearing in it. This
contradiction with the fact that {Row; |7 € I} implies D completes the proof of part
2.

Part 3. We apply the standard argument of width-reducing restrictions (cf.
[8]). For doing this we observe that the CNFs of the form 7(C, A, F, f) behave well
with respect to certain restrictions. Namely, let d < r and R C [r] be an arbitrary
set of controls. Denote by R4 r the set of all restrictions that arbitrarily assign to a
Boolean value d variables in every one of the groups {«% |v € [s] } , {y} | v € [s] } with
J € [n],i € [m] as well as all the variables 2z, with ¢ & R. Then it is easy to see that for
p € Ry g, every non-trivial clause in 7(C, A, F, f )|, after a suitable re-enumeration
of variables and controls, contains a subclause from 7(C, A, F| o5 ( 7] o)|r) (the partial
function (f;|,)|r is obtained from f;|, by restricting its domain to {y; | fil,(v:) € R}
and range to R).
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Pick now p uniformly at random from R, /2 r, where R is picked at random from
[r]"/2. Then Fj|,, (fil,)|r will be (r/2)-surjective. Therefore, by the already proven

part 2, for every refutation P of 7(C, A, F, f), p(P) will contain a clause of controlled
width

Q (r- min{k(C),do(A)}) (3.7)

with probability 1.

It is easy to see, however, that every clause D whose controlled width w(D) is
that large, is killed (that is, set to 1 and hence removed from the proof) by p with
probability

lem)<Q(ij~mhﬂk«D,&ﬂAﬂ)>.

Indeed, according to Definition 3.7, either w, (D) or w,(D) or 7 - min.c[,) we(D) is
bounded from below by a quantity of the form (3.7). Let w, ;(D) be the num-
ber of variables in the corresponding group that appear in D, so that w,(D) =
> €] wg (D). Then the probability that D is not killed by variables in the jth
group is exp (—Q (%)), and these events are independent so the probabili-

ties of survival multiply to exp (fQ (%)) The case when w, (D) is large is

treated in exactly the same way, and the case when r - min ¢, w.(D) is large is even
simpler since for every choice of R, the number of assigned z-variables is at least
5 - Mingep] we(D) (and s > 7).

2
Therefore, the size of P must be at least exp (Q (é -min{k(C), do(A)})) since

otherwise a random restriction p would have killed all such clauses with non-zero
probability, which is impossible.

Lemma 3.8 is completely proved. O

Proof. (Lemma 3.1)

Our construction of 7(C, m) proceeds in polynomial time as follows.

1. Let p be the smallest prime larger or equal than m. Since m < p < 2m, both
bounds in Lemma 3.1 remain unchanged if we replace m by p or vice versa. Therefore,
w.l.o.g. we may assume from the beginning that m itself is a prime. Let P,, be the
(mxm) 0-1 Paley matriz given by a;; = 1 if and only if j # ¢ and (j —¢) is a quadratic
residue mod m. Let A C {0,1}™ consist of all columns of P,,. Then |A| = m and
do(A), di(A) > Llogm (see e.g. [5]).

2. Fix any Fy-linear code L C {0,1}"M1°8™1 of dimension [logm] that is com-
putable (as a language) in time m©(") and has minimal distance > [logm] (h > 0 is
an absolute constant.) Consider the linear mapping G : {0, 1}"Mlee™] — {0, 1} Mg ]

dual to the inclusion I — {0,1}"M°¢™] (that is, we fix in L an arbitrary basis

Ti, ..., Togm], and let G(y) def ({z1,9)s- -, (Trogm1,¥))-) By linear duality, the

fact that L has minimal distance > [logm| is equivalent to [logm]|-surjectivity

of G. Set r & [logm] and s def h[logm]. Counsider arbitrary (poly-time com-

putable) surjective mappings IT : {0,1}1°™ — A 7 {0,1}M°s™] — [r], and let
F, -G, f %< r- G for all 4, 5.

3. Construct 7(C, A, F, f) Note that the size of this CNF is polynomial in
|C|, m, 2% which is polynomial in |C|,m due to our choice of parameters.
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At this point, Lemma 3.8 3 already implies (3.1) for 7(C, A, f,f). The only
remaining problem is that a priori we do not have the condition k(C) < d;(A) needed
for part 1 of Lemma 3.8. We circumvent this by a trick similar to one used in [3].

Namely, let 7,,, be a fixed unsatisfiable (poly-time constructible) CNF with S(7,,), S7(7m) =
m?1°8™) (for example, one can take a Tseitin tautology with 6((logm)?) variables)

and such that its set of variables is disjoint from the set of variables of 7(C, A, F, f)

We finally set 7(C,m) def 7(C, A, F", f) A T

Since both 7(C, A, F, f) and 7, satisfy the lower bound (3.1), Weak Feasible
Disjunction Property (see e.g. [21] and the literature cited therein) for Resolution
implies that 7(C,m) satisfies this bound, too. If k(C) < }logm then, since d;(A) >
%log m, we can apply Lemma 3.8 1 to get the required upper bound St (7(C,m)) <
|C] - mO*(E)If, on the other hand, k(C) > %logm, the required upper bound
Sr(T(C,m)) < mPUee™) simply follows from the upper bound for 7,,,. This completes
the proof of Lemma 3.1. 0

4. Self-improvement. In this section we complete the proof of Theorems 2.5,
2.7 by combining Lemma 3.1 with a (non-trivial) self-improvement technique. First
we need to get rid of the dummy parameter m in the statement of Lemma 3.1.
LEMMA 4.1. If either Resolution or tree-like Resolution is automatizable then
there exists an absolute constant h > 1 and an algorithm ® working on pairs (C, k),
where C' is a monotone circuit and k is an integer such that:
1. the running time of ®((C,k)) is at most exp(O(k?)) - |C|°M);
2. if k(C) < k then ®({(C,k)) = 1;
3. if k(C) > hk then ®((C,k)) = 0.
Proof. Combining the reduction in Lemma 3.1 with an automatizing algorithm for
either Resolution or tree-like Resolution, we get an integer-valued function S(C,m)

computable in time (|C| - mmn{k(©), logm})ho and such that
memin{k(C), log m} < S(O, m) < (|O| . mmin{k(C), IOgm})h1

for some absolute constants ¢, hg, h; > 0. Set the constant h in the statement in such
a way that

h? > %(m 1). (4.1)

Our algorithm ® works as follows. We set

def 4p.
m Lol 2h max{k, log|C|/k}'

® simulates (|C| . mk)ho steps in the computation of S(C,m), outputs 1 if the compu-
tation halts within this time and its result S(C, m) satisfies the inequality S(C,m) <
(lc]- mk)hl7 and outputs 0 in all other cases.

Our choice of m ensures that m* < exp(O(k?)) - |C|°(M), which implies property
1).

Since logm > hk > k, under the assumption k(C) < k the limitations we have
imposed on the running time and the output value of the algorithm @ are less strin-
gent than the bounds known of the underlying algorithm computing S(C,m). This
observation implies property 2).
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Finally, using again the inequality logm > hk, k(C) > hk implies that S(C,m)
m¢"* and elementary calculations show that, along with (4.1), this gives us S(C, m)
(|- mk)hl. Thus, if k(C) > hk, the algorithm ® outputs the value 0.

Lemma 4.1 is proved. 0

Proof. (Theorem 2.5)

First, we extract from Lemma 4.1 an algorithm which meets the bound on the
running time and achieves the ratio of approximation h. For that we consecutively
run the algorithm & from that lemma on the inputs (C, 1),...,(C, k), ..., and output
the first value k for which we get the answer 0.

Combining this algorithm with the self-improving reduction from Proposition 2.4
(for d = [L1Inh]), we get approximating algorithm with the required properties. O

In the established terminology, what we have seen so far under the assumption of
automatizability of (tree-like) Resolution is a PTAS (polynomial time approximation
scheme) for MMCSA in the context of parameterized complexity (the latter referring
to the term exp (k(C)°(®) in the bound on the running time). Unfortunately, our
PTAS is not efficient (see the discussion in Section 2.2) as the reduction from Propo-
sition 2.4 blows up the size of the circuit. The task of converting an arbitrary PTAS
into an EPTAS seems to be hopeless in general even in the context of parameterized
complexity (where it appears to be easier). We nonetheless can perform it (in the lat-
ter context) for the specific problem MMCSA using a much trickier self-improvement
construction. This construction (that completes the proof of our main Theorem 2.7)
might be of independent interest, and its idea is roughly as follows.

We need to improve the approximation ratio of the algorithm ® in Theorem

>
>

2.5 from (say) 2 to (say) (1 + ﬁ), and the straightforward way of doing this is by

iteratively applying Proposition 2.4 (say) d = V'k times. The corresponding reduction
will map any circuit C(x1,...,2,) into an n-ary tree of C-gates, and of depth d, and
the resulting increase in size is too costly to us. What we basically show is that we
can circumvent this by replacing the tree with a random DAG of the same depth d
and of width polynomial in n.

Proof. (Theorem 2.7)

Let C' be a monotone circuit in n variables and k be an integer such that

10 < k < e(logn/ loglogn)? (4.2)

for a sufficiently small constant ¢ > 0 (we will remark later how to get rid of this
condition). Our goal is to construct in polynomial time a randomized monotone
circuit 7(C, k) and an integer a(k) (deterministically depending only on k) such that
« is recursive and the following conditions hold:

k(C) <k = P[k(n(C,k))
K(O)>k+1 = Plk(n(C,k))

< a(k)] = L; (4.3)
> 2a(k)] > 1/2. (4.4)

First, we apply to C' the reduction from Proposition 2.4 with d = 2 that maps
the range [k, k + 1] to [k?, k? + 2k + 1]. Re-denoting k? back to k, we may assume
w.l.o.g. that in (4.4) we have a stronger premise:

k(C) > k+2VE = P[k(x(C,k)) > 2a(k)] > 1/2. (4.5)

Now comes our main reduction. Let N,d be two parameters (to be specified
later). The randomized circuit 7 (C, N, d) in (nN) variables consists of d layers. Each
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Fi1G. 4.1. One layer of w(C, N, d)

layer consists of N independent copies of the circuit C' (see Fig. 4.1); thus, it has (nV)
inputs and N outputs. We connect input nodes at the (i 4+ 1)st level to output nodes
at the ith level at random. Finally, we pick up an arbitrary output node at the last
dth level and declare it to be the output of the whole circuit «(C, N, d).

Clearly, this construction is polynomial in |C|, N,d. Also, an obvious induction
on d shows that

k(m(C,N,d)) < k(C)* (4.6)

with probability 1. In order to get a lower bound on k(w(C,N,d)), we need the
following easy lemma. It is of course yet another version of the well-known fact that
a random (bipartite) graph makes an extremely good expander.

LEMMA 4.2. Let x : [N] x [n] — [N] be a randomly chosen function, and k,a
be any parameters. Then P [3V € [N]*(|x(V x [n])| < kn —a)] < N*. (#) .

Proof. (Lemma 4.2)

This event takes place if and only if there exist V' € [N]* and disjoint Dy, ..., D, C
V x [n] such that |Dql,...,|Dy| > 2, >>0_,(|Di| — 1) = a and x|p, = const for all
i € [r]. Since the two first properties imply Y ._, |D;| < 2a, the overall number of all
choices of (V, Dy, ..., D,) does not exceed N* - (2kn)2%. On the other hand, for every
fixed choice we have

N”
- N
]\](Z:i:1 |D;il)

—a

P[x|p, = const,...,Xx|p, = const] =

Lemma, 4.2 follows. O
Now we can complete the description of our reduction. Namely, we set N def ns,

d % /K and let w(C k) = 7(C,n%, Vk), a(k) def v,

(4.3) follows from (4.6).

In order to check (4.5), denote by x; : [N] x [n] — [IN] the function used for

connecting input nodes at the (i + 1)st level of 7(C,n%, Vk) to the output nodes at

the ith level. Let k; 2 (k + vk)4%. Let us call w(C, N,d) bad if for at least one

of these functions x; there exists a set V of circuits at the (¢ + 1)st level such that
|V| = kip1 and |x;(V x [n])] < kiy1(n— VE). Using Lemma 4.2 and (4.2), we get the
14



bound

d—1 4k2 n2 VE-kit1
P N,d)isbad ] <y Nk [
LCERATRIEDS (%
d—1 Vkkit1
:Z 4/%2+1 !
— nl-3/Vk
1=
d—1
<D (1/3)VFRe <12,
=1

On the other hand, it is easy to see by induction on ¢ = d,...,1 that if k(C) >
k+ 2Vk and 7(C, N, d) is good then every satisfying assignment a should satisfy at
least k; output nodes at the ith level. Indeed, the base i = d is obvious (k4 = 1). For
the inductive step, assume that a satisfies the output nodes of a set V' of circuits at
the (i + 1)th level, |[V| = k;r1. Then at least (k 4+ 2v/k) - k;11 input nodes to these
circuits should be satisfied. Since x; is good, there are at most Vk - k;41 collisions
between the (k 4 2v/k) - ki1 wires leading to these input nodes from the ith level.
Therefore, at least (k + 2Vk) - ki1 — Vk - kiy1 = k; output nodes at the ith level
should be satisfied.

In particular, at the first level we will have > (k + \/%)d*1 satisfied circuits and
> (k+2VE) - (k+ vE)V*1 > 2a(k) satisfied input nodes. This completes the proof
that our probabilistic reduction 7(C, k) has the properties (4.3), (4.5) (and, as we
already remarked, improving (4.5) to (4.4) takes one more easy step).

Now we finish the proof of Theorem 2.7. Suppose that either Resolution or
tree-like Resolution is automatizable. Since WEIGHTED MONOTONE CIRCUIT
SATISFIABILITY is W[P]-complete (see [17, Chapter 13]), we only have to show
that the language {(C, k) | k(C) < k} is in co— FPR. Given an input (C, k) we check
the condition (4.2). If it is violated, we apply a straightforward brute-force algorithm
with running time O(|C| - n*) < |C| - f(k) - n® for some recursive f. Otherwise we
simply combine our probabilistic reduction (7, «) with the deterministic algorithm
for deciding whether k(w(C, k)) < a(k) or k(w(C,k)) > 2a(k) provided by Theorem
2.5. Theorem 2.7 is completely proved. O

5. Open Problems. The main problem left open by this paper is whether gen-
eral Resolution is quasi-automatizable. Since the width algorithm by Ben-Sasson
and Wigderson [10] finds a resolution refutation of any unsatisfiable CNF 7 in time
nOW(Tr0)) "4 negative solution to this problem must involve a construction of a broad
and “tractable” family of CNF 7 for which S(7) is much smaller than 2*(""9)_ Such
families are not so easy to come by (e.g. our techniques involve showing the opposite
in the proof of Lemma 3.8 3), although some progress toward this goal was reported
in [6].

As we already mentioned in Section 1.1, the same paper [6] also proposed an in-
teresting notion of weak automatizability. Namely, a proof system P is weakly autom-
atizable if there exists any automatizable proof system that polynomially simulates P.
Is Resolution weakly automatizable (under any reasonable complexity assumptions in
case of negative answer?) [6] showed that this is equivalent to another important open
question in Proof Complexity, namely if the system Res(2) has Feasible Interpolation
Property (for definitions see e.g. [22].)

We were not able to de-randomize the proof of Lemma 4.2. In the terminology of
[1], we need explicit constructions of (N x N) 0-1 matrices that would be (k,n,n —

15



O(1))-expanders for n > N1 and an arbitrary function k = k(N) tending to infinity.
Explicit constructions based on Ramanujan graphs seem to give only (k,n,n — k¢)-
expanders for any fized ¢ which is not sufficient for our purposes. Can we weaken the
hardness assumption in Theorem 2.7 to W[P] # FPT by an explicit construction of
better expanders (or by using any other means)?
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