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Abstract

We study the question of provability of lower bounds on the com-
plexity of explicitly given Boolean functions in weak fragments of
Peano Arithmetic. To that end, we analyze what is the right frag-
ment capturing the kind of techniques existing in Boolean complexity
at present. We give both formal and informal arguments support-
ing the claim that a conceivable answer is V;! (which, in view of
RSUV -isomorphism, is equivalent to S;), although some major re-
sults about the complexity of Boolean functions can be proved in
(presumably) weaker subsystems like Ul. As a by-product of this
analysis, we give a more constructive version of the proof of Hastad
Switching Lemma which probably is interesting in its own right.

We also present, in a uniform way, theories which do not involve
second order quantifiers and show that they prove the same E(l)’b-
theorems as Vi, U} (k > 1). Another application of this technique
is that the schemes of E(l)’b-replacement, E(l)’b —IND and E(l)’b limited
iterated comprehension (all of which are given by Boolean combina-
tions of E}’b-formulae) together prove all B(E}’b)-consequences of

the full £}"* — IND scheme.

1. Introduction

Proving lower bounds on the complexity of explicitly given Boolean func-
tions is one of the most challenging tasks in computational complexity.
This theory met with remarkable success at least twice: in the 60’s (see
e.g. [36, 31, 32, 37, 38]) and in more recent time ([9, 1, 28, 11, 33, 34, 29,
3, 27, 30, 35, 24, 4, 12, 18]). A nice survey of many major results known
in Boolean complexity at present can be found in [5].

Both times, however, the period of enthusiasm was followed by under-
standing that it is not quite clear to which extent the methods developed so
far can be useful for attacking central open problems in Boolean complexity.

This paper (as well as the earlier paper [20]) mainly stemmed from
the author’s intention to look at this situation from the logical point of
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view. Obviously, all methods already developed in Boolean complexity use
only a very tiny bit of the power of classical systems like Peano Arithmetic
or ZF. We are interested in the question of what is the right “minimal”
fragment of P A which suflices for formalizing all these methods in a natural,
“straightforward” way.

We carefully present both formal and informal arguments supporting
the claim that the desired fragment is Vi!. Note that, due to RSUV-
isomorphism [25, 26, 20], this system is equivalent to S, the latter being
considered as the most important among various fragments of Bounded
Arithmetic. For several reasons, however, it is more natural and elegant
to work directly with second order objects while discussing provability of
statements about the complexity of Boolean functions. So, in this paper we
almost exclusively deal with second order theories. The interested reader
can scale everything down to the first order using RSUV -isomorphism,
although the outcome of this translation may look somewhat awkward.

The arguments mentioned in the previous paragraph only say that V!
safely contains the algebraic and combinatorial methods existing in Boolean
complexity at present. Some of them do not use its full power. We analyze
from this point of view several major results in Boolean complexity and see
in which natural subtheories of Vi! they can be proved. One rather surpris-
ing fact discovered during this analysis is that the method of restrictions
[1, 9, 28, 11] can be formalized in either Sy(a) or U]. Moreover, the key
argument of the method known in its strongest form as Hastad Switching
Lemma can be carried over already in JAg(e). This required looking at the
proof of this lemma in a rather unusual fashion (see Lemma E.1 below),
and this modified proof might be of independent interest.

There exists a powerful witnessing technique for studying provability
of Ei’b—formulae in second order theories with Ei’b — IND originated in [6,
Theorems 10.12 and 10.16]. This technique, however, does not say anything
useful about provability of Eé’b—formulae which are our main target (as
formalizations of statements in Boolean complexity are Eé’b). It seems
that the only known negative results concerning provability of Eé’b—formulae
in systems with Ei’b — IND come from Godel Incompleteness Theorem.
But the corresponding formulae implicitly encode large numbers, and the
methods used for establishing their unprovability are hardly relevant to the
“plain” combinatorial problems from Boolean complexity we consider here.

In the rest of the paper we develop an appropriate framework for study-
ing provability of Eé’b—formulae. As our approach is purely syntactical, we
treat all theories V;!, U} (k > 1) in a uniform way, and, in fact, we consider
at once more general theories W%’T, where T is a first order theory (obey-
ing some natural restrictions), and 7(a) is a first order term restricting the
range of the eigenvariable in Ei’b — IND.

We introduce the theories qu’r(é) by adding to the language of W%’T



346 Alexander A. Razborov

relationals § evaluating polynomial size Boolean circuits with the depth

constraints specified by the term 7, removing Eé’b — C'A and restricting

Ei’b —IND to Eé’b — IND. The theories W;’T(é) do not involve second

order quantifiers at all, and the main result says that they prove the same
1,b . . . 1,7

Yy -formulae in the original language as W'

A by-product of this technique is that Eé’b—replacement, Eé’b —IND
and Eé’b limited iterated comprehension axioms are altogether powerful
enough to prove all B(Ei’b)—corollariesl of the full Ei’b — IND scheme.
Moreover, if these corollaries do not contain bounded first order quantifiers
Ve < t [Jz < t] in the scope of quantifiers 3¢ [V¢, respectively] (we call
such formulae strict) then Eé’b—replacement can be omitted. This may
be interesting since these three schemes, unlike Ei’b — IND, are given by
B(Ei’b)—formulae themselves and hence may be taken as axioms in free cut
free proofs consisting of Ei’b U Hi’b—formulae.

The paper is organized as follows. In Section 2 we recall some basic
facts about second order Bounded Arithmetic, introduce the generaliza-
tions W%’T of the theories V;!, Ul and show some simple results concerning
their power. In Section 3 we introduce the systems qu’r(é) and construct
an interpretation of these systems in a fragment of W%’T. The next section
4 is technical, we show that in the theories qu’r(é) the nested recursive
definitions (forbidden in the original axiomatization) are actually admissi-
ble. In Section 5 we prove the main witnessing lemma. In the next section
6 we formulate our main results which in fact are plain corollaries of the
material contained in the previous sections.

The discussion of connections with Boolean complexity (which is the
main motivation for this work) is postponed until Appendix. The reason
is that it is convenient to use for this purpose some concepts introduced in
the rest of the paper.

1.1. Related results about first order theories

Although, for the reason explained above, we are mainly interested in prov-
ability of Eé’b—formulae, our technique also allows us to view from a single
perspective several previously known results on the computational com-
plexity of functions Ei’b—deﬁnable in various first order theories. The basis
for this comparison is provided by RSUV -isomorphism. Due to this iso-
morphism, the theory Vil is equivalent to Si [25, 26, 20], and the theory
Ui is equivalent to R1 [26].

It is an immediate corollary of the witnessing lemma 5.2 that Ei’b—
definable functions in Wll’r are exactly those computable by uniform fam-
ilies of polynomial size 7(a)?V)-depth circuits. For the case of V;! (that is

1 B(®) stands for the closure of the class ® under Boolean operations
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when 7(a) = a), the depth constraint becomes unessential (see Theorem
3.9 below), and the corresponding families of circuits can compute exactly
functions in P. Thus, our result for this case is analogous to the main
result of [6] concerning %}-definable in S functions.

The first order theory characterizing NC' computable functions was
in various forms introduced by Allen [2] and Clote [7]. Takeuti [26]
later showed that this theory is equivalent to R} and, via the RSUV-
isomorphism, to Ul. With these equivalencies in mind, our characterization
of Ei’b—deﬁnable in U} functions (note that polynomial size |n|9(M-depth
uniform circuits are exactly NC-circuits) provides a new proof of the result

by Allen and Clote.

Finally, if we appropriately adjust the languages, the theory V()
resembles Cook’s equational system PV [8], ounly instead of introducing
function symbols for polynomially computable functions, we introduce re-
lationals for evaluating polynomial size circuits. Respectively, the proof of
our main result corresponds to the conservation result concerning S and

PV [6, Chapter 6].

1.2. Recent developments

A purely complexity framework for analyzing the methods developed so far
in non-uniform Boolean complexity was proposed by Razborov and Rudich
in [22]. Namely, in that paper we introduced the notion of natural proof and
argued that the known proofs of lower bounds on the complexity of explicit
Boolean functions in non-monotone models fall within this definition of
natural. These include e.g. the proofs for bounded-depth circuits analyzed
in Appendix E.3, E.4 of this paper.

It was shown in [22], based upon a widely believed hardness assump-
tion, that there is no natural proof of superpolynomial lower bounds for
general circuits.

One application of natural proofs to the logical framework developed in
this paper was given in [21]. Based upon an interpolation-like theorem, it
was proved there that any proof of lower bounds for non-monotone models
in the theory S7(a) can be recast as natural. Combined with the main
theorem from [22], this leads to the first partial independence result toward
the goal of understanding provability of superpolynomial lower bounds for
general circuits in VI

2. Theories Wy~

We assume the familiarity with [6].

Denote by Ly, (k > 1) the first order language with equality which con-
sists of the constant 0, function symbols S, +, -, L%xJ, ||, ey, - . ., 2H#ry
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and of the predicate symbol <. In particular, L; = (0, S, +, -, L%xJ, |z], <),
and Ly = {0, 5,4+, -, L%xJ, ||, #, <), where # is used as an abbreviation for

#a.

Let BASIC5 be the set of 32 open axioms in the language Ls from [6,
§2.2] describing basic properties of its symbols. We will denote by BASIC,
the set of axioms in L; obtained from BASIC5 by removing the #£-related
axioms (13)—(18). For k > 3, the set BASIC}, is obtained by generalizing
Buss’s axiom (13) to

29| = S(|l#;-1ly]) (2 <7< k)
and adding the new axiom

z <wijy = |z < |e#jyl (2 <5 <K)
(cf. [20]).

2.1. Definition. We say that a first order theory 7' in a language
L D L is regular if it possesses the following properties:

a) BASIC, CT,
b) all axioms of T are bounded,

¢) every function symbol (and hence every term) of the language L can
be bounded from above in the theory T by a provably monotone term.

Let in particular T} be the regular theory in the language L which has
BASIC, as its list of axioms.

From now on we fix a first order extension L of the language L,
and a regular theory T in the language L. Let £ be the second order
extension of L obtained by augmenting it with second order variables
{al |4,7 € N; r > 1}, where r denotes the arity of the variable. The su-
perscript 7 will be dropped whenever this can not create confusion.

Let 7(a) be a provably monotone (in T') term such that

TF1(a) > |al. (1)
2.2. Definition. The scheme Ei’b — 1 — IND is defined as
A(0) AVz(A(z) D Az + 1)) D YzA(r(z)),
where A(a) is a Ei’b—formula of the language L.

2.3. Definition. The second order theory W%’T in the language £ has
the following axioms:

a) T,
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b) X" —7—IND,
c) oot - CA.

2.4. Remark. Assumption c) from Definition 2.1 implies that bound-
ing terms in bounded formulae can be w.l.0o.g. assumed to be provably
monotone. With this remark the proof of [6, Theorems 2.2, 2.4] on the
possibility of introducing X%-defined function and Al-defined predicate
symbols into the language of S3 readily extends to the theories W%’T. In

particular, all Eé’b—deﬁned function and predicate symbols can be freely
used in the schemes Ei’b —717—IND and Eé’b — CA.

If 7(a) = a then Ei’b — 7 — IND is merely Ei’b — IND. In this case
W%’T for obvious reasons will be denoted by V2.

For 7(a) = |a|, £7" — 7 — IND becomes £ — LIND, and W;JT will
be denoted by Ul. The latter notation is justified by the following

Theorem 2.5. U} is equivalent to T + Ei’b — PIND + Eé’b —CA.

Proof. A careful inspection of Buss’s proof that the PIND and LIND
schemes are equivalent reveals that the part PIND = LIN D uses only ax-
ioms from BASICy [6, Theorem 2.6]. The converse result LIND = PIND
[6, Theorem 2.11] uses only symbols which can be defined by bounded for-
mulae in BASIC; +%% — LIND. Hence, by assumption a) from Definition
2.1 and Remark 2.4, the same proof shows that U} + Ei’b — PIND. L]

Now, if we also abbreviate U%k, Vq}k to U}, Vi, we see that the theories

W%’T form a convenient uniform generalization of Buss’s theories U}, V;!.
Theorem 2.6. W%’T F Ai’b —IND.

Proof. A careful inspection of the proof of the result due to Dowd
and Statman that S} F A% — IND (see [6, Theorem 2.22]) reveals that it
uses only symbols which may be defined already in Si. Hence, the same
proof readily shows that Ul + Ai’b — IND. As, in view of assumption a)
from Definition 2.1 and (1), W%’T is an extension of U}, this can be also
generalized to W%’T. L]

We are also interested in the ®-replacement scheme. It will be conve-
nient to take it in the following form:

2.7. Definition. The ®-replacement scheme is given by
Ve <t3¢7 ... 3¢ Az, ¢1,..., ¢1)
D Jpttgpitive <t
Az, {1, - ze FPr(2, 21, ooy By )y - e e
{z1, .. zn f1(m, 21, ..y 20)),

where A is in ®.
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Theorem 2.8. W%’T [ Ei’b-replacement.

Proof. By extending the proof of [6, Theorem 9.16] in the same man-
ner as with Theorems 2.5, 2.6. L]

In the proof of the next theorem and in some other places we will write
Az <y and Az < yin the simplified form # < y and & < y respectively.
Theorem 2.9. For any fized integer k > 0, W%’T [ Ei’b — 7t _IND.

Proof. Let A(a) € Ei’b. Set B(a,bo,...,br_1) = A(bo + b1 - 7(a) +
co++br_1- 7" 1(a)). We show by induction on i that

quf FVYz(A(z) D A(z+ 1)) D [B(a,0,...,0,b;...,b5_1) (2)
DVZE < 7(a)B(a, Toy- -y i1, biy. .., br_1)].

Base ¢ = 0. There is nothing to prove.

Inductive step. Assume that for some ¢ < k—1 we already have (2),
and we want to prove this for (¢ + 1) instead of 4.

First, we have from (2)

Wq{vrl—V:c(A(:B)DA(:c—l—l)) D [B(a,0,...,0,b;...,b5_1) (3)
D B(a,m(a)=1,...,7(a)=1,b;, ..., bi_1)].

Next,
Ul b Vz(A(z) D Az + 1))

O [Bla,m(a)=1,...,7(a)=1,bi, ..., br_1) (4)
D B(a,O, ey 0,0 + ].,bH_l, .. -abk—l)]-

From (3) and (4) we conclude
W™ FVae(A(z) D Az +1)) D [B(a,0,...,0,b,biy1,...,bp_1)
D B(a,0,...,0,b;+1,biy1,...,0_-1)].
Applying Ei’b — 17 —IND on c¢ to the formula
Ve, <e¢ B(a,0,...,0,2,bi41...,bp—1),
we find

WhT FVe(A(z) D A(z + 1))
S [B(a,0,...,0,0,bis1,...,bg_1) (5)
D Va; < 1(a)B(a,0,...,0, 2 bi41,. .., bk_1)].
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We use the inductive assumption (2) again and have

W™ F Vz(A(z) D Az + 1))
0 [VZBZ S T(a)B(a,O,...,0,$i,bi+1,...,bk_1) (6)
DVZE < 7(a)B(a, o, -y Ti—1, Tiy big1,. oy bp—1)].

(5) and (6) complete the inductive step.

Now, (2) for 4 = k implies in particular that
W%’T FVYz(A(z) D A(z+ 1)) D [B(4,0,...,0,0) D B(a,0,...,0,7(a))]

which is what we want to prove. [

3. Theories W, (5)

The underlying idea toward defining these theories is to extend the language
L by those “explicit” Ai’b—deﬁned relationals ¢ in the style of [6, §9.7] which
correspond to the predicate analogue of the limited iteration on notation.
This in fact is equivalent to declaring the ability of evaluating polynomial
size circuits with the depth constraints specified by the term 7.

3.1. Definition. Let A(a, @), B(a,b,a,3') be Eé’b—formulae of the
language £ with all free variables displayed, and k > 0 be a positive integer.
Then we introduce the relational d(a, b, &) = 5273(61, b, &) with the defining
azrioms

d(a,0,8) = Ala,d),

7
d(a,b+1,d) b < m8(a) A B(a,b, &, {z}(x < a Ad(z,b,&))). ®

Denote by £7(d) the language obtained from £ by adding to it all relationals
5k 5.

3.2. Definition. W;’T(é) is the second order theory in the language
L7(6) with the following axioms:

a) T,
b) defining axioms (7) for all relationals § = 5273,

c) ©(6) — IND.
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Note that since qu’r(é) always contains IAjy, we may freely use in
the induction scheme all function and predicate symbols defined in 7Aq by
bounded formulae. In particular, for each fixed » > 0 we have a function
symbol (a1, . .., a,) which implements a one-to-one mapping N* — N and
r unary symbols II7, ... IV representing the inverse mapping N — N".
We choose them in such a way that

INoFai+--+a, <aj+--+a. Dlag,...,ar) < {a},...,a.).

Notice that this implies that {(a1,...,q,) are provably monotone in each
variable, and also that

IAoF (a1,...,ap) > a; (1<i<r). (8)

12 and I12 will be abbreviated to IT; and II, respectively.

One of the goals of this paper is to show that W%’T and qu’r(é) are
equivalent with respect to Eé’b—formulae. In this section we will prove one
(easier) part of it: every Eé’b—formula provable in qu’r(é) is also provable
in W%’T. It will be convenient, however, to establish at once a stronger
result in the form which will be needed in Section 6. For this purpose we
define the explicit scheme in the language £ corresponding to Definition

3.1.

3.3. Definition. ® — 7 — LIC A, ® 7-limited iterated comprehension
azioms are given by the following axiom scheme:

Jp2Vx < t[¢p(x,0) = A(z)
AVy < Tk(S(ZB))
(¢(z,y+ 1) = Bz, y, {z'Hz' <z Ad(2',9)))],

where A(a), B(a,b,a’) are in ®; ¢, s(a) are first order terms, and k& > 0 is
a fixed integer.

3.4. Definition ([25, 20]). ® — BC A, ® bounded comprehension az-
ioms are given by the axiom scheme:

A¢"Var, .., e {P (21, ) = (A(Z1, ..y me) ANE < E) T,
where A is in ®.

We have:

Theorem 3.5. There exists an interpretation of qu’r(é) +Eé’b(5) —BCA
m T+ Eé’b —CA+ Eé’b —7—LICA+ Eé’b — IND identical on formulae
of the language L.
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Proof. During this proof, it will be convenient (and in fact even nec-
essary to make the word “interpretation” precise) to change our view and,
like in [20], treat second order theories as many-sorted first order theories
with equality having variables of sorts 0,1,2,..., where 0 is reserved for
the sort of first order variables and » > 0 is the sort of r-ary second order
variables. The equality for variables of sort » > 0 is introduced by

o =0 =VE(a"(£) = 57(F)).
Note that it may not appear in bounded formulae.

Let ¢ be the relational of the language £7(d) with the defining axioms
(7). Consider the corresponding instance of Eé’b —1r—LICA

>V < c[p(z,0) = A(=, &)
A Yy < 7%(z) (9)
(¢(z,y+1) = Bw,y, &, {z'Ha' <z A (2’ ))))];

where this time all free variables are displayed. Apply Eé’b — CA to trim
¢ in (9) to the area = < ¢, y < 7%(z). We will have

T+ 2y’ —7—LICA+3y" — CA 392
(Vevy(g(z,y) O (2 < c Ay < 7F(2)))
AVz < c[p(z,0) = Az, @) (10)
AVy <78 (2)(¢(2,y + 1) = B(z,y,4,

{2} <z A (2, y)]}-

Eé’b — IND readily shows the uniqueness of ¢ satisfying (10). Hence we
may introduce into the theory T—I—Eé’b —CA—I—Eé’b —T—LICA—I—Eé’b —IND
the function symbol FZ(c,@) (the superscript 2 indicates that Fj takes
values in variables of sort 2) with the defining axioms

= Bla,b,&,{z}(z < a
A FZ(c,@)(z,b))).

This extension will be conservative over T + Eé’b —CA+ Eé’b —7—LICA+
Eé’b — IND. Throughout the rest of the proof, - will stand for the prov-
ability in this extension.
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The crucial property of the newly introduced function symbols is their
“monotonicity” in the following sense:

Feo<er D Ve <co(Fs(eo,d)(z,b) = Fs(er, ) (z,b)). (12)

This is readily proved by Eé’b — IND from (11).

Now we interpret the relationals d(a, b, &) as follows:
d(a,b, &)~ Fs(a,d)(a,b).

The interpretations of defining axioms (7) readily follow from (11) using
(12).

Let us call a formula in the extended language L£(Fs) simple if it does
not contain nested occurrences of the newly introduced function symbols
Fs. Note that the interpretation of any formula in the language £7(4) is
simple. Hence, in order to finish the proof of Theorem 3.5, we only have
to show that T + Eé’b —CA+ Eé’b — 71— LICA + Eé’b — IND proves
Eé’bs(Fg) —IND and Eé’bs(Fg) — BC A, where we denoted by Eé’bs(Fg) the
set of all simple Eé’b(Fg)—formulae.

For this we need the following

Claim 3.6. Let Alay,...,a,) € Eé’bs, and ty,...,t, be first order
terms which do not contain occurrences of ay,...,a,.. Then there exists
A*(ay,...,a,) € Eé’bs such that

FVYey <tp...Ve, <t (Az1,...,2) = A% (21, ..., 20)) (13)

and the scope of every Fs-symbol in A* contains no variables from the list
a1, ..., 0y and no bound variables.

Proof of Claim 3.6. Induction on complexity of A.
If A= Fs(s(ar,...,a.),&)(s1,u), we let

=81 < s(ar, ..., a0) AFs(S(t1, -0 ), &) (81, U),

where § is a provably monotone term bounding s from above. Then (13)
follows from (12).

If A =3z < tla,...,a)B(z,a1,...,a,), we find by inductive as-
sumption a formula B*(a,aq,...,a,) so that & Vo < t(t1,...,¢ )V <
t1...Vo, < t.(B(z,21,...,2,) = B*(z,21,...,2,)), where ¢ is a provably
monotone bound for ¢, and let A* = Jz < t(aq,...,a,)B*(z,a1,...,a,).

All other cases are obvious.

The proof of Claim 3.6 is complete.m

Now, in order to see - Eé’bs(Fg) —IND, we notice first that Eé’bs(Fg) -
IND is equivalent to its bounded version

A(0)AVz < t(A(z) D A(z+ 1)) D Vo <tA(z). (14)
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Applying Claim 3.6 to the formula A(a) and term ¢, we may assume that
the scope of every Fs in (14) contains no bound variables. But this allows
us to derive (14) as a substitutional instance of the Eé’b — IND axiom
obtained from (14) by replacing all occurrences Fj(s, &), where s is a term,
with new free variables of sort 2.

The same argument gives us b 3¢VZ < ¢[¢p(ZF) = A(Z)], where A €
%o (F5). Now we trim this ¢ to the area & < ¢ using g’ — CA to derive
%o (Fs) — BCA.

The proof of Theorem 3.5 is complete. L]

Corollary 3.7. Every formula of the language L provable in qu’r(é) +
Eé’b(é) — BCA is also provable in T + Eé’b —CA+ Eé’b — 71— LICA +
»e? — IND.

For the most interesting case 7(a) = a the restriction b < 7%(a) in (7)
becomes unnecessary, and the set of relationals appended to the language
L can be substantially simplified.

3.8. Definition. Let A(a,d, ) be a Eé’b—formula in the language £
with all free variables displayed. Then the relational § = §4(a, &) has the
following defining axiom:

§(a, &) = A(a, @, {z}(z < aAd(z,d))). (15)

We define V3 (6) similarly to V3 (6) with the difference that this time we
use the relationals § with the defining axioms (15).

Theorem 3.9. There exist two interpretations VR(5) ~ VF(8) and

V2 (8) ~ VR(J), both identical on the formulae of L.

Proof. For the relational § with the defining axiom (15) we define the
relational d(a, b, &) by

d(a,0,8) = a=0AA(0,d,{z} L),
Ia,b+1,8) = b<aA((a<2b+2A8(a=1,0,8))V (a=2b+2
ANAB+ 1,8 {z}(z<bAdb+2,b,a)))).

This definition is easily seen to have the required form (7) with k& := 1 and
B:=(a <2b+2AB(a=1))V(a=2b4+2ANAb+1,a, {z}(z < bAB(D+z)))).
Now we prove by Eé’b(é)—induction on b that V() Fa<b D d(a+
b,b, &) = §(2a, a,@). With the help of this, it is easy to see that the image
of (15) under the translation é(a, &) ~» §(2a,a,d) is provable in V2(6).
Hence this translation defines the desired interpretation Vi2(8) ~» V2(6).

For the inverse interpretation, we interpret the relational é(a, b, &) with

the defining axioms (7) in the theory V() as
§(a, b, &) ~ §((a, b), &),
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where § has the defining axiom

d(a,d) = (Iz(a) = 0N A(TI1(a), &))
V(0 < Tz(a) < Ty (a)
A B(Hl(a),l_[g(a)—‘l,o_i,
{z}(z <Mi(a) Ad((z, Mz(a)=1), d)))).

4. Bootstrapping W, (6)

In view of our general goal, the theories qu’r(é) were defined in the previ-
ous section in the most restricted way. By this I mean that the §-symbols
were a priori forbidden to appear in each other’s scope. In this section
we show that the most natural constructions of this kind can be in fact
simulated in qu’r(é). This amounts to some rather technical work.

Lemma 4.1. Let A(a,b,3?) € Eé’b, where all first order free variables

are displayed, and let k be a positive integer. Then there exists a Eé’b(é)-
formula D(a,b) such that

qu’r(é) F D(a,b) = b < Tk(a) AAa, b {z,y}(z <aAy<bAD(z,vy))).

Proof. This lemma is similar to the first part of Theorem 3.9. The
main complication is that when 7(a) is small, we in general are not guaran-
teed the existence of a term t(a, b) such that b < 7*(¢(a, b)). We circumvent
this by introducing a dummy variable ¢, like in the proof of Theorem 3.5.

More precisely, let A(a,b,3%) = A(a,b, &, [3?), where this time all free
variables are displayed. Define a relational §(a, b, &) with the properties

W™ (8) - 6((a,b,¢), b, &)
— (bg *(a) A A(a,b,d, (16)

{2, y}w <any <bA 6((z,5,¢),b+1,))

and
qu’r(é) Fb<d <7F(c) D d({a,b,c), b +1,d) = 6({a,b,c), b, a). (17)
This is done straightforwardly, namely we define § by the axioms

3(a,0,d) = A(H‘I’(a), 0,a,{z,y} 1),
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S(a,b+1,8) =b < %(a) A (I3(a) < bAS(a,b,a))
V (b+1=TI5(a) < 7°(IT3(a)) A AT} (a), IT(a), &,
{z, y}(z <TM(a) Ay < I3(a) A S((2, v, II3(a)), b, &))))) -
This definition has the form required in (7) since qu "6 Fz<IO3(a)ry <
O3(a) D (z,y, Hg(a)> < a due to the monotonicity of <a1,ag, > Note

also that Wy (6) & 7 (a) > r*(IT3(a)) and Wy (6) F 7 (a) > 7*(T3(a))
due to (8).

An obvious Eé’b(é)—induction on b applied to (17) gives us
WpT(8) Fb<¥ <7(c) D §((ab,c), ', @) = ((asb,¢), b, ).
Under the assumption a < ¢ this allows us to replace d({z,y, ¢), b=1, &) in
(16) by d({z,y, ), y, &) to get first

W (0) Fa<ed (6((ab,e),b,@)

(b < 7*(a) A A(a, b, &, (18)

{2, yHz <a Ay <DA(E,3,0),,@))))

and then, as a partial case

W (8) - 8((a, b, a), b, &)
= (bg *(a) A Ala,b, &, (19)

{0} (e Sany <bAS(e.y.a)2.d))).

Using (18), we prove by Eé’b(é) — IND on b that
WP (d) b ¢’ <eDVa < (6((z,b,¢),b,d) = 6((z,b,¢'), b, &)

which allows us to replace §({z, y,a),y, &) in (19) with §((z, y, z), y, &) and
obtain the desired result with D(a,b) := §({a, b, a), b, @). n

Now we strengthen Lemma 4.1 by enlarging the class of formulae A to
which it is applicable.

Lemma 4.2. Let A(a,b,3%) € Eé’b(é), where all first order free variables
are displayed, and

3 does not appear in the scope of §-symbols. (20)
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Let k be a positive integer. Then there exists a Eé’b(é)-formula D(a,b) such
that

W;’T(é) F D(a,b) = b < Tk(a) AAa, b {z,y}(z <aAy<bAD(z,vy))).

Proof. Once again, let & be the complete list of free second order
variables in A other than 8. Let d1(a,b,d),..., & (a, b, &) be the complete
list of relationals appearing in A. Represent A in the form

A(a b a ﬁ) (a b a ﬁ,{x,y}5( 7y70_2))7

where A(a, b, &, 3,91,---,7) € EO’ . Similarly to [6, Lemma 10.9] and
[20, Theorem 3.6 a)], we have a term T'(a,b) (which may be additionally
assumed to be provably monotone) such that

W™ (8)
Ve < T(a, b)Vy(fyl(:B, y) =vi(z, ) AL

A (2, y) Ew’(fv,y))
D A(a‘7 b7&7ﬁ7’yl7"'771) E A(a‘7 b7&7ﬁ7717"'77;)'

Let Ti(a) = T(a,7(a)), Ta(a) = (I,Ti(a)) + 4 (where [ is a closed term
representing the integer 1), f(a) = (0,{a,T>(a))) and, finally, g(a,b) =
Tkl(Tl (a)) + b+ 1, where k' is the maximal integer among the exponents
ki,...,k; involved in the definitions of d1,...,4d;.

It is straightforward to check that we may define, in accordance with
Lemma4.1 (with k& := max(k’, k)+1) a Eé’b(é)—formula D*(a, b) possessing
the following properties:

qu’r(é) F D*((z,a),b) = §;(a,b,a@) (1 <4<, (22)
WrT(8) b D*(f(a), g(a,b)) = b<7"(a) A Afa,b, 4,

{z,y}(x <any <bAD(f(z),9(z.y))), (23)

{z,y}(x < Ty(a) Ay < 75(2) A D*((2,2),7))).

Due to (22), we may replace D*((z,2),y) in (23) by 6;(z,y,&). Then
we can drop the term y < 7Fi(z) (as qu’r(é) Féi(a,b,@) D b < t*i(a))
and z < Ti(a) (due to (2 )) These simplifications lead to
(

W ()'_D* f(a),g(a, b))
= (b < 7*(a) A A(a, b, 4,
{z,y}z <aAy<b A D*(f(z),9(z,9)))))
which is exactly what we need (with D(a,b) := D*(f(a), g(a,b))). n
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Corollary 4.3. Let A(a), B(a,b,3?) € Eé’b(é), where all first order free
variables are displayed, and k be a positive integer. Assume that (20) holds.
Then there exists a Eé’b(é)-formula D(a,b) such that

Wy (8) F D(a,0) = Ala),
qu’r(é) FD(a,b+1) = b< Tk(a) A B(a, b, {z}(z < a A D(z,b))).

Now we are in position to define substitutions of arbitrary Eé’b(é)—
abstracts into formulae. Namely, let C be a formula of £L7(8), v1,..., v
be second-order free variables, and Vi,...,V, be Eé’b(é)—abstracts of the
corresponding arities. We define C' [Vi/v1, ..., V;/¥,] by induction on com-
plexity of C.

IfC= (523(15, s, @), then we let

8% 5(t.5,d) [V /7] 2 Dt,s),
where D(a,b) is the Eé’b(é)—formula such that
WP (6) - D(a,0) = A(a, @) |[V/7] (24)

and

WP (6) F Da,b+1) = (b < ()

j (25)
A Bla,b,&.) [V/7. {2} (v < an D(x.))/5] )

defined in accordance with Corollary 4.3. We assume here that a,b, 8 do
not occur in ¥, 1% which, in particular, implies (20) for B(a, b, &, [3) [ﬁ/ﬂ

All other cases in the recursive definition of C [V1/v1,..., V. /7] are
treated in the standard way (see e.g. [6, §9.1]).

The axiomatic properties of C [V1/v1,..., V. /7] needed for our pur-
poses are summarized in the following easy lemma.

Lemma 4.4. a) if C does not contain relationals & then C [ﬁ/ﬂ coin-

cides with the usual definition,
b) if

WTOJ((S)I—Cl,...,CT—>D1,...,Ds (26)

then
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W (6) F C1 [V/3] ... G [P/5]

Dy [P [, 0

c) C [V‘/ﬂ [t/d] = C[t/d] [V‘/ﬂ, where variables from the list @ do

not occur in 'V,

d) let C, Dy (@V),..., D, (a7) € 23°(8); Vi = {#V} D, (1) (1 <
1 < r) 77 be a vector of second order varzables not appearing in C,
and W be (5)-abstmcts. Then

w8 k¢ [V/3| [/l
= e [{a} (2 (29) []) ]

Proof. a) is obvious.
b). Every proof in qu’r(é) of the sequent (26) can be converted into
a proof of (27) after substituting V for ¥ into it if we note that the axioms

(7) are taken by this substitution exactly to (24), (25).

c). By obvious induction on the complexity of C.

d). Induction on the complexity of C. In fact, all cases are straightfor-
ward (for C = 3z <+t E(z) use already proven part ¢)) except for the base
case C' = (523(15, s, @). In particular, we already have (28) when C € Eé’b.

In the remaining case C' = (523(15, s, &) we may assume w.l.o.g. that

C(a,b) = 6% p(a,b,d).
Then we have from definitions
W27 (8) b Cla,0) [V /3] = A, @) [V /7]
W27 (6) F Cla,b+ 1) [V/7]

E(b<7- (a )AB(abaﬁ)[Vi

@) (= < an 00 [74] )16])

which, by the already proven part b), implies

W2 () - Cla,0) [V/3| [W/i| = Ala,@) [V /7] |W /]
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We™(8) F Cla,b+1) [7/3] [W/7]
= (b < r*(a) A B(a,b,G,9)[V /7,

{o} (2 <an Cla.) [V/3] ) /8] W] ).

A and B, however, are in Eé’b. Hence, since for formulae with this
restriction (28) is already established, we have

W2 () F Cla,0) [V/3) [W /]

and
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Comparing these with the definitions of

et [{20) (00 (=) 77 ]

we, by a straightforward induction on b, establish
W (8) Ve < a(Cla,b) [V/3] [W/il]

= c(a.t) [{#0} (Di (29) [W/]) 4]

which immediately gives the desired result.

Now we can get rid of the restriction (20) in Lemma 4.2.

Lemma 4.5. Let A(a,b,3%) € Eé’b(é), where all first order free variables
are displayed, and k be a positive integer. Then there exists a Eé’b(é)-
formula D(a,b) such that

qu’r(é) F D(a,b) = b < Tk(a) AAa, b {z,y}(z <aAy<bAD(z,vy))).

Proof. We use the notation introduced in the proof of Lemma 4.2.
The only difference is that this time the relationals d1,...,d; may also

depend on 8. Write down explicitly their defining axioms:

6,’(&1,0,62,ﬁ) = Ai(alad’aﬁ)a (29)
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5i(a1,b1—|—1,o_2,ﬁ) = b1<Tki(a1)/\Bi(a1,b1,o_Z,ﬁ,

{ibl}(xl S ag A\ 61 (xla bla O_Za ﬁ)))

Let
Oi(a,a1) = @,a1)+Ti(a)+12 (1 <<,
O(a) = (0,T2(a)) + Ti(a) + 12,
fila,b,a1) = {(a,b,b-0(a) + 60;(a,a1)),
f(aa b) = <a, b,b-@(a) —|—@(a)>,
gi(a,bby) = b (Tk’(Tl(a)) + 2) + by,
glah) = G+1)- (' (Ta() +2) =1,

We define, in accordance with Lemma 4.1 (but this time with & :=
E+kE+1)a Eé’b(é)—formula D*(a,b) which has the following properties:

W (6) b < (@) > (D" (fila,b, 1), gila, b, 0))
= Ai(a, 8, {z,yt(z<any<b
A D" (f(z, ), 9(x,9)))) (1 <i <),

WP (6) b < (@) > (D" (fila,bar), gia, b, by + 1)
= b < Tki(al) A Bi(a1, b1, &,
{z, y}(z <any <bAD™(f(z,y),9(=,v))),
{z1}(o1 < a1 A D" (fila, by o), gila, b, b)) )
(1 <i<l),

W™ (8) - D*(f(a,b),g(a, b)) = b< 7%(a) A A(a, b, d,
{z,y}(z <aAy<bAD(f(z,y),9(z,y))
{z1,y1}(z1 < Ti(a) Ayr < 7% (241)

A D*(fi(a,b, 1), gi(a,b,y1)))).

Now, using Lemma 4.4 b), we substitute the abstract

{z,yHz <aAy <bAD*(f(z,y),9(z,y)))

(31)



Bounded Arithmetic and Lower Bounds in Boolean Complexity 363

for 3 into (29), (30). Comparing the result of this substitution with (31),
(32), we readily prove by Eé’b(é) — IND that

WP (6) F b < (@) > (D" (filas b, 1), gila, b, by))
= 61’(“17 b1, @, {:va}(x <aAy<bA D*(f(:v,y),g(:c,y))))) .

This allows us to transform, like in the proof of Lemma 4.2, the right-hand
side of (33) to

b < 7*(a) A Aa,b, @ {z,y}(z <aNy<bAD*(f(z,9),9(z,1))))

which immediately gives us the desired result with

D(a,b) := D*(f(a,b),g(a,b)).

Finally, we convert Lemma 4.5 to the following form of simultaneous
induction, which will be convenient in the next section.

Lemma 4.6. Let
Ai(any . oyar,)y Bi(ag, ..oy, b, G0 . B € B50(8) (1 <i <),

and t, s(b) be first order terms, where all occurrences of the variables d, b, 5

are explicitly displayed. Assume also that k is a positive integer. Then there
exist Eé’b(é)-formulae D;(a1,...,ar,,b) (1 <4 <1) such that

Wpm (8) b Di(a, ..., ar;, 0) = Ai(as,

W27 (8) F Di(ay, ... ap, b+ 1) (

1)

<T
/\Bi(al,.. an,b{ }( <s ()/\Dl(x(),b)),...,
{:z“)} (w < s(b) A Dy (x(),b)))) (1<i<l).

Proof. Let cy,..., ¢y, @ be the complete list of free variables appearing
in A;, B;,t,s(b) other than d,b,5. W.lo.g. we may assume that ¢(¢) and
s(b, &) are provably monotone. We set

Ti@) = s (r(1).9),

l

TZ(E) = Z<lv <T1(E)7 T T1(6)>>7

i=1

)(1<z<l)

1

Ti

filar,...,ap,0,8) = (b-To(O) + (3, {a1,....ar,)), €1, ., Cn, t(0)).
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Then we define, in accordance with Lemma 4.5, a formula D(a, b) with
the properties

Wy (8) F D(fi(a1,. .., ar;,0,8),0) = Ai(ag,...,a.,) (1<i<1),
WE7(0) F D{filar, - ar, b+ 1,80+ 1) = (b < (@)
/\Bi(al,...,amb,
{5“)} (:z<1> < s(b,&) A D (fl (:i’(l),b,E) ,b) )
{:z“)} (:5'(’) < s(b,&) A D (f, (:E’(’),b,E) b)) )) (1<i<l)
and let D;(ay, ..., a,,,b) := D(fi(ay,. .., ar,b,&),b). .

5. The witnessing lemma

In this section we will show that if W%’T F A D B, where A,B € Ei’b,
then this fact can be witnessed in qu’r(é) by a family of Eé’b(é)—abstracts.
The proof goes more or less along the same lines as the proof of [6, Theo-
rems 10.12; 10.16]. The main difference is that we are interested not only
in the computational complexity of the witnessing formulae, but also in
removing from the proof second order quantifiers. This will alter our def-
initions: we prefer to take them as clear as possible syntactically rather
than semantically.

Throughout this section second order variables y1,...,7, ... will stand
for special witnessing variables. We will always assume that they do not oc-
cur in original Ei’b—formulae denoted by capital latin letters like A;, B;, C, D
etc.

5.1. Definition. Given a formula A € Ei’b, we define its witnessing
ormula W4 € »1? as follows.
f 0

a) if A is atomic or negation of an atomic formula, then W, = A,

b) it A=BAC or A= BV C then we rename if necessary witnessing
variables in Wp and W¢ so that no variable appears in both of them,
and let Wy = W A We [Ws V We, respectively],

c) if A=3z <tB(z) then W4 = 3z <tWp(q)[z/a],
d) if A=Vz <t¢B(z) then
Wi = Ve <t WB(G) [{ylv .. '7yTi}7;i+1(aayla .. '7y7‘i)/7;i:| [:B/a]a

where the second order substitution is extended over all witnessing
variables ;' appearing in Wp(q),
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e) if A=3¢B(¢) then W4 = Wp(a)[y/a], where v is a new witnessing
variable which did not appear in Wg(q),

f) if A= —B, where B € Hi’b, use prenex operations to convert A to
the form where negations appear on atomic formulae only and handle
the result of this conversion in accordance to cases a)- e) above.

The sole purpose of our variant of the definition of the witnessing for-
mula is to move second order quantifiers in front in the simplest possible
way. Note that Wy is defined uniquely up to renaming witnessing variables,

and that W, = A for A € Eé’b.
Lemma 5.2. Suppose that
Wp™F Asy..o, Ak Ba, ..o, Bi— Apyy ooy Amy Biga, .- Ba,  (34)

where Ai,...,Ar,Biy1,...,Bn € Ei’b and By,...,Br, Apy1,.. ., Am €
Hi’b. Then there exist Eé’b(é)-abstmcts VO, V™ such that

WoT (6) b Wayyeoo, Way, Woipyrs oo, Waa,
H W_‘Bl |:‘7(1)/’7(1)1| 9 W“Bl |:‘7(l)/’7(l)i| bl (35)

W, [v<t+1>/gu+1>} e Wa, [mn)/g(n)] ,

where V... ™) are complete lists of witnessing wvariables in
W-B,,..., Wp, and no witnessing variable appears in any two of the for-
mulae Wa,,...,Wp, .

n

Proof. (cf. [6, Proof of Theorem 10.12]). Applying cosmetic rules
(—:left), (—:right), we can assume that our sequent has the form

Al,...,Am —)Bl,...,Bn

with Ay, ..., Apn,B1,..., By € Ei’b. The Cut Elimination Theorem is read-
ily extended to W%’T hence we may also assume that all formulae in the
proof belong to Ei’bUHi’b. As usual, we apply induction on the complexity
of the proof.

All axioms of W%’T are in Eé’b (see part b) of Definition 2.1), and in
this case (35) coincides with (34).

In our analysis of inference rules we omit many cases which either are
obvious or can be treated similarly to previously considered cases.

(Weak:left) transforms to (Weak:left) in the theory Wo' (4).

(Weak:right) also transforms to itself (if By, 41 is the principal formula
then the corresponding abstracts V(*+1) can be chosen in an arbitrary way).
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(Contraction:right). We have

W2 () F Wa,,...,. Wa, — W, {W”/i(l)}
Wa, [V /3], wa [7/3], wa [7/4],
where, say, V; = {:E'(i)} C; (:E'(i)) and V! = {:E'(i)} C! (:E'(i)), and we want to
find a single family of abstracts V" with the property
W (O) F Way,...,Wa,,

W, [P0 W, [0 50w [77/4]

Clearly, the family defined by
o {2 (775 (50) (o [57] e ()

will do.
(Asright). We have

W™ (8) F Wa,,...,Wa,,
— Wy, VOO W, 7050w [V 4]
and

W™ (8) F Wa,,...,Wa,,
— Wa, [17'“) /~7<1>} oo Wa, [17'<“> /~7<“>} Wz [17' /ﬂ ,

and we want to find abstracts 17”(1), ey V(") such that
WP (6) b Wy, Wa, — Wa, [V/0/30] .,
Wz, {V’//(n)/ﬁ;(n)} W {V'/ﬂ AWg {V’//i/}

(we assume that all variables in 4,4’ are pairwise distinct). This is done
similarly to the case (Contraction:right). Namely, we let

Vj//(i) = {j’(m} ( (WA {‘7/’7} A CJI'(i) (5(2'1')))
v (- [713] nef? (29)) ).

where C](»i), C]/»(i) are the Eé’b(é)—formulae defining the abstracts Vj(i), Vj/(i)
respectively.
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(V <:left). We have

Wr(8) F Wagey, Way, ..., Wa,,
W, {17«1)/7(1)} e Wa, {V—(m/g(n)} :

and we want to show

WrT(6) bt < s,Ve < sWaw[{§1(a, §)/A[z/a), Wy, ..., Wa,,
W3, {V-/u)/gu)} e Wa, {mn)/g(n)}
for some 17’(1), ceny V'("), Here 4 is the complete list of witnessing variables
appearing in Wy4.

For doing this we, using Lemma 4.4, substitute {¢}7(¢, %) for ¥ into
(36) and find

Wz (8) b Wa 1} (a, 9)/A)E/a), Wass ... W,
W, {17—41)/7(1)} e Wa, {mn)/g(n)} ,
where
v = {50} (of (#9) Ui /)
Then we apply (V <:left) in the theory qu’r(é).
(V <:right). We have

We () Fa<t,Wa,,...,Wa,,
— Wp, [P0 (@)/53V] ... Wa, [F0(@/5M], L @7)

where all possible occurrences of the eigenvariable a are displayed, and it
suffices to show that

W () F Wa,,...,Wa, — W, [17'<1>/~7<1>} "
38
W, [wn) /i(")} V< tWaa) [V(a) /ay] [z /d].

Indeed,
Wya<ta(e) = Ve < tWaa) {51 (e, 9) /7] [2/a],
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hence
WY (8) b Weeceae) [ {2 1C(2, /7] = Vo < Wi [V(@)/7] [s/d]

by Lemma 4.4, where, as usual, V;(a) = {7}Ci(a, ¥).

Let D(a) = ~Wa) [ (@)/7] A Ve < aWag) [V (@)/7] [o/a]. We
modify the abstracts V(Z {g(” }C ( ,gj(”)) o

e ) e 59
In order to see (38), note (arguing informally in qu’r(é)) that if
3 <t Waga) [V(a)/3] [w/d]
then, by Eé’b(é) — IND, there exists the minimal ¢ < ¢t with the property

W [V(@)/7].

This « is the unique z < ¢ satisfying D(z), hence Vj/(i)
to Vj(i)(a) which allows us to apply (37).

(Cut). We have

becomes equivalent

W™ (8) F Wa,,...,Wa,,
— Wa, [17“)/7(1)} oo Wa, [17<“>/~7<“>} Wa [v/ﬂ

and

W () b Wa, War, ..., War

s W {‘7—/(1)/7/(1)} ,--Wil, W, {V—l(n’)/g/(n’)} , (39)

and we are going to deduce
qu’r(é) F Wa,ooo o ZyWa,_,, WA’l’ ey Wy , Wg, {‘7(1)/’7(1)} s
Wp. |:‘7(n)/,7(n)i| W {‘7—//(1)/?/(1)} e W W”(nl)/’?l(m)}

for some (possibly new) abstracts 17”(1), ey V") For doing this we sub-
stitute V for 4 into (39) (using Lemma 4.4, of course), rename witnessing
variables if necessary and apply (Cut) in the theory qu’r(é).
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(second order V:left). This case is actually impossible (since, due to
our convention, Ay,..., Am,B1,..., B, are in Ei’b).

(second order F:left) amounts to declaring the eigenvariable « as a
witnessing variable.

(second order J:right, 24" — CA). We have

W (0) F Way,.., Wa,,
— Wp, VOO, Wa, [P0 /50] Wew [V/3].

It is easy to see, however, that

W2 (6) F Wer) [V/3] = WrwV/e] [P/3] = We) [Vie, V/3]

(since V itself does not contain witnessing variables). This is exactly what
we need.

(27" — 7 — IND). We have

W () F Wayseoo,Wa,, Wa@)()
—>WA<b+1><V'<bﬁ>>,WBI PO0H/FD] L (a0)

Ws, [VO(0,9)/7")]

where we displayed all occurrences of the eigenvariable b and the witnessing
variables 4 of W4. We wish to deduce

W () b Wayseoo, Wa,,, Wao)(7)
—>WA( ())( ( )) Wa, { ( )/’Y (41)

Ws, [V (3)/57]

for some 17’, 17’(1), .. .,17’(").2
Let ¥ = v{', ..., and Vi(b,¥) = {z1,....2,,} Ci (21,..., 2, b,%).

2Note that if A is actually in E(l)’b then each of the two principal formulae
A(0), A((t)) may in fact appear on the list By,...,B;, Agy1,..., Am in (34) rather
than on the list Ar,..., A, Biy1,...,Bn. However, in this case Wy(o) = A(0) and
Wa(r(t)) = A(7(t)) do not contain witnessing variables hence w.l.o.g. A(0), A(7(t)) can
be moved to the list Ay,..., Az, Bi41,...,Bn.
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Choose a term s(b) such that

Now we apply Lemma 4.6 and find Eé’b(é)—formulae D;(aq,

such that
W (6) B Di( ar;; 0,9) = vilas, ..., ar) (1< <)
qur(é)l—Di(al,.. ar;, b+ 1,9)
E(b<T(t)/\C(a1 ey gy by
{:z<1>} (:E(l) < s(b) A Dy (:E(l) b 7)) .....
{:E(’)}(:E’(’)gs(b)/\D, (:z“)w)))) 1<i<l)
We le
t Vi) = {59 b, (50, 7(9,)
D(b,7) =
vl () (00
{#0} D0 (#0.0.5) |/
/\—|WAb+1({ }Dl( ,b—l—l,fy) .....
{#0} i (#0,0+1.5))
and

(42)
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where, as usual, V;»(j)(b, ¥) = {:E'(ij)} CZ»(j) (:E'(ij), b, 5/')
In order to show (41), we first substitute

{5“)} (5<i> < s(b) A D; (:z“), b, 7))
for v; into (40), apply (44) for converting

Wawin (V (b, {20} (20 < s0) 7 D: (70,0,7))))

into Wapy1) ({:E'(i)} D; (:E'(i),b+ 1,’7)) (under the assumption b < 7(t))
and drop the restriction #() < s(b) using (42). We will have

WOT(8) b b< 7(t), Way, ..., Wa,, Wag) ({5“)} (D,» (:E“),bﬁ)))
W (0. (#0017)).
Wa, [P (b {2} Di (#.0.5) ) /7).
Wa, [V (8.4} i (2.0.)) /7]

Now, the same argument as in the case (V <:right) (implicitly involving
Eé’b(é) IND on b applied to the formula W, ({:B } ( ( N fy))))

gives us
Wo(6) F Way,.o.,Wa,, ({ }D ( ))

= Waei ({7 }D( 07)).

WBI[ DF)AY] W, [P0F) 5]
In order to get from here (41), we only have to note that
W (6) F Wao) ({79} Di (79,0,7)) = Wa0)7)
(by (43)) and
) ({5(i)} D; (5(1')’7_(15)’7)) = Wart)) (‘7'(“7))
by the definition (45) of 17

The proof of Lemma 5.2 is complete. L]

6. The results

We say that a formula A is strictly Ei’b if Ae Ei’b and first order quan-
tifiers Vo < ¢t [dz < t] never precede in A second order quantifiers 3¢
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[V¢, respectively]. The formal inductive definition of strictly Ei’b—formulae
(and strictly Hi’b—formulae) is obtained from the definition of Ei’b— and
Hi’b—formulae (see [6, §9.1]) by dropping the case “if A is in Ei’b 50 is

(Ve < t)A” and the dual case for Hi’b—formulae. We will denote the set of

strictly E b formulae by 231 b

Lemma 6.1. a) ifAc Ei’b then Eé’b—BCA—i—Eé’b—replacement FA=
APWald/], where the substitution is extended over all witnessing
variables,

b) if A € Eil’b then the equivalence A = 3$WA[$/7] can be already

proved in pure second order logic.

Proof. Obviousinduction on the complex1ty of A. The only nontrivial
case A =Va <t B(z) (which, unless B € E , may occur in part a) only)

is handled by Eé’b — BC'A for proving

e <t Waa ({70} 674 (a, 70) 2| [2/a]
O Vo < 3¢ Wa(a)[$/3][z/a]
and by Eé’b—replacement in the opposite direction. [

Recall that for a class § of formulae, B(S) denotes the set of Boolean
combinations of formulae from the class S.

Theorem 6.2. Let T be a regular theory in a first-order language L O L,
and T be a provably monotone (in T) first order term of the language L
such that T+ 7(a) > |a|. Then the three theories Wp™, Wy (8) + et
BCA + Eé’b — replacement, T + Eé’b —CA+ Eé’b — 17— LICA+ Eé’b —
IND + Eé’b — replacement have the same set of B (Ei’b) -theorems.

Proof. Let A€ B (Ei’b).
1. Wp™ F A= W' (8) + 25" — BCA 4 %" — replacement - A.
Represent A in the equivalent form /\f:1 (\/;n:’1 —Ai; VViL, Bij) with

Aij, By € Ei’b. It suffices to show that W%’T FA,...,An — B1,...,B,
implies

W;’T(é) + Eé’b — BCA+ Eé’b — replacement - Aq,..., A,
— Bl, .. .,Bn,

(46)

where A;, B; € Ei’b (to be applied afterwards to the sequents
Aity ooy Aim; — Bit, ..., Bin,
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).

It W%’T FA,..., Ay, — B1,...,B, then, by Lemma 5.2,
WET () F Wy s Wa, — Wa, [VO/50] . W, [70)/50)]

for some Eé’b(é)—abstracts 17(1), . ..,17("). Arguing as in [6, Lemma 10.9]
and [20, Theorem 3.6 a)], we may replace the abstracts

Ve = {j«m} c® ({i«m})
by their bounded versions {#(17)} (:E("j) < T A C](»i) ({:E'(ij)})) for suitable
terms T;;. Then Eé’b — BCA yields

W7 (0) + 3" — BCAF Wa,,...,Wa,
3¢ VWy, [45(1)/7(1)} e 3wy {¢<n>/g<n>} :

and (second order J:left) yields

WET(3) + T3 - BCAF 3w, [p/70]
3IWa, [p /7] (47)
3G OWy, [45(1)/7(1)} e 3w, {¢<n>/g<n>} _

The proof of (46) is completed by applying Lemma 6.1 a).

2. qu’r(é) + Eé’b — BCA+ Eé’b — replacement F A = T + Eé’b -
CA+ Eé’b —7—LICA+ Eé’b —IND + Eé’b — replacement - A.

Immediately follows from Corollary 3.7.

3. T—|—Eé’b—CA—|—Eé’b—T—LICA—I—Eé’b—IND—I—Eé’b —replacement F
A = WpTF A

Note that W%’T [ Eé’b — IND and W%’T [ Eé’b — replacement by
Theorems 2.6 and 2.8 respectively. Also, W%’T [ Eé’b — 71— LICA (apply,
using Theorem 2.9, Ei’b — 78 — IND up to 7%(5(t)) on a to the formula
3¢z < t[¢(z,0) = A(z) A Vy < a(p(z,y+ 1) = B(z,y, {2'Hz' <
zA¢g(z',y))))], where § is a provably monotone term bounding the term s
in Definition 3.3). The statement follows. m

Theorem 6.3. Under the same assumptions as in Theorem 6.2, the the-

ories W™, W™ (0) + 26" = BCA, T+ 3" —CA+ 2" — 7 — LICA +
Eé’b — IND prove the same B (Eil’b) -theorems.
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Proof. In addition to Theorem 6.2 we only have to show that
WA = W2T(6)+ 33" —BCAF A (48)

and

WoT(6)+ 5" — BCAF A
= T+3' —CA+S — 7 — LICA (49)
+x0" —IND F A,

where A € B (Eil’b).

(48) is proved in the same way as the implication W%’T FA =
qu’r(é) + Eé’b — BCA + Eé’b — replacement - A in the proof of Theo-
rem 6.2 with the difference that for inferring (46) from (47) we use part b)
of Lemma 6.1 instead of part a).

(49) again immediately follows from Corollary 3.7. ]

Theorem 6.4. Let T be a regular theory in a first-order language L O L,
and T be a provably monotone (in T) first order term of the language L such
that T & 7(a) > |a|. Then W' and Wy'™ (8) prove the same not-theorems.

Proof. In addition to Theorem 6.2 we only have to show W;JT FA =
qu’r(é) FA Ac Eé’b. This immediately follows from Lemma 5.2 since
Wy =Afor Aex)’. .

6.5. Remark. Note that actually we have proved that all siz theories
involved in the statements of Theorems 6.2, 6.3, 6.4 have the same set of
Eé’b—theorems.

7. Appendix

As we noted in the introduction, the main motivation for developing this
logical formalism is the author’s feeling that Vil is the right theory to
capture that part of reasoning in Boolean complexity which led to actual
lower bounds for explicitly given Boolean functions. Here I will try to
present both formal and informal arguments in favour of this thesis. For
our analysis I have chosen the following results in Boolean complexity (often
considered among the major results in the area):

o lower bounds for constant-depth circuits over the standard basis [1, 9,

28, 11],

o lower bounds for monotone circuits [33, 34, 29, 3, 27, 30],
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o lower bounds for constant-depth circuits with MOD —q gates [35, 24,
4,

e lower bounds for monotone formulae based on communication com-
plexity [12, 19, 18].

The reader wishing to learn more about these and other results is referred
to the excellent survey [5].

A. The formalization

Apparently, £ is the most natural and elegant formal language for formal-
izing the statements of results and open problems in Boolean complexity.
Using second order languages allows one to capture the common practice
in the area which tends to treat Boolean inputs and functions separately,
as two different kinds of objects. Throughout the Appendix, we will let n
denote the number of variables of the Boolean function in question, and
N = 2"=1 will have the property |N| = n (N approximately equals the
overall number of Boolean inputs).

In the proposed framework, first order objects are integers of order
20(n) = NO() they are used for encoding Boolean inputs, restrictions etc.
Second order objects correspond to Boolean functions, circuits, protocols
of their computations (given simply as a collection of truth-tables of inter-
mediate results) etc. Formally this is achieved by introducing N into our
formulae as a “dummy” free first-order variable.

To give you just one example of this encoding, we explicitly write
down the Eé’b(a)—formula MonCircuit(t, N, a?) asserting that o encodes
the protocol of computation by a monotone circuit of size ¢ in |N| variables:

MonCircuit(t, N,a?) = VYu < t
(3i < IN| (V2 < 2V (a(u, =) = Bit(i, »))
V Jup < udus < u
(V:B < 2|N|(a(u, z) = (a(ur,z) A a(uz,z)))
vV < 2™V (a(u,z) = (e(ug, )V o(us, x))))).
Then, say, the statement “every monotone circuit in n variables comput-

ing SATISFIABILITY must have size at least 7(n)” is formalized by the
following Eé’b(a)—formula:

MonCircuit(t, N, o) AVz < 2|N|(a(t;1, z) = SAT(z, N))

D t>7(|NJ), o
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where SAT (a, N) is a bounded formula representing the predicate SATIS-
FIABILITY on strings of length |N|.

B. V! proves what we want it to prove

Having written our problems in the formal language £; in the style of (50),
the next question is what is the minimal natural theory in this language
which can carry out the amount of combinatorial and algebraic technique
developed in Boolean complexity so far. I argue that V! is exactly the
required theory. By this I mean in particular that it proves all lower bounds
mentioned above and, moreover, these formal proofs are obtained from
their informal counterparts in a very natural and straightforward way>.
This thesis becomes especially clear if we take V! in the equivalent form
VP2(8) or V(8) (see Theorem 3.9). For an illustration I have chosen the
proof of lower bounds on the monotone circuit size of the clique function
[33, 3] binding to the notation used in the nice presentation of this result
in [5, Section 4].

We encode clique indicators [X] by integers of bit length O(llogn),
and approximator circuits by second order variables (outputting 1 on ex-
actly those clique indicators which appear in the approximator).

A subtle point is that sunflowers can be also coded by integers. Indeed,
their bit length is O(pllogn), and pl must not exceed O(n) (irrelevantly
of exact values of parameters specified in [5, Section 4.3]!) e.g. because
otherwise Erdos-Rado Lemma [5, Lemma 4.1] becomes meaningless. Recall

that we have access to integers of bit length O(n?) as we have < ;L >

variables.
Everything beyond this point is fairly straightforward. The relation
“(Z1,...,Zp) is a sunflower in a collection £” as well as “Z is a petal of

the minimal (in some explicit order) sunflower in £” and “C' is the center
of the minimal sunflower in £” are in Eé’b(ﬁ). Hence we may introduce
in V(8) a relational d(a, ) such that §({N,I,p, h), L) encodes the result
of h consecutive pluckings of minimal sunflowers from £, and then find a
Eé’b(é)—formula representing the final result of the plucking procedure.

The proof of Erdés-Rado Lemma [5, Lemma 4.1] is also straightfor-
wardly carried over in V(). The only thing to be noticed is that the set
M in the proof can be also treated as a first order object.

Now, using the possibility to iterate d-symbols in V(§) (see Lemma
4.5), we can Eé’b(é)—deﬁne the approximator C' of a monotone circuit C.
All combinatorics from [5, Section 4.3] is then easily formalized in V(4) if
we recall that V! (and hence V(§)) can easily count first order objects.

I do not know of any lower bound in Boolean complexity for an N P-

3The question of minimality of Vl1 will be thoroughly discussed in Section E.
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function whose proof could not be carried over in V..

C. V! apparently does not prove what we
do not want

In Boolean complexity one should cope with the phenomenon that the
inherently hard problems making the core of the field become trivial when
one considers “random” functions. Unfortunately, the powerful Shannon
counting arguments (see e.g. [23]) used for dealing with random functions
are hardly relevant to proving lower bounds for “explicit” functions. For
this reason it is customary in the modern Boolean complexity to distance
oneself from the realm of those arguments either by considering only explicit
functions (which is somewhat ill-defined) or only functions from the class
NP (which is not quite adequate since e.g. superlinear lower bounds on
the circuit size of a natural function in, say, PSPACE would be also of
extreme interest). All this is a little bit annoying.

I take it as a strong argument in support of our main thesis that V!
can not formalize Shannon counting arguments, at least in an obvious way.
As a consequence, it is open whether V! can prove even the eristence of
Boolean functions f,, with circuit size > 10n.

In order to understand the reasons for this, it is convenient to scale
Vi down to S} using RSUV-isomorphism (see [25, 26, 20]). Then we
have A}-function Value(C, F), where F is the dummy variable with the
meaning “F = 22" is the number of Boolean functions”, which expresses
the function computed by the circuit C. The number of circuits of size 10n
is 20(nlogn) which is |F|©(oglogloe F) in terms of F. Hence, the mapping
Value restricted to circuits of size 10n, gives rise to the A}-mapping

|F|®(10g10g10gF) — F, 4

and our question on the provability of the existence of complex Boolean
functions in V;! becomes equivalent to whether Si can rule out that this
mapping is surjective.

However, for any unbounded 7(a), S3(f) can not disprove that f :
la|(®) — @ is surjective (see [6, Corollary 5.13]). Hence, due to the
“universal” nature of the predicate Value, it is hardly conceivable that its
internal properties will help us to show that it is not surjective by some
modified counting arguments.

The overall conclusion is that the theory V! can do exactly the right
amount of counting. That is, this theory is capable of arbitrary “slice-and-
measure” arguments on the Boolean cube, but becomes absolutely helpless
when asked to count Boolean functions. Note for comparison that Vi

4we will identify here and in other appropriate places an integer a with the set

{0,1,...,a—1}
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already can prove the existence of Boolean functions whose circuit size is
> n'0 V3 can prove the existence of Boolean functions with exponential
circuit size (since S3 proves W PH P, the weak pigeon hole principle stating
that 2a pigeons can not sit in a holes [17]).

D. On the mathematics and
metamathematics of V!

Many people believe that the theory Si is the most important and natural
theory among various fragments of Bounded Arithmetic. The same applies
to V! which is equivalent to it via the RSUV-isomorphism.

If we take Vi! in the equivalent form V{°(§) then it becomes very trans-
parent that every proof in V! can be viewed as evaluating a polynomial
gize (in N) circuit followed by proving certain “plain” (that is Eé’b(é)) facts
about the protocol of this evaluation. In other words, the same concept
of a polynomial size circuit making the core of Boolean complexity is also
responsible for the metamathematics of the formal theory Vil. This close
link between mathematics and metamathematics already has turned out
important for research on the possibility of solving major open problems
in Boolean complexity by means of Bounded Arithmetic (see [21]).

E. Proofs in subsystems of Vll

In Section B we formulated the thesis that Vi! supports proofs of lower
bounds for explicit functions existing in Boolean complexity at the moment.
It is conceivable, however, that easier proofs do not use the full power of
V! and can be carried over in (presumably) weaker fragments of it. In
this section we analyze from this point of view the proofs listed in the
beginning of this Appendix. As a reward, we will see in Section E.4 a
constructive version of the proof of Hastad Switching Lemma which is
probably interesting in its own right.

E.1. Lower bounds for monotone circuits

As we saw in Section B, carrying these proofs out in V,2(J) involves, besides
the relationals for counting first-order objects, two other kinds of relation-
als 4. The first relational is used to evaluate the result of the plucking
procedure, and another to construct the circuit approximator. Both of
these can be evaluated within ¢(n) steps of iterations, where ¢(n) is the
bound on the circuit size we are proving. Hence these proofs can be for-
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malized in W,"", where 7(a) = t(|a|) ® (e.g. for [3, Theorem 3.9] we have

al \1/6
T(a) = L2(ﬁ) |). Whereas it is not quite unlikely that the number of
iterations in the plucking procedure can be decreased by using some clever
combinatorics, it would be very astonishing if constructing the approxima-
tor C for a general circuit C' could be implemented within any number of
steps substantially less than the size of C. Hence it is plausible that Wll’r
is a “tight” upper bound on the strength of a theory which captures this
kind of argument.

E.2. Lower bounds for monotone formulae based on
communication complexity, excluding [19]

Here the situation is apparently also very clear. The minimal fragment of
Vi capable of formalizing these proofs seems to be UL. Indeed, they use
only induction up to O(n) (which is an obvious upper bound on the circuit
depth) and plain counting arguments. The latter still can be carried out in
Ui (see [6, proof of Proposition 10.2]). The only additional remark which
should be made in this respect concerns probability distributions.

All distributions over a set of first order objects S [over second order
objects] should be reduced to the form f(a) [V (a) respectively], where a
is a random integer taken uniformly from a set of cardinality N f
is a Eé’b(é)—deﬁnable function symbol, and V is a Eé’b(é)—abstract. This
allows one to comfortably perform all usual operations with distributions
(like taking the product) within UP(§); on the other hand, all distributions
actually used in the proofs can be always reduced to this form.

E.3. Lower bounds using algebraic arguments

The situation with lower bounds for constant-depth circuits using MOD—gq
gates [35, 24, 4], as well as with the bound for the monotone formula size
of MINIMUM COVER [19] is far less clear. Trying to carry out these proof
in UY(J), we are stuck in two places. Firstly, the proofs of [35, Lemma 1]
and [24, Lemma 1] require the following

Fact 1. For some € > 0, the following is true. Let a be an L x M matriz
over Iy such that every column has at least one non-zero position. Then
there exists a row vector 3 of length L such that Ba has at least e M non-zero
positions.

The standard probabilistic argument (which in Vi! can be replaced by
an easy induction on L) gives here e = 1 — % but we would be satisfied with

Sstrictly speaking, 7(a) is not necessarily a term of the language L;. However, for all
7 which are definable in IA( by a bounded formula, we can always append them to Lg
(along with natural defining axioms)
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any e since this affects only the multiplicative constant in the exponent of
the bound.

The second part of the proofs in [35, 24, 4] (that is bounding from
below the distance between a symmetric Boolean function and the set of
polynomials of a low degree) in both known methods [35] and [24] requires
the following

Fact 2. Let o be an L x M matriz over Fy such that L > M (or L > M).
Then there exists a non-zero row vector 3 of length L such that o = 0.

Now, recall from Section 1.1 that UP(d) is exactly the theory captur-
ing NC-computations. Examples of Gs needed in Facts 1, 2 are known to
be NC-computable from a. For Fact 1 one could apply the standard de-
randomization procedure [16]; the NC-algorithm for Fact 2 is based upon
computing the matrix rank [15]. Hence UL () can define relationals § wit-
nessing Facts 1, 2 in the real world.

It is not clear, however, to which extent U (J) can prove the desired
properties of these relationals. The point is that the standard proofs of-
ten involve highly consecutive concepts well beyond the reach of the class
NC. E.g. even the most basic subroutine of computing the determinant
of a matrix is designed by parallelising a large-depth circuit which we can
not even evaluate in UP(§). I have found a number of similar examples
but, since the careful study of provability in U} does not quite match the
main topic of this paper, I did not put that much effort into checking how
essential these difficulties are.

E.4. Lower bounds for constant-depth circuits over the
standard basis

In this subsection we again stick to the notation from [5]. Our final goal
will be to demonstrate that [5, Theorem 3.8] can be proven in both Ss(«)
and UL. As the first step, we show that a variant of the Hastad Switching
Lemma [5, Lemma 3.3] can be proven already in Si(e). Note that this
theory is equivalent to JTAg(«r) since the latter can define originally missing
symbols | 5] and (in a very nontrivial way, see e.g. [10, Chapter 5.3]) |z|.

Unfortunately, the standard proof of this lemma involves conditioning
on second-order objects (see e.g. the quantifier on F in [5, Lemma 3.3'])
and hence it is not clear a priori how to place it even into V. Woods (see
[14], [13, Chapter 15]) gave a variant of this proof which avoids such condi-
tioning. Apparently, this is already formalizable in V;!. For our purposes,
however, we need the following more constructive version of Hastad’s proof
which probably is interesting in its own right.

We denote by R’ the set of all restrictions assigning exactly £ stars.
Let Bad(f, s) consist of all restrictions p for which min(f|,) > s, and let
Bad‘(f, s) = R N Bad(f, s).
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We define the auxiliary set Code(t, s) which consists of those sequences

where oV € {0, 1, x}?, for which:
a) every o), 1< i<k contains at least one 1,
b) the whole sequence has exactly s positions occupied by 0,1.

Lemma E.1. Let f be a t-closed function. Then there exrists an injective
mapping F : Badl(f, 5) — RY™* x Codef(t, s).

Proof. Fix a representation f = /\fil C;, where C}s are ORs of fan-in
<t. Let p € Badl(f, s). Fix a minterm 7 of f|, whose size is at least s.

We will recursively define assignments w1, 72, ..., Tk, . . . breaking up 7 into
pieces.
Assume that we already have 7y, 72, ..., m_1 C 7 with mutually dis-

joint domains and such that m;_;...m; is still different from n. Apply
mi—1...71p to the OR gates C4,...,Cy and find the minimal v; with the
property C., . # 1. Such v; must exist since m_1...m1 £ 7 and
hence flx,_,..m1p Z 1. Let T; be the collection of variables of C,,, and let
Y; be those variables from T; which are set by 7w but not by m;_1...71.
Note that ¥; # @ since f|z, =1 and thus Gy, = 1. We let m; = 7ly,.

Now, let & be minimal with the property that 71, 7a, ..., 75 _1, 75 alto-
gether assign at least s variables. We trim 7 in an arbitrary way so that
it still sets Cy, to 1 and 7y, 72, ..., Tk_1, Tk assign ezactly s variables.

Let 7; be the uniquely determined assignment which has the same
domain as m; and does not set the gate C, to 1. We let

Fl(p) = T TE—1...T10;

note that Fy(p) € R:™*.
For 1 < i < k we define o) € {0,1,*}* as follows. Let T; =
{:Bg(i71), . ..,:Bg(mi)}, where ¢; <t and 8(¢,1) < ... < 0(4,%;). We set

. mi(Zo(i,g) @ Ti(2o(i,j) U J <
0'](»2) = and zg(; ;) is in the domain of ;
* if either j > ¢; or zg(; j) is not in the domain of ;.
Note that m; and 7; have different effect on the gate C), hence Vi3j U](»i) =1
which implies (0'(1), ACL .,O'(k)) € Code(t, s). We let

Fp) = (0'(1), AL O'(k)) .

The desired mapping F : Badl(f, 5) — RY™* x Code(t, s) takes p to
(Fi(p), F2(p)). In order to complete the proof we only have to show how
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to retrieve p from (Fi(p), Fa(p)) = (frkfrk_l comp o ..,O'(k)). It is
sufficient to retrieve all (m;,m;) (1 <i<k).

We do it by induction on i.  Assume that we already know
(T1,m1) ..o, (i1, mi—1). Then we also know 7y ...7m—1...m1p. The
crucial observation is that v; is the minimal indexr v such that
Colzyrimiymp £ 1. Indeed, Cy,|. —F 1, Cyl, Z 1 from def-
initions, and miy1,..., 7 do not assign variables from 7; at all. Hence
RO T # 1. On the other hand, all C, with v < v; are already
set to 1 by m;_1...m1p and hence by 7 ... mm_1 ... T1p.

Now, when we know v;, the rest is easy. Having v;, we have T;. From
o and T, we know the domain of 7;, then we retrieve from Fy(p) the
actual value of 7; and consult o(9) again to get ;. m

Vi

Note that if £,¢, s < |N|/||N|| (and the applications of Hastad Switch-
ing Lemma appeal only to parameters from this range), then S; is capable
of coding finite sequences in the amount which is sufficient for formalizing
the proof of Lemma E.1. The key observation to this is that if a is a binary
string of length n%() known to contain at most O(n/|n|) ones then we can
list in S; all positions where 4 has ones in increasing order and freely switch
from one representation of a to another, whichever is more appropriate at
the moment. We leave the details of formalizing the above proof of Hastad
Switching Lemma in Sy () to the reader.

Now we can complete the proof of [5, Theorem 3.8] in either Sz(a) or
Ul. We will not be too fussy about the exact value of the multiplicative
constant in the exponent of the bound (which is a common practice in
Boolean complexity) and estimate the cardinality of Code(t, s) in Lemma
E.1 by Code(t, s) < (4t)*. This means that we construct a straightforward

injective mapping Code(t, s) — (4¢)® defined by a bounded formula.
Then, for a given 25’5 circuit C, where S = 2(1/20mM% and s = log S,
we show by induction on k, 1 < k < d, that there exists p € R
which makes all functions computed at the kth level either s-close or s-open
depending on whether d — k is odd or not.
For the inductive step we first apply Lemma E.1 with

k=1)/d) (1-k/d)

n = n-( , Li=n ,ti=s

to f1|pk ey f5|pk, where fi1,..., fs is the complete list of the functions
computed at the k-th level, and p; is the restriction found at the previous
step. Then, assuming that the desired pr41 does not exist, we glue the
resulting mappings together and get an injective mapping

R — R x (4s)" x S. (51)
Up to this point we still were in the theory S1(«).
|N|
a

It is not clear if S can define binomial coefficients < and prove

their primary properties. But any of the two theories S}, Ui certainly
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n! :
Ay and in

can do that. 521 merely exploits the definition < Z > =

Ul we can naturally enumerate the set [n]®. In particular, both theories
prove the bound < |JZ| > > < £|Jj|s . (%) (for U} we also need
the assumption s < O(|N|/||N||) since otherwise the bit size of the right-
hand side can be too large). This allows us to rewrite (51) as an injective

mapping

n n— n n—A{+s s
<£>-2 l—><£_8>><2 s (45)* x S.

But the existence of a mapping of this form contradicts the weak pigeon
hole principle which is provable in both Sa() and U} (see [17] for the case
of S3(x)). This contradiction completes the inductive step.

The rest of the proof of [5, Theorem 3.8] does not present any problems.
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