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Abstract

We study the question of provability of lower bounds on the com�
plexity of explicitly given Boolean functions in weak fragments of
Peano Arithmetic� To that end� we analyze what is the right frag�
ment capturing the kind of techniques existing in Boolean complexity
at present� We give both formal and informal arguments support�
ing the claim that a conceivable answer is V �

� �which� in view of
RSUV �isomorphism� is equivalent to S�� �� although some major re�
sults about the complexity of Boolean functions can be proved in
�presumably� weaker subsystems like U�

� � As a by�product of this
analysis� we give a more constructive version of the proof of H�astad
Switching Lemma which probably is interesting in its own right�

We also present� in a uniform way� theories which do not involve
second order quanti�ers and show that they prove the same 	��b

� �
theorems as V �

k � U
�
k �k � 
�� Another application of this technique

is that the schemes of 	��b
� �replacement� 	��b

� �IND and 	��b
� limited

iterated comprehension �all of which are given by Boolean combina�
tions of 	��b

� �formulae� together prove all B�	��b
� ��consequences of

the full 	��b
� � IND scheme�

�� Introduction

Proving lower bounds on the complexity of explicitly given Boolean func�
tions is one of the most challenging tasks in computational complexity�
This theory met with remarkable success at least twice� in the ���s �see
e�g� 	
�� 
�� 

� 
�� 
��� and in more recent time �	�� �� 
�� ��� 

� 
�� 
��

� 
�� 
�� 
�� 
�� �� �
� ����� A nice survey of many major results known
in Boolean complexity at present can be found in 	���

Both times� however� the period of enthusiasm was followed by under�
standing that it is not quite clear to which extent the methods developed so
far can be useful for attacking central open problems in Boolean complexity�

This paper �as well as the earlier paper 	
��� mainly stemmed from
the author�s intention to look at this situation from the logical point of
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view� Obviously� all methods already developed in Boolean complexity use
only a very tiny bit of the power of classical systems like Peano Arithmetic
or ZF � We are interested in the question of what is the right �minimal�
fragment of PAwhich su�ces for formalizingall these methods in a natural�
�straightforward� way�

We carefully present both formal and informal arguments supporting
the claim that the desired fragment is V �

� � Note that� due to RSUV �
isomorphism 	
�� 
�� 
��� this system is equivalent to S�� � the latter being
considered as the most important among various fragments of Bounded
Arithmetic� For several reasons� however� it is more natural and elegant
to work directly with second order objects while discussing provability of
statements about the complexity of Boolean functions� So� in this paper we
almost exclusively deal with second order theories� The interested reader
can scale everything down to the �rst order using RSUV �isomorphism�
although the outcome of this translation may look somewhat awkward�

The arguments mentioned in the previous paragraph only say that V �
�

safely contains the algebraic and combinatorialmethods existing in Boolean
complexity at present� Some of them do not use its full power� We analyze
from this point of view several major results in Boolean complexity and see
in which natural subtheories of V �

� they can be proved� One rather surpris�
ing fact discovered during this analysis is that the method of restrictions
	�� �� 
�� ��� can be formalized in either S���� or U�

� � Moreover� the key
argument of the method known in its strongest form as H�astad Switching

Lemma can be carried over already in I������ This required looking at the
proof of this lemma in a rather unusual fashion �see Lemma E�� below��
and this modi�ed proof might be of independent interest�

There exists a powerful witnessing technique for studying provability
of ���b

� �formulae in second order theories with ���b
� � IND originated in 	��

Theorems ����
 and ������� This technique� however� does not say anything

useful about provability of ���b
� �formulae which are our main target �as

formalizations of statements in Boolean complexity are ���b
� �� It seems

that the only known negative results concerning provability of ���b
� �formulae

in systems with ���b
� � IND come from G�odel Incompleteness Theorem�

But the corresponding formulae implicitly encode large numbers� and the
methods used for establishing their unprovability are hardly relevant to the
�plain� combinatorial problems from Boolean complexity we consider here�

In the rest of the paper we develop an appropriate framework for study�
ing provability of ���b

� �formulae� As our approach is purely syntactical� we
treat all theories V �

k � U
�
k �k � �� in a uniform way� and� in fact� we consider

at once more general theories W ���
T � where T is a �rst order theory �obey�

ing some natural restrictions�� and � �a� is a �rst order term restricting the

range of the eigenvariable in ���b
� � IND�

We introduce the theories W ���
T ��� by adding to the language of W ���

T
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relationals � evaluating polynomial size Boolean circuits with the depth
constraints speci�ed by the term � � removing ���b

� � CA and restricting

���b
� � IND to ���b

� � IND� The theories W ���
T ��� do not involve second

order quanti�ers at all� and the main result says that they prove the same
���b
� �formulae in the original language as W ���

T �

A by�product of this technique is that ���b
� �replacement� ���b

� � IND

and ���b
� limited iterated comprehension axioms are altogether powerful

enough to prove all B����b
� ��corollaries� of the full ���b

� � IND scheme�
Moreover� if these corollaries do not contain bounded �rst order quanti�ers
�x � t 	�x � t� in the scope of quanti�ers �� 	��� respectively� �we call

such formulae strict� then ���b
� �replacement can be omitted� This may

be interesting since these three schemes� unlike ���b
� � IND� are given by

B����b
� ��formulae themselves and hence may be taken as axioms in free cut

free proofs consisting of ���b
� ����b

� �formulae�

The paper is organized as follows� In Section 
 we recall some basic
facts about second order Bounded Arithmetic� introduce the generaliza�
tions W ���

T of the theories V �
k � U

�
k and show some simple results concerning

their power� In Section 
 we introduce the systems W ���
T ��� and construct

an interpretation of these systems in a fragment of W ���
T � The next section

� is technical� we show that in the theories W ���
T ��� the nested recursive

de�nitions �forbidden in the original axiomatization� are actually admissi�
ble� In Section � we prove the main witnessing lemma� In the next section
� we formulate our main results which in fact are plain corollaries of the
material contained in the previous sections�

The discussion of connections with Boolean complexity �which is the
main motivation for this work� is postponed until Appendix� The reason
is that it is convenient to use for this purpose some concepts introduced in
the rest of the paper�

���� Related results about �rst order theories

Although� for the reason explained above� we are mainly interested in prov�
ability of ���b

� �formulae� our technique also allows us to view from a single
perspective several previously known results on the computational com�
plexity of functions ���b

� �de�nable in various �rst order theories� The basis
for this comparison is provided by RSUV �isomorphism� Due to this iso�
morphism� the theory V �

� is equivalent to S�� 	
�� 
�� 
��� and the theory
U�
� is equivalent to R�

� 	
���

It is an immediate corollary of the witnessing lemma ��
 that ���b
� �

de�nable functions in W ���
� are exactly those computable by uniform fam�

ilies of polynomial size � �a�O����depth circuits� For the case of V �
� �that is

�B
�� stands for the closure of the class � under Boolean operations
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when � �a� � a�� the depth constraint becomes unessential �see Theorem

�� below�� and the corresponding families of circuits can compute exactly
functions in P � Thus� our result for this case is analogous to the main
result of 	�� concerning �b

��de�nable in S�� functions�
The �rst order theory characterizing NC computable functions was

in various forms introduced by Allen 	
� and Clote 	��� Takeuti 	
��
later showed that this theory is equivalent to R�

� and� via the RSUV �
isomorphism� to U�

� � With these equivalencies in mind� our characterization

of ���b
� �de�nable in U�

� functions �note that polynomial size jnjO����depth
uniform circuits are exactly NC�circuits� provides a new proof of the result
by Allen and Clote�

Finally� if we appropriately adjust the languages� the theory V �
� ���

resembles Cook�s equational system PV 	��� only instead of introducing
function symbols for polynomially computable functions� we introduce re�
lationals for evaluating polynomial size circuits� Respectively� the proof of
our main result corresponds to the conservation result concerning S�� and
PV 	�� Chapter ���

���� Recent developments

A purely complexity framework for analyzing the methods developed so far
in non�uniform Boolean complexity was proposed by Razborov and Rudich
in 	

�� Namely� in that paper we introduced the notion of natural proof and
argued that the known proofs of lower bounds on the complexity of explicit
Boolean functions in non�monotone models fall within this de�nition of
natural� These include e�g� the proofs for bounded�depth circuits analyzed
in Appendix E�
� E�� of this paper�

It was shown in 	

�� based upon a widely believed hardness assump�
tion� that there is no natural proof of superpolynomial lower bounds for
general circuits�

One application of natural proofs to the logical framework developed in
this paper was given in 	
��� Based upon an interpolation�like theorem� it
was proved there that any proof of lower bounds for non�monotone models
in the theory S����� can be recast as natural� Combined with the main
theorem from 	

�� this leads to the �rst partial independence result toward
the goal of understanding provability of superpolynomial lower bounds for
general circuits in V �

� �

�� Theories W
���
T

We assume the familiarity with 	���

Denote by Lk �k � �� the �rst order language with equality which con�
sists of the constant �� function symbols S��� �� b�

�
xc� jxj� x��y� � � � � x�ky




�� Alexander A� Razborov

and of the predicate symbol �� In particular� L� � h�� S��� �� b��xc� jxj��i�
and L� � h�� S��� �� b��xc� jxj����i� where � is used as an abbreviation for
���

Let BASIC� be the set of 

 open axioms in the language L� from 	��
x
�
� describing basic properties of its symbols� We will denote by BASIC�

the set of axioms in L� obtained from BASIC� by removing the ��related
axioms ��
� ����� For k � 
� the set BASICk is obtained by generalizing
Buss�s axiom ��
� to

jx�jyj � S�jxj�j��jyj� �
 � j � k�

and adding the new axiom

z � x�jy � jzj � jx�jyj �
 � j � k�

�cf� 	
����

���� De�nition� We say that a �rst order theory T in a language
L 	 L� is regular if it possesses the following properties�

a� BASIC� 
 T �

b� all axioms of T are bounded�

c� every function symbol �and hence every term� of the language L can
be bounded from above in the theory T by a provably monotone term�

Let in particular Tk be the regular theory in the language Lk which has
BASICk as its list of axioms�

From now on we �x a �rst order extension L of the language L�

and a regular theory T in the language L� Let L be the second order
extension of L obtained by augmenting it with second order variables
f�ri j i� r �N! r � �g� where r denotes the arity of the variable� The su�
perscript r will be dropped whenever this can not create confusion�

Let � �a� be a provably monotone �in T � term such that

T � � �a� � jaj� ���

���� De�nition� The scheme ���b
� � � � IND is de�ned as

A��� 
 �x�A�x� � A�x� ��� � �xA�� �x���

where A�a� is a ���b
� �formula of the language L�

���� De�nition� The second order theory W ���
T in the language L has

the following axioms�

a� T �
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b� ���b
� � � � IND�

c� ���b
� � CA�

���� Remark� Assumption c� from De�nition 
�� implies that bound�
ing terms in bounded formulae can be w�l�o�g� assumed to be provably
monotone� With this remark the proof of 	�� Theorems 
�
� 
��� on the
possibility of introducing �b

��de�ned function and �b
��de�ned predicate

symbols into the language of S�� readily extends to the theories W ���
T � In

particular� all ���b
� �de�ned function and predicate symbols can be freely

used in the schemes ���b
� � � � IND and ���b

� � CA�

If � �a� � a then ���b
� � � � IND is merely ���b

� � IND� In this case
W ���

T for obvious reasons will be denoted by V �
T �

For � �a� � jaj� ���b
� � � � IND becomes ���b

� � LIND� and W ���
T will

be denoted by U�
T � The latter notation is justi�ed by the following

Theorem ���� U�
T is equivalent to T ����b

� � PIND ����b
� � CA�

Proof� A careful inspection of Buss�s proof that the PIND and LIND
schemes are equivalent reveals that the part PIND � LIND uses only ax�
ioms fromBASIC� 	�� Theorem 
���� The converse result LIND � PIND
	�� Theorem 
���� uses only symbols which can be de�ned by bounded for�
mulae in BASIC���b

��LIND� Hence� by assumption a� from De�nition


�� and Remark 
��� the same proof shows that U�
T � ���b

� � PIND�

Now� if we also abbreviate U�
Tk
� V �

Tk
to U�

k � V
�
k � we see that the theories

W ���
T form a convenient uniform generalization of Buss�s theories U�

k � V
�
k �

Theorem ��	� W ���
T � ���b

� � IND�

Proof� A careful inspection of the proof of the result due to Dowd
and Statman that S�� � �b

� � IND �see 	�� Theorem 
�

�� reveals that it
uses only symbols which may be de�ned already in S�� � Hence� the same

proof readily shows that U�
� � ���b

� � IND� As� in view of assumption a�
from De�nition 
�� and ���� W ���

T is an extension of U�
� � this can be also

generalized to W ���
T �

We are also interested in the "�replacement scheme� It will be conve�
nient to take it in the following form�

��
� De�nition� The "�replacement scheme is given by

�x � t��r�� � � ���rll A�x� ��� � � � � �l�

� ��r���� � � ��rl��l �x � t

A�x� fx�� � � � � xr�g���x� x�� � � � � xr��� � � � �

fx�� � � � � xrlg�l�x� x�� � � � � xrl���

where A is in "�
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Theorem ���� W ���
T � ���b

� �replacement�

Proof� By extending the proof of 	�� Theorem ����� in the same man�
ner as with Theorems 
��� 
���

In the proof of the next theorem and in some other places we will write

ixi � y and 
ixi � y in the simpli�ed form 	x � y and 	x � y respectively�

Theorem ���� For any �xed integer k 
 �� W ���
T � ���b

� � �k � IND�

Proof� Let A�a� � ���b
� � Set B�a� b�� � � � � bk��� �� A�b� � b� � � �a� �

� � �� bk�� � �k���a��� We show by induction on i that

W ���
T � �x�A�x� � A�x� ��� � 	B�a� �� � � � � �� bi� � � � � bk���

� �	x � � �a�B�a� x�� � � � � xi��� bi� � � � � bk�����

����
��� �
�

Base i � �� There is nothing to prove�
Inductive step� Assume that for some i � k� � we already have �
��

and we want to prove this for �i � �� instead of i�
First� we have from �
�

W ���
T � �x�A�x� � A�x� ��� � 	B�a� �� � � � � �� bi� � � � � bk���

� B�a� � �a��� �� � � � � � �a��� �� bi� � � � � bk�����

����
��� �
�

Next�

U�
� � �x�A�x� � A�x� ���

� 	B�a� � �a��� �� � � � � � �a��� �� bi� � � � � bk���

� B�a� �� � � � � �� bi � �� bi��� � � � � bk�����

������
�����

���

From �
� and ��� we conclude

W ���
T � �x�A�x� � A�x� ��� � 	B�a� �� � � � � �� bi� bi��� � � � � bk���

� B�a� �� � � � � �� bi� �� bi��� � � � � bk�����

Applying ���b
� � � � IND on c to the formula

�xi � c B�a� �� � � � � �� xi� bi�� � � � � bk����

we �nd

W ���
T � �x�A�x� � A�x� ���

� 	B�a� �� � � � � �� �� bi��� � � � � bk���

� �xi � � �a�B�a� �� � � � � �� xi� bi��� � � � � bk�����

������
�����

���
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We use the inductive assumption �
� again and have

W ���
T � �x�A�x� � A�x� ���

� 	�xi � � �a�B�a� �� � � � � �� xi� bi��� � � � � bk���

� �	x � � �a�B�a� x�� � � � � xi��� xi� bi��� � � � � bk�����

������
�����

���

��� and ��� complete the inductive step�

Now� �
� for i � k implies in particular that

W ���
T � �x�A�x� � A�x� ��� � 	B�a� �� � � � � �� �� � B�a� �� � � � � �� � �a���

which is what we want to prove�

�� Theories W
���
T ���

The underlying idea toward de�ning these theories is to extend the language
L by those �explicit� ���b

� �de�ned relationals � in the style of 	�� x���� which
correspond to the predicate analogue of the limited iteration on notation�
This in fact is equivalent to declaring the ability of evaluating polynomial
size circuits with the depth constraints speci�ed by the term � �

���� De�nition� Let A�a� 	��� B�a� b� 	�� 
�� be ���b
� �formulae of the

language L with all free variables displayed� and k 
 � be a positive integer�
Then we introduce the relational ��a� b� 	�� � �kA�B�a� b� 	�� with the de�ning
axioms

��a� �� 	�� � A�a� 	���

��a� b� �� 	�� � b � �k�a� 
B�a� b� 	�� fxg�x � a 
 ��x� b� 	�����

����
��� ���

Denote by L� ��� the language obtained fromL by adding to it all relationals
�kA�B �

���� De�nition� W ���
T ��� is the second order theory in the language

L� ��� with the following axioms�

a� T �

b� de�ning axioms ��� for all relationals � � �kA�B �

c� ���b
� ���� IND�
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Note that since W ���
T ��� always contains I��� we may freely use in

the induction scheme all function and predicate symbols de�ned in I�� by
bounded formulae� In particular� for each �xed r 
 � we have a function
symbol ha�� � � � � ari which implements a one�to�one mappingNr ��N and
r unary symbols �r

�� � � � ��
r
r representing the inverse mapping N �� Nr�

We choose them in such a way that

I�� � a� � � � �� ar � a�� � � � �� a�r � ha�� � � � � ari � ha��� � � � � a
�
ri�

Notice that this implies that ha�� � � � � ari are provably monotone in each
variable� and also that

I�� � ha�� � � � � ari � ai �� � i � r�� ���

��
� and ��

� will be abbreviated to �� and �� respectively�

One of the goals of this paper is to show that W ���
T and W ���

T ��� are

equivalent with respect to ���b
� �formulae� In this section we will prove one

�easier� part of it� every ���b
� �formula provable in W ���

T ��� is also provable

in W ���
T � It will be convenient� however� to establish at once a stronger

result in the form which will be needed in Section �� For this purpose we
de�ne the explicit scheme in the language L corresponding to De�nition

���

���� De�nition� " � � � LICA� " � �limited iterated comprehension

axioms are given by the following axiom scheme�

����x � t	��x� �� � A�x�


 �y � �k�s�x��

���x� y � �� � B�x� y� fx�g�x� � x 
 ��x�� y������

where A�a�� B�a� b� ��� are in "! t� s�a� are �rst order terms� and k 
 � is
a �xed integer�

���� De�nition �	
�� 
���� " � BCA� " bounded comprehension ax�

ioms are given by the axiom scheme�

��r�x�� � � � � xr f�
r�x�� � � � � xr� � �A�x�� � � � � xr� 
 	x � t�g �

where A is in "�

We have�

Theorem ���� There exists an interpretation of W ���
T �������b

� ����BCA

in T ����b
� �CA����b

� � � � LICA ����b
� � IND identical on formulae

of the language L�
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Proof� During this proof� it will be convenient �and in fact even nec�
essary to make the word �interpretation� precise� to change our view and�
like in 	
��� treat second order theories as many�sorted �rst order theories
with equality having variables of sorts �� �� 
� � � �� where � is reserved for
the sort of �rst order variables and r 
 � is the sort of r�ary second order
variables� The equality for variables of sort r 
 � is introduced by

�r � 
r �� �	x ��r�	x� � 
r�	x�� �

Note that it may not appear in bounded formulae�

Let � be the relational of the language L� ��� with the de�ning axioms

���� Consider the corresponding instance of ���b
� � � � LICA

����x � c	��x� �� � A�x� 	��


 �y � �k�x�

���x� y � �� � B�x� y� 	�� fx�g�x� � x 
 ��x�� y������

������
�����

���

where this time all free variables are displayed� Apply ���b
� � CA to trim

� in ��� to the area x � c� y � �k�x�� We will have

T ����b
� � � � LICA � ���b

� � CA � ���

f�x�y���x� y� � �x � c 
 y � �k�x���


 �x � c	��x� �� � A�x� 	��


 �y � �k�x����x� y � �� � B�x� y� 	��

fx�g�x� � x 
 ��x�� y�����g�

�����������
����������

����

���b
� � IND readily shows the uniqueness of �� satisfying ����� Hence we

may introduce into the theory T����b
� �CA����b

� ���LICA����b
� �IND

the function symbol F �
� �c� 	�� �the superscript 
 indicates that F� takes

values in variables of sort 
� with the de�ning axioms

F �
� �c� 	���a� b� � a � c 
 b � �k�a��

a � c �
�
F �
� �c� 	���a� �� � A�a� 	��

�
�

a � c 
 b � �k�a� � F �
� �c� 	���a� b� ��

� B�a� b� 	�� fxg�x � a


 F �
� �c� 	���x� b����

������������
�����������

����

This extension will be conservative over T ����b
� �CA����b

� ���LICA�

���b
� � IND� Throughout the rest of the proof� � will stand for the prov�

ability in this extension�
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The crucial property of the newly introduced function symbols is their
�monotonicity� in the following sense�

� c� � c� � �x � c� �F��c�� 	���x� b� � F��c�� 	���x� b�� � ��
�

This is readily proved by ���b
� � IND from �����

Now we interpret the relationals ��a� b� 	�� as follows�

��a� b� 	��� F��a� 	���a� b��

The interpretations of de�ning axioms ��� readily follow from ���� using
��
��

Let us call a formula in the extended language L�F�� simple if it does
not contain nested occurrences of the newly introduced function symbols
F�� Note that the interpretation of any formula in the language L� ��� is
simple� Hence� in order to �nish the proof of Theorem 
��� we only have
to show that T � ���b

� � CA � ���b
� � � � LICA � ���b

� � IND proves

���bs
� �F���IND and ���bs

� �F���BCA� where we denoted by ���bs
� �F�� the

set of all simple ���b
� �F���formulae�

For this we need the following

Claim ��	� Let A�a�� � � � � ar� � ���bs
� � and t�� � � � � tr be �rst order

terms which do not contain occurrences of a�� � � � � ar� Then there exists

A��a�� � � � � ar� � ���bs
� such that

� �x� � t� � � ��xr � tr�A�x�� � � � � xr� � A��x�� � � � � xr�� ��
�

and the scope of every F��symbol in A� contains no variables from the list

a�� � � � � ar and no bound variables�

Proof of Claim ��	� Induction on complexity of A�
If A � F��s�a�� � � � � ar�� 	���s�� u�� we let

A� �� s� � s�a�� � � � � ar� 
 F��#s�t�� � � � � tr�� 	���s�� u��

where #s is a provably monotone term bounding s from above� Then ��
�
follows from ��
��

If A � �x � t�a�� � � � � ar�B�x� a�� � � � � ar�� we �nd by inductive as�
sumption a formula B��a� a�� � � � � ar� so that � �x � #t�t�� � � � � tr��x� �
t� � � ��xr � tr�B�x� x�� � � � � xr� � B��x� x�� � � � � xr��� where #t is a provably
monotone bound for t� and let A� �� �x � t�a�� � � � � ar�B��x� a�� � � � � ar��

All other cases are obvious�
The proof of Claim 
�� is complete�

Now� in order to see � ���bs
� �F���IND� we notice �rst that ���bs

� �F���
IND is equivalent to its bounded version

A��� 
 �x � t�A�x� � A�x� ��� � �x � tA�x�� ����
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Applying Claim 
�� to the formula A�a� and term t� we may assume that
the scope of every F� in ���� contains no bound variables� But this allows

us to derive ���� as a substitutional instance of the ���b
� � IND axiom

obtained from ���� by replacing all occurrences F��s� 	��� where s is a term�
with new free variables of sort 
�

The same argument gives us � ���	x � t	��	x� � A�	x��� where A �

���bs
� �F��� Now we trim this � to the area 	x � t using ���b

� �CA to derive

���bs
� �F��� BCA�

The proof of Theorem 
�� is complete�

Corollary ��
� Every formula of the language L provable in W ���
T ��� �

���b
� ��� � BCA is also provable in T � ���b

� � CA � ���b
� � � � LICA �

���b
� � IND�

For the most interesting case � �a� � a the restriction b � �k�a� in ���
becomes unnecessary� and the set of relationals appended to the language
L can be substantially simpli�ed�

���� De�nition� Let A�a� 	�� 
�� be a ���b
� �formula in the language L

with all free variables displayed� Then the relational #� � #�A�a� 	�� has the
following de�ning axiom�

#��a� 	�� � A�a� 	�� fxg�x � a 
 #��x� 	����� ����

We de�ne V �
T �

#�� similarly to V �
T ��� with the di$erence that this time we

use the relationals #� with the de�ning axioms �����

Theorem ���� There exist two interpretations V �
T �

#�� � V �
T ��� and

V �
T ���� V �

T �
#��� both identical on the formulae of L�

Proof� For the relational #� with the de�ning axiom ���� we de�ne the
relational ��a� b� 	�� by

��a� �� 	�� � a � � 
A��� 	�� fxg ���

��a� b� �� 	�� � b � a 
 ��a � 
b� 
 
 ��a�� �� b� 	��� � �a � 
b� 



 A�b � �� 	�� fxg�x � b 
 ��b� x� b� 	������ �

This de�nition is easily seen to have the required form ��� with k �� � and
B �� �a � 
b�


�a�� �����a � 
b�

A�b��� 	�� fxg�x � b

�b�x�����

Now we prove by ���b
� ����induction on b that V �

T ��� � a � b � ��a �
b� b� 	�� � ��
a� a� 	��� With the help of this� it is easy to see that the image
of ���� under the translation #��a� 	�� � ��
a� a� 	�� is provable in V �

T ����
Hence this translation de�nes the desired interpretation V �

T �
#��� V �

T ����

For the inverse interpretation� we interpret the relational ��a� b� 	�� with
the de�ning axioms ��� in the theory V �

T �
#�� as

��a� b� 	��� #��ha� bi� 	���
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where #� has the de�ning axiom

#��a� 	�� � ����a� � � 
A����a�� 	���

� �� � ���a� � ���a�
k


 B����a�����a��
� �� 	��

fxg�x � ���a� 
 #��hx����a��
� �i� 	������

�� Bootstrapping W
���
T ���

In view of our general goal� the theories W ���
T ��� were de�ned in the previ�

ous section in the most restricted way� By this I mean that the ��symbols
were a priori forbidden to appear in each other�s scope� In this section
we show that the most natural constructions of this kind can be in fact
simulated in W ���

T ���� This amounts to some rather technical work�

Lemma ���� Let A�a� b� 
�� � ���b
� � where all �rst order free variables

are displayed� and let k be a positive integer� Then there exists a ���b
� ����

formula D�a� b� such that

W ���
T ��� � D�a� b� � b � �k�a� 
A�a� b� fx� yg�x � a 
 y � b 
D�x� y����

Proof� This lemma is similar to the �rst part of Theorem 
��� The
main complication is that when � �a� is small� we in general are not guaran�
teed the existence of a term t�a� b� such that b � �k�t�a� b��� We circumvent
this by introducing a dummy variable c� like in the proof of Theorem 
���

More precisely� let A�a� b� 
�� � A�a� b� 	�� 
��� where this time all free
variables are displayed� De�ne a relational ��a� b� 	�� with the properties

W ���
T ��� � ��ha� b� ci� b�	��

�
�
b � �k�a� 
 A�a� b� 	��

fx� yg�x � a 
 y � b 
 ��hx� y� ci� b�� �� 	����
�

���������
��������

����

and

W ���
T ��� � b � b� � �k�c� � ��ha� b� ci� b�� �� 	�� � ��ha� b� ci� b�� 	��� ����

This is done straightforwardly� namely we de�ne � by the axioms

��a� �� 	�� � A���
��a�� �� 	�� fx� yg ���
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��a� b� �� 	�� � b � �k�a� 

�
���

��a� � b 
 ��a� b� 	���

� �b� � � ��
��a� � �k���

��a�� 
A��
�
��a���

�
��a�� 	��

fx� yg�x � ��
��a� 
 y � ��

��a� 
 ��hx� y��
�
��a�i� b� 	�����

�
�

This de�nition has the form required in ��� sinceW ���
T ��� � x � ��

��a�
y �
��
��a� � hx� y���

��a�i � a due to the monotonicity of ha�� a�� a�i� Note
also that W ���

T ��� � �k�a� � �k���
��a�� and W ���

T ��� � �k�a� � �k���
��a��

due to ����

An obvious ���b
� ����induction on b� applied to ���� gives us

W ���
T ��� � b � b� � �k�c� � ��ha� b� ci� b�� 	�� � ��ha� b� ci� b� 	���

Under the assumption a � c this allows us to replace ��hx� y� ci� b�� �� 	�� in
���� by ��hx� y� ci� y� 	�� to get �rst

W ���
T ��� � a � c �

�
��ha� b� ci� b� 	��

�
�
b � �k�a� 
A�a� b� 	��

fx� yg�x � a 
 y � b 
 ��hx� y� ci� y� 	����
��

���������
��������

����

and then� as a partial case

W ���
T ��� � ��ha� b� ai� b� 	��

�
�
b � �k�a� 
 A�a� b� 	��

fx� yg�x � a 
 y � b 
 ��hx� y� ai� y� 	����
�
�

���������
��������

����

Using ����� we prove by ���b
� ���� IND on b that

W ���
T ��� � c� � c � �x � c� ���hx� b� ci� b� 	�� � ��hx� b� c�i� b� 	���

which allows us to replace ��hx� y� ai� y� 	�� in ���� with ��hx� y� xi� y� 	�� and
obtain the desired result with D�a� b� �� ��ha� b� ai� b�	���

Now we strengthen Lemma ��� by enlarging the class of formulae A to
which it is applicable�

Lemma ���� Let A�a� b� 
�� � ���b
� ���� where all �rst order free variables

are displayed� and


 does not appear in the scope of ��symbols� �
��
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Let k be a positive integer� Then there exists a ���b
� ����formula D�a� b� such

that

W ���
T ��� � D�a� b� � b � �k�a� 
A�a� b� fx� yg�x � a 
 y � b 
D�x� y����

Proof� Once again� let 	� be the complete list of free second order
variables in A other than 
� Let ���a� b� 	��� � � � � �l�a� b� 	�� be the complete
list of relationals appearing in A� Represent A in the form

A�a� b� 	�� 
� � #A�a� b� 	�� 
� fx� yg�i�x� y� 	����

where #A�a� b� 	�� 
� ��� � � � � �l� � ���b
� � Similarly to 	�� Lemma ����� and

	
�� Theorem 
�� a��� we have a term T �a� b� �which may be additionally
assumed to be provably monotone� such that

W ���
T ��� �

�x � T �a� b��y
�
���x� y� � ����x� y� 
 � � �


 �l�x� y� � ��l�x� y�
�

� #A�a� b� 	�� 
� ��� � � � � �l� � #A�a� b� 	�� 
� ���� � � � � �
�
l��

�����������
����������

�
��

Let T��a� �� T �a� �k�a��� T��a� �� hl� T��a�i � � �where l is a closed term
representing the integer l�� f�a� �� h�� ha� T��a�ii and� �nally� g�a� b� ��
�k

�

�T��a�� � b � �� where k� is the maximal integer among the exponents
k�� � � � � kl involved in the de�nitions of ��� � � � � �l�

It is straightforward to check that we may de�ne� in accordance with
Lemma ��� �with k �� max�k�� k���� a ���b

� ����formulaD��a� b� possessing
the following properties�

W ���
T ��� � D��hi� ai� b� � �i�a� b� 	�� �� � i � l�� �

�

W ���
T ��� � D��f�a�� g�a� b�� � b � �k�a� 
 #A�a� b� 	��

fx� yg�x � a 
 y � b 
D��f�x�� g�x� y����

fx� yg�x � T��a� 
 y � �ki�x� 
D��hi� xi� y����

������
�����

�

�

Due to �

�� we may replace D��hi� xi� y� in �

� by �i�x� y� 	��� Then
we can drop the term y � �ki�x� �as W ���

T ��� � �i�a� b� 	�� � b � �ki�a��
and x � T��a� �due to �
���� These simpli�cations lead to

W ���
T ��� � D��f�a�� g�a� b��

� �b � �k�a� 
A�a� b� 	��

fx� yg�x � a 
 y � b 
 D��f�x�� g�x� y�����

which is exactly what we need �with D�a� b� �� D��f�a�� g�a� b����
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Corollary ���� Let A�a�� B�a� b� 
�� � ���b
� ���� where all �rst order free

variables are displayed� and k be a positive integer� Assume that �
�� holds�

Then there exists a ���b
� ����formula D�a� b� such that

W ���
T ��� � D�a� �� � A�a��

W ���
T ��� � D�a� b� �� � b � �k�a� 
B�a� b� fxg�x � a 
D�x� b����

Now we are in position to de�ne substitutions of arbitrary ���b
� ����

abstracts into formulae� Namely� let C be a formula of L� ���� ��� � � � � �r
be second�order free variables� and V�� � � � � Vr be ���b

� ����abstracts of the
corresponding arities� We de�ne C 	V����� � � � � Vr��r � by induction on com�
plexity of C�

If C � �kA�B�t� s� 	��� then we let

�kA�B�t� s� 	��
h
	V �	�

i
��D�t� s��

where D�a� b� is the ���b
� ����formula such that

W ���
T ��� � D�a� �� � A�a� 	��

h
	V �	�

i
�
��

and

W ���
T ��� � D�a� b� �� �

�
b � �k�a�


 B�a� b� 	�� 
�
h
	V �	�� fxg�x � a 
D�x� b���


i �
������
�����

�
��

de�ned in accordance with Corollary ��
� We assume here that a� b� 
 do

not occur in 	�� 	V which� in particular� implies �
�� for B�a� b� 	�� 
�
h
	V �	�

i
�

All other cases in the recursive de�nition of C 	V����� � � � � Vr��r� are
treated in the standard way �see e�g� 	�� x������

The axiomatic properties of C 	V����� � � � � Vr��r� needed for our pur�
poses are summarized in the following easy lemma�

Lemma ���� a� if C does not contain relationals � then C
h
	V �	�

i
coin�

cides with the usual de�nition�

b� if

W ���
T ��� � C�� � � � � Cr �� D�� � � � � Ds �
��

then
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W ���
T ��� � C�

h
	V �	�

i
� � � � � Cr

h
	V �	�

i
�� D�

h
	V �	�

i
� � � � � Ds

h
	V �	�

i
�

������
�����

�
��

c� C
h
	V �	�

i 	
	t�	a



� C

	
	t�	a


 h
	V �	�

i
� where variables from the list 	a do

not occur in 	V �

d� let C�D�

�
	a���

�
� � � � � Dr

�
	a�r�

�
� ���b

� ���� Vi ��
�
	x�i�

�
Di

�
	x�i�

�
�� �

i � r�� 	� be a vector of second order variables not appearing in C�

and 	W be ���b
� ����abstracts� Then

W ���
T ��� � C

h
	V �	�

i h
	W�	�

i
� C

hn
	x�i�

o�
Di

�
	x�i�

� h
	W�	�

i�
��i

i
�

������
�����

�
��

Proof� a� is obvious�
b�� Every proof in W ���

T ��� of the sequent �
�� can be converted into

a proof of �
�� after substituting 	V for 	� into it if we note that the axioms
��� are taken by this substitution exactly to �
��� �
���

c�� By obvious induction on the complexity of C�
d�� Induction on the complexity of C� In fact� all cases are straightfor�

ward �for C � �x � t E�x� use already proven part c�� except for the base

case C � �kA�B�t� s� 	��� In particular� we already have �
�� when C � ���b
� �

In the remaining case C � �kA�B�t� s� 	�� we may assume w�l�o�g� that

C�a� b� � �kA�B�a� b� 	���

Then we have from de�nitions

W ���
T ��� � C�a� ��

h
	V �	�

i
� A�a� 	��

h
	V �	�

i
W ���

T ��� � C�a� b� ��
h
	V �	�

i
�
�
b � �k�a� 
B�a� b� 	�� 
�

h
	V �	��

fxg
�
x � a 
C�x� b�

h
	V �	�

i �
�

i�

which� by the already proven part b�� implies

W ���
T ��� � C�a� ��

h
	V �	�

ih
	W�	�

i
� A�a� 	��

h
	V �	�

i h
	W�	�

i
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W ���
T ��� � C�a� b� ��

h
	V �	�

i h
	W�	�

i
�
�
b � �k�a� 
B�a� b� 	�� 
�

h
	V �	��

fxg
�
x � a 
 C�x� b�

h
	V �	�

i�
�

i h

	W�	�
i�

�

A and B� however� are in ���b
� � Hence� since for formulae with this

restriction �
�� is already established� we have

W ���
T ��� � C�a� ��

h
	V �	�

ih
	W�	�

i
� A�a� 	��

hn
	x�i�

o�
Di

�
	x�i�

�h
	W�	�

i�
��i

i

and

W ���
T ��� � C�a� b� ��

h
	V �	�

ih
	W�	�

i
�
�
b � �k�a� 
 B�a� b� 	�� 
�

hn
	x�i�

o�
Di

�
	x�i�

� h
	W�	�

i�
��i�

fxg
�
x � a 
 C�x� b�

h
	V �	�

i h
	W�	�

i �
�

i�
�

Comparing these with the de�nitions of

C�a� b�
hn
	x�i�

o�
Di

�
	x�i�

� h
	W�	�

i�
��i

i
�

we� by a straightforward induction on b� establish

W ���
T ��� � �x � a

�
C�x� b�

h
	V �	�

i h
	W�	�

i
� C�x� b�

hn
	x�i�

o�
Di

�
	x�i�

� h
	W�	�

i�
��i

i�

which immediately gives the desired result�

Now we can get rid of the restriction �
�� in Lemma ��
�

Lemma ���� Let A�a� b� 
�� � ���b
� ���� where all �rst order free variables

are displayed� and k be a positive integer� Then there exists a ���b
� ����

formula D�a� b� such that

W ���
T ��� � D�a� b� � b � �k�a� 
A�a� b� fx� yg�x � a 
 y � b 
D�x� y����

Proof� We use the notation introduced in the proof of Lemma ��
�
The only di$erence is that this time the relationals ��� � � � � �l may also
depend on 
� Write down explicitly their de�ning axioms�

�i�a�� �� 	�� 
� � Ai�a�� 	�� 
�� �
��
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�i�a�� b� � �� 	�� 
� � b� � �ki�a�� 
Bi�a�� b�� 	�� 
�

fx�g�x� � a� 
 �i�x�� b�� 	�� 
����

����
��� �
��

Let

%i�a� a�� �� hi� a�i� T��a� � �
 �� � i � l��

%�a� �� h�� T��a�i � T��a� � �
�

fi�a� b� a�� �� ha� b� b �%�a� � %i�a� a��i�

f�a� b� �� ha� b� b �%�a� � %�a�i�

gi�a� b� b�� �� b �
�
�k

�

�T��a�� � 

�
� b��

g�a� b� �� �b� �� �
�
�k

�

�T��a�� � 

�
�� ��

We de�ne� in accordance with Lemma ��� �but this time with k ��

k � k� � �� a ���b
� ����formula D��a� b� which has the following properties�

W ���
T ��� � b � �k�a� �

�
D��fi�a� b� a��� gi�a� b� ���

� Ai�a�� 	�� fx� yg�x � a 
 y � b


 D��f�x� y�� g�x� y����
�
�� � i � l��

��������
�������

�
��

W ���
T ��� � b � �k�a� �

�
D��fi�a� b� a��� gi�a� b� b� � ���

� b� � �ki�a�� 
Bi�a�� b�� 	��

fx� yg�x � a 
 y � b 
D��f�x� y�� g�x� y����

fx�g�x� � a� 
 D��fi�a� b� x��� gi�a� b� b�����
�

�� � i � l��

�������������
������������

�

�

W ���
T ��� � D��f�a� b�� g�a� b�� � b � �k�a� 
 #A�a� b� 	��

fx� yg�x � a 
 y � b 
D��f�x� y�� g�x� y����

fx�� y�g�x� � T��a� 
 y� � �ki�x��


 D��fi�a� b� x��� gi�a� b� y������

���������
��������

�

�

Now� using Lemma ��� b�� we substitute the abstract

fx� yg�x � a 
 y � b 
D��f�x� y�� g�x� y���
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for 
 into �
��� �
��� Comparing the result of this substitution with �
���

�

�� we readily prove by ���b
� ��� � IND that

W ���
T ��� � b � �k�a� �

�
D��fi�a� b� a��� gi�a� b� b���

� �i�a�� b�� 	�� fx� yg�x � a 
 y � b 
D��f�x� y�� g�x� y����
�
�

This allows us to transform� like in the proof of Lemma ��
� the right�hand
side of �

� to

b � �k�a� 
A�a� b� 	�� fx� yg�x � a 
 y � b 
D��f�x� y�� g�x� y����

which immediately gives us the desired result with

D�a� b� �� D��f�a� b�� g�a� b���

Finally� we convert Lemma ��� to the following form of simultaneous
induction� which will be convenient in the next section�

Lemma ��	� Let

Ai�a�� � � � � ari�� Bi�a�� � � � � ari � b� 

r�
� � � � � � 
rll � � ���b

� ��� �� � i � l��

and t� s�b� be �rst order terms� where all occurrences of the variables 	a� b� 	

are explicitly displayed� Assume also that k is a positive integer� Then there

exist ���b
� ����formulae Di�a�� � � � � ari � b� �� � i � l� such that

W ���
T ��� � Di�a�� � � � � ari � �� � Ai�a�� � � � � ari� �� � i � l��

W ���
T ��� � Di�a�� � � � � ari � b� �� �

�
b � �k�t�


 Bi

�
a�� � � � � ari � b�

n
	x���

o�
	x��� � s�b� 
D�

�
	x���� b

��
� � � � �n

	x�l�
o�

	x�l� � s�b� 
Dl

�
	x�l�� b

����
�� � i � l��

Proof� Let c�� � � � � cn� 	� be the complete list of free variables appearing
in Ai� Bi� t� s�b� other than 	a� b� 	
� W�l�o�g� we may assume that t�	c� and
s�b�	c� are provably monotone� We set

T��	c� �� s
�
�k�t�	c��� 	c

�
�

T��	c� ��

lX
i��

hi� hT��	c�� � � � � T��	c�
 �z �
ri

ii�

fi�a�� � � � � ari � b�	c� �� hb � T��	c� � hi� ha�� � � � � ariii� c�� � � � � cn� t�	c�i�
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Then we de�ne� in accordance with Lemma ���� a formulaD�a� b� with
the properties

W ���
T ��� � D�fi�a�� � � � � ari � �� 	c�� �� � Ai�a�� � � � � ari� �� � i � l��

W ���
T ��� � D�fi�a�� � � � � ari � b� �� 	c�� b� �� �

�
b � �k�t�	c��


 Bi

�
a�� � � � � ari � b�n
	x���

o�
	x��� � s�b�	c� 
D

�
f�

�
	x���� b�	c

�
� b
��

� � � � �n
	x�l�

o�
	x�l� � s�b�	c� 
D

�
fl

�
	x�l�� b�	c

�
� b
����

�� � i � l�

and let Di�a�� � � � � ari � b� �� D�fi�a�� � � � � ari � b�	c�� b��

�� The witnessing lemma

In this section we will show that if W ���
T � A � B� where A�B � ���b

� �

then this fact can be witnessed in W ���
T ��� by a family of ���b

� ����abstracts�
The proof goes more or less along the same lines as the proof of 	�� Theo�
rems ����
� ������� The main di$erence is that we are interested not only
in the computational complexity of the witnessing formulae� but also in
removing from the proof second order quanti�ers� This will alter our def�
initions� we prefer to take them as clear as possible syntactically rather
than semantically�

Throughout this section second order variables ��� � � � � �l� � � � will stand
for special witnessing variables� We will always assume that they do not oc�
cur in original ���b

� �formulae denoted by capital latin letters likeAi� Bi� C�D
etc�

���� De�nition� Given a formula A � ���b
� � we de�ne its witnessing

formula WA � ���b
� as follows�

a� if A is atomic or negation of an atomic formula� then WA �� A�

b� if A � B 
C or A � B � C then we rename if necessary witnessing
variables inWB and WC so that no variable appears in both of them�
and let WA ��WB 
WC 	WB �WC � respectively��

c� if A � �x � tB�x� then WA �� �x � tWB�a�	x�a��

d� if A � �x � tB�x� then

WA �� �x � t WB�a�

	
fy�� � � � � yrig�

ri��
i �a� y�� � � � � yri���

ri
i



	x�a��

where the second order substitution is extended over all witnessing
variables �rii appearing in WB�a��
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e� if A � ��B��� then WA ��WB���	����� where � is a new witnessing
variable which did not appear in WB����

f� if A � �B� where B � ���b
� � use prenex operations to convert A to

the form where negations appear on atomic formulae only and handle
the result of this conversion in accordance to cases a�� e� above�

The sole purpose of our variant of the de�nition of the witnessing for�
mula is to move second order quanti�ers in front in the simplest possible
way� Note thatWA is de�ned uniquely up to renaming witnessing variables�
and that WA � A for A � ���b

� �

Lemma ���� Suppose that

W ���
T � A�� � � � � Ak� B�� � � � � Bl �� Ak��� � � � � Am� Bl��� � � � � Bn� �
��

where A�� � � � � Ak� Bl��� � � � � Bn � ���b
� and B�� � � � � Bl� Ak��� � � � � Am �

���b
� � Then there exist ���b

� ����abstracts 	V ���� � � � � 	V �n� such that

W ���
T ��� � WA� � � � � �WAk �W�Ak�� � � � � �W�Am

�� W�B�

h
	V ����	����

i
� � � � �W�Bl

h
	V �l��	��l�

i
�

WBl��

h
	V �l����	��l���

i
� � � � �WBn

h
	V �n��	��n�

i
�

���������
��������

�
��

where 	����� � � � � 	��n� are complete lists of witnessing variables in

W�B� � � � � �WBn and no witnessing variable appears in any two of the for�

mulae WA� � � � � �WBn �

Proof� �cf� 	�� Proof of Theorem ����
��� Applying cosmetic rules
���left�� ���right�� we can assume that our sequent has the form

A�� � � � � Am �� B�� � � � � Bn

withA�� � � � � Am� B�� � � � � Bn � ���b
� � The Cut EliminationTheorem is read�

ily extended to W ���
T hence we may also assume that all formulae in the

proof belong to ���b
� ����b

� � As usual� we apply induction on the complexity
of the proof�

All axioms of W ���
T are in ���b

� �see part b� of De�nition 
���� and in
this case �
�� coincides with �
���

In our analysis of inference rules we omit many cases which either are
obvious or can be treated similarly to previously considered cases�


Weak�left� transforms to �Weak�left� in the theory W ���
T ����


Weak�right� also transforms to itself �if Bn�� is the principal formula

then the corresponding abstracts 	V �n��� can be chosen in an arbitrary way��
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Contraction�right�� We have

W ���
T ��� � WA� � � � � �WAm ��WB�

h
	V ����	����

i
� � � � �

WBn

h
	V �n��	��n�

i
�WA

h
	V �	�

i
�WA

h
	V ��	�

i
�

where� say� Vi �
�
	x�i�

�
Ci

�
	x�i�

�
and V �

i �
�
	x�i�

�
C�
i

�
	x�i�

�
� and we want to

�nd a single family of abstracts 	V �� with the property

W ���
T ��� � WA� � � � � �WAm

��WB�

h
	V ����	����

i
� � � � �WBn

h
	V �n��	��n�

i
�WA

h
	V ���	�

i
�

Clearly� the family de�ned by

V ��
i
��
n
	x�i�

o��
WA

h
	V �	�

i

Ci

�
	x�i�

��
�
�
�WA

h
	V �	�

i

C�

i

�
	x�i�

���

will do�



�right�� We have

W ���
T ��� � WA� � � � � �WAm

��WB�

h
	V ����	����

i
� � � � �WBn

h
	V �n��	��n�

i
�WA

h
	V �	�

i

and

W ���
T ��� � WA� � � � � �WAm

��WB�

h
	V �����	����

i
� � � � �WBn

h
	V ��n��	��n�

i
�WB

h
	V ��	��

i
�

and we want to �nd abstracts 	V ������ � � � � 	V ���n� such that

W ���
T ��� � WA� � � � � �WAm ��WB�

h
	V ������	����

i
� � � � �

WBn

h
	V ���n��	��n�

i
�WA

h
	V �	�

i

WB

h
	V ��	��

i

�we assume that all variables in 	��	�� are pairwise distinct�� This is done
similarly to the case �Contraction�right�� Namely� we let

V
���i�
j

��
n
	x�ij�

o��
WA

h
	V �	�

i

C��i�

j

�
	x�ij�

��
�
�
�WA

h
	V �	�

i

C�i�

j

�
	x�ij�

���
�

where C
�i�
j � C

��i�
j are the ���b

� ����formulae de�ning the abstracts V
�i�
j � V

��i�
j

respectively�
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� ��left�� We have

W ���
T ��� � WA�t��WA� � � � � �WAm

��WB�

h
	V ����	����

i
� � � � �WBn

h
	V �n��	��n�

i
�

�����
����

�
��

and we want to show

W ���
T ��� � t � s� �x � sWA�a�	f	yg	��a� 	y��	��	x�a��WA�� � � � �WAm

��WB�

h
	V �����	����

i
� � � � �WBn

h
	V ��n��	��n�

i

for some 	V ����� � � � � 	V ��n�� Here 	� is the complete list of witnessing variables
appearing in WA�

For doing this we� using Lemma ���� substitute f	yg	��t� 	y� for 	� into
�
�� and �nd

W ���
T ��� � WA�a�	f	yg	��a� 	y��	��	t�a��WA�� � � � �WAm

��WB�

h
	V �����	����

i
� � � � �WBn

h
	V ��n��	��n�

i
�

where
V
��i�
j

��
n
	x�ij�

o�
C
�i�
j

�
	x�ij�

�
	f	yg	��t� 	y��	��

�
�

Then we apply �� ��left� in the theory W ���
T ����


� ��right�� We have

W ���
T ��� � a � t�WA� � � � � �WAm

��WB�

h
	V ����a��	����

i
� � � � �WBn

h
	V �n��a��	��n�

i
�

WA�a�

h
	V �a��	�

i
�

���������
��������

�
��

where all possible occurrences of the eigenvariable a are displayed� and it
su�ces to show that

W ���
T ��� � WA� � � � � �WAm ��WB�

h
	V �����	����

i
� � � � �

WBn

h
	V ��n��	��n�

i
� �x � tWA�a�

h
	V �a��	�

i
	x�a��

������
�����

�
��

Indeed�
W�x�tA�x� � �x � tWA�a� 	f	yg	��a� 	y��	�� 	x�a��
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hence

W ���
T ��� � W�x�tA�x�

h
fx� 	yg	C�x� 	y��	�

i
� �x � tWA�a�

h
	V �a��	�

i
	x�a�

by Lemma ���� where� as usual� Vi�a� � f	ygCi�a� 	y��

Let D�a� �� �WA�a�

h
	V �a��	�

i

 �x � aWA�a�

h
	V �a��	�

i
	x�a�� We

modify the abstracts V
�i�
j �a� �

�
	y�ij�

�
C
�i�
j

�
a� 	y�ij�

�
to

V
��i�
j

��
n
	y�ij�

o�
�x � t

�
D�x� 
C

�i�
j

�
x� 	y�ij�

���
�

In order to see �
��� note �arguing informally in W ���
T ���� that if

�x � t�WA�a�

h
	V �a��	�

i
	x�a�

then� by ���b
� ���� IND� there exists the minimal a � t with the property

�WA�a�

h
	V �a��	�

i
�

This a is the unique x � t satisfying D�x�� hence V ��i�
j becomes equivalent

to V
�i�
j �a� which allows us to apply �
���


Cut�� We have

W ���
T ��� � WA� � � � � �WAm

��WB�

h
	V ����	����

i
� � � � �WBn

h
	V �n��	��n�

i
�WA

h
	V �	�

i

and

W ���
T ��� � WA�WA�

�
� � � � �WA�

m�

�� WB�
�

h
	V �����	�����

i
� � � � �WB�

n�

h
	V ��n���	���n

��
i
�

������
�����

�
��

and we are going to deduce

W ���
T ��� � WA� � � � � �WAm �WA�

�
� � � � �WA�

m�
��WB�

h
	V ����	����

i
� � � � �

WBn

h
	V �n��	��n�

i
�WB�

�

h
	V ������	�����

i
� � � � �WB�

n�

h
	V ���n���	���n

��
i

for some �possibly new� abstracts 	V ������ � � � � 	V ���n��� For doing this we sub�

stitute 	V for 	� into �
�� �using Lemma ���� of course�� rename witnessing
variables if necessary and apply �Cut� in the theory W ���

T ����
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second order ��left�� This case is actually impossible �since� due to

our convention� A�� � � � � Am� B�� � � � � Bn are in ���b
� ��


second order ��left� amounts to declaring the eigenvariable � as a
witnessing variable�


second order ��right� ���b
� � CA�� We have

W ���
T ��� � WA� � � � � �WAm

��WB�

h
	V ����	����

i
� � � � �WBn

h
	V �n��	��n�

i
�WF �V �

h
	V �	�

i
�

It is easy to see� however� that

W ���
T ��� � WF �V �

h
	V �	�

i
� WF ���	V���

h
	V �	�

i
�WF ���

h
V��� 	V �	�

i

�since V itself does not contain witnessing variables�� This is exactly what
we need�


���b
� � � � IND�� We have

W ���
T ��� � WA� � � � � �WAm �WA�b��	��

��WA�b����	V �b�	����WB�

h
	V ����b�	���	����

i
� � � � �

WBn

h
	V �n��b�	���	��n�

i
�

���������
��������

����

where we displayed all occurrences of the eigenvariable b and the witnessing
variables 	� of WA� We wish to deduce

W ���
T ��� � WA� � � � � �WAm �WA����	��

��WA���t���	V
��	����WB�

h
	V �����	���	����

i
� � � � �

WBn

h
	V ��n��	���	��n�

i

���������
��������

����

for some 	V �� 	V ����� � � � � 	V ��n���

Let 	� � �r�� � � � � � �rll and Vi�b�	�� � fx�� � � � � xrigCi �x�� � � � � xri � b�	���

�Note that if A is actually in 
��b
� then each of the two principal formulae

A
���A
�
t�� may in fact appear on the list B�� � � � � Bl�Ak��� � � � � Am in 
��� rather
than on the list A�� � � � � Ak� Bl��� � � � �Bn� However� in this case WA��� � A
�� and
WA���t�� � A
�
t�� do not contain witnessing variables hence w�l�o�g� A
���A
�
t�� can

be moved to the list A�� � � � � Ak� Bl��� � � � � Bn�
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Choose a term s�b� such that

W ���
T ��� �

l�
i��

�	x�i� � s�b�
�
�i

�
	x�i�

�
� ��i

�
	x�i�

��

�
�
WA�b��	�� � WA�b��	�

��



n�
j��

�
WB�j�		V

�j��b�	���	��j��

� WB�j�		V
�j��b�	����	��j��

��
�

�����������������
����������������

��
�

Now we apply Lemma��� and �nd ���b
� ����formulaeDi�a�� � � � � ari � b�	��

such that

W ���
T ��� � Di�a�� � � � � ari � �� 	�� � �i�a�� � � � � ari� �� � i � l�� ��
�

W ���
T ��� � Di�a�� � � � � ari � b� �� 	��

�
�
b � � �t� 
Ci

�
a�� � � � � ari � b�n

	x���
o�

	x��� � s�b� 
D�

�
	x���� b�	�

��
� � � � �n

	x�l�
o�

	x�l� � s�b� 
Dl

�
	x�l�� b�	�

����
�� � i � l��

������������
�����������

����

We let
V �
i �	�� ��

n
	x�i�

o
Di

�
	x�i�� � �t�� 	�

�
� ����

D�b�	�� ��

�y � b WA�b�

hn
	x���

o
D�

�
	x���� b�	�

�
� � � � �n

	x�l�
o
Dl

�
	x�l�� b�	�

� i
	y�b�


 �WA�b���

�n
	x���

o
D�

�
	x���� b� �� 	�

�
� � � � �n

	x�l�
o
Dl

�
	x�l�� b� �� 	�

��

and

V
��j�
i �	����

n
	x�ij�

o�
�y � � �t�

�
D�y�	��


 C
�j�
i

�
	x�ij�� y�

n
	z���

o
D�

�
	z���� y�	�

�
� � � � �n

	z�l�
o
Dl

�
	z�l�� y�	�

����
�
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where� as usual� V
�j�
i �b�	�� �

�
	x�ij�

�
C
�j�
i

�
	x�ij�� b�	�

�
�

In order to show ����� we �rst substituten
	x�i�

o�
	x�i� � s�b� 
Di

�
	x�i�� b�	�

��

for �i into ����� apply ���� for converting

WA�b���

�
	V
�
b�
n
	x�i�

o�
	x�i� � s�b� 
Di

�
	x�i�� b�	�

����

into WA�b���

��
	x�i�

�
Di

�
	x�i�� b� �� 	�

��
�under the assumption b � � �t��

and drop the restriction 	x�i� � s�b� using ��
�� We will have

W ���
T ��� � b � � �t��WA� � � � � �WAm �WA�b�

�n
	x�i�

o�
Di

�
	x�i�� b�	�

���
��WA�b���

�n
	x�i�

o
Di

�
	x�i�� b� �� 	�

��
�

WB�

h
	V ���

�
b�
n
	x�i�

o
Di

�
	x�i�� b�	�

��
�	����

i
� � � � �

WBn

h
	V �n�

�
b�
n
	x�i�

o
Di

�
	x�i�� b�	�

��
�	��n�

i
�

Now� the same argument as in the case �� ��right� �implicitly involving

���b
� ���� IND on b applied to the formulaWA�b�

��
	x�i�

� �
Di

�
	x�i�� b�	�

���
�

gives us

W ���
T ��� � WA� � � � � �WAm �WA���

�n
	x�i�

o
Di

�
	x�i�� �� 	�

��
��WA���t��

�n
	x�i�

o
Di

�
	x�i�� � �t�� 	�

��
�

WB�

h
	V �����	���	����

i
� � � � �WBn

h
	V ��n��	���	��n�

i
�

In order to get from here ����� we only have to note that

W ���
T ��� � WA���

�n
	x�i�

o
Di

�
	x�i�� �� 	�

��
�WA����	��

�by ��
�� and

WA���t��

�n
	x�i�

o
Di

�
	x�i�� � �t�� 	�

��
� WA���t��

�
	V ��	��

�

by the de�nition ���� of 	V ��

The proof of Lemma ��
 is complete�

�� The results

We say that a formula A is strictly ���b
� if A � ���b

� and �rst order quan�
ti�ers �x � t 	�x � t� never precede in A second order quanti�ers ��
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	��� respectively�� The formal inductive de�nition of strictly ���b
� �formulae

�and strictly ���b
� �formulae� is obtained from the de�nition of ���b

� � and

���b
� �formulae �see 	�� x����� by dropping the case �if A is in ���b

� so is

��x � t�A� and the dual case for ���b
� �formulae� We will denote the set of

strictly ���b
� �formulae by �s��b

� �

Lemma 	��� a� if A � ���b
� then ���b

� �BCA����b
� �replacement � A �

�	�WA		��	��� where the substitution is extended over all witnessing

variables�

b� if A � �s��b
� then the equivalence A � �	�WA		��	�� can be already

proved in pure second order logic�

Proof� Obvious induction on the complexity of A� The only nontrivial
case A � �x � t B�x� �which� unless B � ���b

� � may occur in part a� only�

is handled by ���b
� � BCA for proving

�	��x � t WB�a�

hn
	y�i�

o
�ri��i �a� 	y�i����rii

i
	x�a�

� �x � t�	� WB�a�		��	��	x�a�

and by ���b
� �replacement in the opposite direction�

Recall that for a class S of formulae� B�S� denotes the set of Boolean
combinations of formulae from the class S�

Theorem 	��� Let T be a regular theory in a �rst�order language L 	 L��
and � be a provably monotone �in T � �rst order term of the language L

such that T � � �a� � jaj� Then the three theories W ���
T � W ���

T ��� � ���b
� �

BCA � ���b
� � replacement� T � ���b

� � CA � ���b
� � � � LICA � ���b

� �

IND � ���b
� � replacement have the same set of B

�
���b
�

�
�theorems�

Proof� Let A � B
�
���b
�

�
�

�� W ���
T � A�W ���

T ��� � ���b
� �BCA ����b

� � replacement � A�

Represent A in the equivalent form
Vk
i��

�Wmi

j�� �Aij �
Wni
j��Bij

�
with

Aij� Bij � ���b
� � It su�ces to show that W ���

T � A�� � � � � Am �� B�� � � � � Bn

implies

W ���
T ��� � ���b

� � BCA� ���b
� � replacement � A�� � � � � Am

�� B�� � � � � Bn�

����
��� ����

where Aj � Bj � ���b
� �to be applied afterwards to the sequents

Ai�� � � � � Aimi �� Bi�� � � � � Bini
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��
If W ���

T � A�� � � � � Am �� B�� � � � � Bn then� by Lemma ��
�

W ���
T ��� � WA� � � � � �WAm ��WB�

h
	V ����	����

i
� � � � �WBn

h
	V �n��	��n�

i

for some ���b
� ����abstracts 	V ���� � � � � 	V �n�� Arguing as in 	�� Lemma �����

and 	
�� Theorem 
�� a��� we may replace the abstracts

V
�i�
j �

n
	x�ij�

o
C
�i�
j

�n
	x�ij�

o�

by their bounded versions
�
	x�ij�

��
	x�ij� � Tij 
C

�i�
j

��
	x�ij�

���
for suitable

terms Tij� Then ���b
� �BCA yields

W ���
T ��� � ���b

� �BCA � WA� � � � � �WAm

�� �	����WB�

h
�����	����

i
� � � � � �	��n�WBn

h
��n��	��n�

i
�

and �second order ��left� yields

W ���
T ��� � ���b

� � BCA � �	����WA�

h
�����	�����

i
� � � � �

�	��m�WAm

h
��m��	���m�

i
�� �	����WB�

h
�����	����

i
� � � � � �	��n�WBn

h
��n��	��n�

i
�

���������
��������

����

The proof of ���� is completed by applying Lemma ��� a��

�� W ���
T ��� � ���b

� � BCA � ���b
� � replacement � A � T � ���b

� �

CA� ���b
� � � � LICA ����b

� � IND � ���b
� � replacement � A�

Immediately follows from Corollary 
���

�� T����b
� �CA����b

� ���LICA����b
� �IND����b

� �replacement �
A � W ���

T � A�

Note that W ���
T � ���b

� � IND and W ���
T � ���b

� � replacement by

Theorems 
�� and 
�� respectively� Also� W ���
T � ���b

� � � � LICA �apply�

using Theorem 
��� ���b
� � �k � IND up to �k�#s�t�� on a to the formula

����x � t	��x� �� � A�x� 
 �y � a���x� y � �� � B�x� y� fx�g�x� �
x
 ��x�� y������ where #s is a provably monotone term bounding the term s
in De�nition 
�
�� The statement follows�

Theorem 	��� Under the same assumptions as in Theorem ��
� the the�

ories W ���
T � W ���

T ��� � ���b
� � BCA� T � ���b

� � CA � ���b
� � � � LICA �

���b
� � IND prove the same B

�
�s��b
�

�
�theorems�
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Proof� In addition to Theorem ��
 we only have to show that

W ���
T � A � W ���

T ��� � ���b
� �BCA � A ����

and

W ���
T ��� � ���b

� � BCA � A

� T ����b
� � CA����b

� � � � LICA

����b
� � IND � A�

�������
������

����

where A � B
�
�s��b
�

�
�

���� is proved in the same way as the implication W ���
T � A �

W ���
T ��� � ���b

� � BCA � ���b
� � replacement � A in the proof of Theo�

rem ��
 with the di$erence that for inferring ���� from ���� we use part b�
of Lemma ��� instead of part a��

���� again immediately follows from Corollary 
���

Theorem 	��� Let T be a regular theory in a �rst�order language L 	 L��
and � be a provably monotone �in T � �rst order term of the language L such

that T � � �a� � jaj� Then W ���
T and W ���

T ��� prove the same ���b
� �theorems�

Proof� In addition to Theorem ��
 we only have to showW ���
T � A �

W ���
T ��� � A� A � ���b

� � This immediately follows from Lemma ��
 since

WA � A for A � ���b
� �

	��� Remark� Note that actually we have proved that all six theories
involved in the statements of Theorems ��
� ��
� ��� have the same set of
���b
� �theorems�

�� Appendix

As we noted in the introduction� the main motivation for developing this
logical formalism is the author�s feeling that V �

� is the right theory to
capture that part of reasoning in Boolean complexity which led to actual
lower bounds for explicitly given Boolean functions� Here I will try to
present both formal and informal arguments in favour of this thesis� For
our analysis I have chosen the following results in Boolean complexity �often
considered among the major results in the area��

� lower bounds for constant�depth circuits over the standard basis 	�� ��

�� ����

� lower bounds for monotone circuits 	

� 
�� 
�� 
� 
�� 
���
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� lower bounds for constant�depth circuits with MOD� q gates 	
�� 
��
���

� lower bounds for monotone formulae based on communication com�

plexity 	�
� ��� ����

The reader wishing to learn more about these and other results is referred
to the excellent survey 	���

A� The formalization

Apparently� L� is the most natural and elegant formal language for formal�
izing the statements of results and open problems in Boolean complexity�
Using second order languages allows one to capture the common practice
in the area which tends to treat Boolean inputs and functions separately�
as two di$erent kinds of objects� Throughout the Appendix� we will let n
denote the number of variables of the Boolean function in question� and
N �� 
n�� � will have the property jN j � n �N approximately equals the
overall number of Boolean inputs��

In the proposed framework� �rst order objects are integers of order

O�n� � NO���� they are used for encoding Boolean inputs� restrictions etc�
Second order objects correspond to Boolean functions� circuits� protocols
of their computations �given simply as a collection of truth�tables of inter�
mediate results� etc� Formally this is achieved by introducing N into our
formulae as a �dummy� free �rst�order variable�

To give you just one example of this encoding� we explicitly write
down the ���b

� ����formula MonCircuit�t� N� ��� asserting that � encodes
the protocol of computation by a monotone circuit of size t in jN j variables�

MonCircuit�t� N� ��� �� �u � t�
�i � jN j

�
�x � 
jNj���u� x� � Bit�i� x��

�
� �u� � u�u� � u�

�x � 
jN j���u� x� � ���u�� x�
 ��u�� x���

� �x � 
jNj���u� x� � ���u�� x� � ��u�� x���
��

�

Then� say� the statement �every monotone circuit in n variables comput�
ing SATISFIABILITY must have size at least � �n�� is formalized by the

following ���b
� ����formula�

MonCircuit�t� N� �� 
 �x � 
jN j���t�� �� x� � SAT �x�N ��

� t � � �jN j��

����
��� ����
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where SAT �a�N � is a bounded formula representing the predicate SATIS�
FIABILITY on strings of length jN j�

B� V
�
� proves what we want it to prove

Having written our problems in the formal language L� in the style of �����
the next question is what is the minimal natural theory in this language
which can carry out the amount of combinatorial and algebraic technique
developed in Boolean complexity so far� I argue that V �

� is exactly the
required theory� By this I mean in particular that it proves all lower bounds
mentioned above and� moreover� these formal proofs are obtained from
their informal counterparts in a very natural and straightforward way��
This thesis becomes especially clear if we take V �

� in the equivalent form
V �
� ��� or V �

� �#�� �see Theorem 
���� For an illustration I have chosen the
proof of lower bounds on the monotone circuit size of the clique function
	

� 
� binding to the notation used in the nice presentation of this result
in 	�� Section ���

We encode clique indicators dXe by integers of bit length O�l logn��
and approximator circuits by second order variables �outputting � on ex�
actly those clique indicators which appear in the approximator��

A subtle point is that sun&owers can be also coded by integers� Indeed�
their bit length is O�pl logn�� and pl must not exceed O�n� �irrelevantly
of exact values of parameters speci�ed in 	�� Section ��
�'� e�g� because
otherwise Erd�os�Rado Lemma 	�� Lemma ���� becomes meaningless� Recall

that we have access to integers of bit length O�n�� as we have

�
n



�
variables�

Everything beyond this point is fairly straightforward� The relation
��Z�� � � � � Zp� is a sun&ower in a collection L� as well as �Z is a petal of
the minimal �in some explicit order� sun&ower in L� and �C is the center

of the minimal sun&ower in L� are in ���b
� �L�� Hence we may introduce

in V �
� ��� a relational ��a� �� such that ��hN� l� p� hi�L� encodes the result

of h consecutive pluckings of minimal sun&owers from L� and then �nd a
���b
� ����formula representing the �nal result of the plucking procedure�

The proof of Erd�os�Rado Lemma 	�� Lemma ���� is also straightfor�
wardly carried over in V �

� ���� The only thing to be noticed is that the set
M in the proof can be also treated as a �rst order object�

Now� using the possibility to iterate ��symbols in V �
� ��� �see Lemma

����� we can ���b
� ����de�ne the approximator (C of a monotone circuit C�

All combinatorics from 	�� Section ��
� is then easily formalized in V �
� ��� if

we recall that V �
� �and hence V �

� ���� can easily count �rst order objects�

I do not know of any lower bound in Boolean complexity for an NP �

�The question of minimality of V �
� will be thoroughly discussed in Section E�
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function whose proof could not be carried over in V �
� �

C� V
�
� apparently does not prove what we

do not want

In Boolean complexity one should cope with the phenomenon that the
inherently hard problems making the core of the �eld become trivial when
one considers �random� functions� Unfortunately� the powerful Shannon
counting arguments �see e�g� 	

�� used for dealing with random functions
are hardly relevant to proving lower bounds for �explicit� functions� For
this reason it is customary in the modern Boolean complexity to distance
oneself from the realm of those arguments either by considering only explicit
functions �which is somewhat ill�de�ned� or only functions from the class
NP �which is not quite adequate since e�g� superlinear lower bounds on
the circuit size of a natural function in� say� PSPACE would be also of
extreme interest�� All this is a little bit annoying�

I take it as a strong argument in support of our main thesis that V �
�

can not formalize Shannon counting arguments� at least in an obvious way�
As a consequence� it is open whether V �

� can prove even the existence of
Boolean functions fn with circuit size � ��n�

In order to understand the reasons for this� it is convenient to scale
V �
� down to S�� using RSUV �isomorphism �see 	
�� 
�� 
���� Then we

have �b
��function V alue�C�F �� where F is the dummy variable with the

meaning �F �� 
�
n

is the number of Boolean functions�� which expresses
the function computed by the circuit C� The number of circuits of size ��n
is 
	�n logn� which is jF j	�log log logF � in terms of F � Hence� the mapping
V alue restricted to circuits of size ��n� gives rise to the �b

��mapping

jF j	�loglog logF � � F� 


and our question on the provability of the existence of complex Boolean
functions in V �

� becomes equivalent to whether S�� can rule out that this
mapping is surjective�

However� for any unbounded � �a�� S�� �f� can not disprove that f �
jaj��a� �� a is surjective �see 	�� Corollary ���
��� Hence� due to the
�universal� nature of the predicate V alue� it is hardly conceivable that its
internal properties will help us to show that it is not surjective by some
modi�ed counting arguments�

The overall conclusion is that the theory V �
� can do exactly the right

amount of counting� That is� this theory is capable of arbitrary �slice�and�
measure� arguments on the Boolean cube� but becomes absolutely helpless
when asked to count Boolean functions� Note for comparison that V �

�

�we will identify here and in other appropriate places an integer a with the set
f���� � � � � a� �g
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already can prove the existence of Boolean functions whose circuit size is
� n��� V �

� can prove the existence of Boolean functions with exponential
circuit size �since S�� proves WPHP � the weak pigeon hole principle stating
that 
a pigeons can not sit in a holes 	�����

D� On the mathematics and

metamathematics of V �
�

Many people believe that the theory S�� is the most important and natural
theory among various fragments of Bounded Arithmetic� The same applies
to V �

� which is equivalent to it via the RSUV �isomorphism�

If we take V �
� in the equivalent form V �

� �
#�� then it becomes very trans�

parent that every proof in V �
� can be viewed as evaluating a polynomial

size �in N � circuit followed by proving certain �plain� �that is ���b
� ���� facts

about the protocol of this evaluation� In other words� the same concept
of a polynomial size circuit making the core of Boolean complexity is also
responsible for the metamathematics of the formal theory V �

� � This close
link between mathematics and metamathematics already has turned out
important for research on the possibility of solving major open problems
in Boolean complexity by means of Bounded Arithmetic �see 	
����

E� Proofs in subsystems of V �
�

In Section B we formulated the thesis that V �
� supports proofs of lower

bounds for explicit functions existing in Boolean complexity at the moment�
It is conceivable� however� that easier proofs do not use the full power of
V �
� and can be carried over in �presumably� weaker fragments of it� In

this section we analyze from this point of view the proofs listed in the
beginning of this Appendix� As a reward� we will see in Section E�� a
constructive version of the proof of H)astad Switching Lemma which is
probably interesting in its own right�

E��� Lower bounds for monotone circuits

As we saw in Section B� carrying these proofs out in V �
� ��� involves� besides

the relationals for counting �rst�order objects� two other kinds of relation�
als �� The �rst relational is used to evaluate the result of the plucking
procedure� and another to construct the circuit approximator� Both of
these can be evaluated within t�n� steps of iterations� where t�n� is the
bound on the circuit size we are proving� Hence these proofs can be for�
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malized in W ���
� � where � �a� �� t�jaj� � �e�g� for 	
� Theorem 
��� we have

� �a� � b

�

jaj
jjajj

����
c�� Whereas it is not quite unlikely that the number of

iterations in the plucking procedure can be decreased by using some clever
combinatorics� it would be very astonishing if constructing the approxima�
tor (C for a general circuit C could be implemented within any number of
steps substantially less than the size of C� Hence it is plausible that W ���

�

is a �tight� upper bound on the strength of a theory which captures this
kind of argument�

E��� Lower bounds for monotone formulae based on
communication complexity� excluding ����

Here the situation is apparently also very clear� The minimal fragment of
V �
� capable of formalizing these proofs seems to be U�

� � Indeed� they use
only induction up to O�n� �which is an obvious upper bound on the circuit
depth� and plain counting arguments� The latter still can be carried out in
U�
� �see 	�� proof of Proposition ���
��� The only additional remark which

should be made in this respect concerns probability distributions�
All distributions over a set of �rst order objects S 	over second order

objects� should be reduced to the form f�a� 	V �a� respectively�� where a

is a random integer taken uniformly from a set of cardinality NO���� f
is a ���b

� ����de�nable function symbol� and V is a ���b
� ����abstract� This

allows one to comfortably perform all usual operations with distributions
�like taking the product� within U�

� ���! on the other hand� all distributions
actually used in the proofs can be always reduced to this form�

E�	� Lower bounds using algebraic arguments

The situation with lower bounds for constant�depth circuits usingMOD�q
gates 	
�� 
�� ��� as well as with the bound for the monotone formula size
of MINIMUM COVER 	��� is far less clear� Trying to carry out these proof
in U�

� ���� we are stuck in two places� Firstly� the proofs of 	
�� Lemma ��
and 	
�� Lemma �� require the following

Fact �� For some � 
 �� the following is true� Let � be an L �M matrix

over Fq such that every column has at least one non�zero position� Then

there exists a row vector 
 of length L such that 
� has at least �M non�zero

positions�

The standard probabilistic argument �which in V �
� can be replaced by

an easy induction on L� gives here � � �� �
q but we would be satis�ed with

	strictly speaking� �
a� is not necessarily a term of the language L�� However� for all
� which are de�nable in I�� by a bounded formula� we can always append them to L�


along with natural de�ning axioms�
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any � since this a$ects only the multiplicative constant in the exponent of
the bound�

The second part of the proofs in 	
�� 
�� �� �that is bounding from
below the distance between a symmetric Boolean function and the set of
polynomials of a low degree� in both known methods 	
�� and 	
�� requires
the following

Fact �� Let � be an L�M matrix over Fq such that L 
 M �or L�M ��
Then there exists a non�zero row vector 
 of length L such that 
� � ��

Now� recall from Section ��� that U�
� ��� is exactly the theory captur�

ing NC�computations� Examples of 
s needed in Facts �� 
 are known to
be NC�computable from �� For Fact � one could apply the standard de�
randomization procedure 	���! the NC�algorithm for Fact 
 is based upon
computing the matrix rank 	���� Hence U�

� ��� can de�ne relationals � wit�
nessing Facts �� 
 in the real world�

It is not clear� however� to which extent U�
� ��� can prove the desired

properties of these relationals� The point is that the standard proofs of�
ten involve highly consecutive concepts well beyond the reach of the class
NC� E�g� even the most basic subroutine of computing the determinant
of a matrix is designed by parallelising a large�depth circuit which we can
not even evaluate in U�

� ���� I have found a number of similar examples
but� since the careful study of provability in U�

� does not quite match the
main topic of this paper� I did not put that much e$ort into checking how
essential these di�culties are�

E�
� Lower bounds for constant�depth circuits over the
standard basis

In this subsection we again stick to the notation from 	��� Our �nal goal
will be to demonstrate that 	�� Theorem 
��� can be proven in both S����
and U�

� � As the �rst step� we show that a variant of the H)astad Switching
Lemma 	�� Lemma 
�
� can be proven already in S����� Note that this
theory is equivalent to I����� since the latter can de�ne originally missing
symbols bx� c and �in a very nontrivial way� see e�g� 	��� Chapter ��
�� jxj�

Unfortunately� the standard proof of this lemma involves conditioning
on second�order objects �see e�g� the quanti�er on F in 	�� Lemma 
�
���
and hence it is not clear a priori how to place it even into V �

� � Woods �see
	���� 	�
� Chapter ���� gave a variant of this proof which avoids such condi�
tioning� Apparently� this is already formalizable in V �

� � For our purposes�
however� we need the following more constructive version of H)astad�s proof
which probably is interesting in its own right�

We denote by R� the set of all restrictions assigning exactly � stars�
Let Bad�f� s� consist of all restrictions � for which min�f j�� � s� and let

Bad��f� s� �� R� � Bad�f� s��
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We de�ne the auxiliary set Code�t� s� which consists of those sequences�
����� ����� � � � � ��k�

�
�

where ��i� � f�� �� �gt� for which�

a� every ��i�� � � i � k contains at least one ��

b� the whole sequence has exactly s positions occupied by ����

Lemma E��� Let f be a t�closed function� Then there exists an injective

mapping F � Bad��f� s� �� R��s � Code�t� s��

Proof� Fix a representation f �
VH
i��Ci� where Cis are ORs of fan�in

� t� Let � � Bad��f� s�� Fix a minterm � of f j� whose size is at least s�
We will recursively de�ne assignments ��� ��� � � � � �k� � � � breaking up � into
pieces�

Assume that we already have ��� ��� � � � � �i�� 
 � with mutually dis�
joint domains and such that �i�� � � � �� is still di$erent from �� Apply
�i�� � � ���� to the OR gates C�� � � � � CH and �nd the minimal �i with the
property C�i j�i��			���

�� �� Such �i must exist since �i�� � � ��� �� � and

hence f j�i�� 			��� �� �� Let Ti be the collection of variables of C�i � and let
Yi be those variables from Ti which are set by � but not by �i�� � � ����
Note that Yi �� � since f j�� � � and thus C�ij�� � �� We let �i �� �jYi �

Now� let k be minimal with the property that ��� ��� � � � � �k��� �k alto�
gether assign at least s variables� We trim �k in an arbitrary way so that
it still sets C�k to � and ��� ��� � � � � �k��� �k assign exactly s variables�

Let #�i be the uniquely determined assignment which has the same
domain as �i and does not set the gate C�i to �� We let

F���� �� #�k#�k�� � � � #���!

note that F���� � R��s�
For � � i � k we de�ne ��i� � f�� �� �gt as follows� Let Ti ��

x
�i���� � � � � x
�i�ti�
�
� where ti � t and ��i� �� � � � � � ��i� ti�� We set

�
�i�
j

��

��
�

�i�x
�i�j�� � #�i�x
�i�j�� if j � ti
and x
�i�j� is in the domain of �i

� if either j 
 ti or x
�i�j� is not in the domain of �i�

Note that �i and #�i have di$erent e$ect on the gate C�i hence �i�j �
�i�
j � �

which implies
�
����� ����� � � � � ��k�

�
� Code�t� s�� We let

F���� ��
�
����� ����� � � � � ��k�

�
�

The desired mapping F � Bad��f� s� �� R��s � Code�t� s� takes � to
�F����� F������ In order to complete the proof we only have to show how
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to retrieve � from �F����� F����� �
�
#�k#�k�� � � � #���� ����� � � � � ��k�

�
� It is

su�cient to retrieve all �#�i� �i� �� � i � k��
We do it by induction on i� Assume that we already know

�#��� ��� � � � � � �#�i��� �i���� Then we also know #�k � � � #�i�i�� � � � ���� The
crucial observation is that �i is the minimal index � such that

C�j��k			��i�i��			���
�� �� Indeed� C�i j�i��			���

�� �� C�ij��i �� � from def�
initions� and #�i��� � � � � #�k do not assign variables from Ti at all� Hence
C�i j��k			��i�i�� 			���

�� �� On the other hand� all C� with � � �i are already
set to � by �i�� � � ���� and hence by #�k � � � #�i�i�� � � �����

Now� when we know �i� the rest is easy� Having �i� we have Ti� From
��i� and Ti we know the domain of #�i� then we retrieve from F���� the
actual value of #�i and consult ��i� again to get �i�

Note that if �� t� s � jN j�jjN jj �and the applications of H)astad Switch�
ing Lemma appeal only to parameters from this range�� then S� is capable
of coding �nite sequences in the amount which is su�cient for formalizing
the proof of Lemma E��� The key observation to this is that if a is a binary
string of length nO��� known to contain at most O�n�jnj� ones then we can
list in S� all positions where a has ones in increasing order and freely switch
from one representation of a to another� whichever is more appropriate at
the moment� We leave the details of formalizing the above proof of H)astad
Switching Lemma in S���� to the reader�

Now we can complete the proof of 	�� Theorem 
��� in either S���� or
U�
� � We will not be too fussy about the exact value of the multiplicative

constant in the exponent of the bound �which is a common practice in
Boolean complexity� and estimate the cardinality of Code�t� s� in Lemma
E�� by Code�t� s� � ��t�s� This means that we construct a straightforward
injective mapping Code�t� s� �� ��t�s de�ned by a bounded formula�

Then� for a given �S�s
d circuit C� where S � 
������n

��d
and s � logS�

we show by induction on k� � � k � d� that there exists � � Rn����k����d�

which makes all functions computed at the kth level either s�close or s�open
depending on whether d� k is odd or not�

For the inductive step we �rst apply Lemma E�� with

n �� n����k����d�� � �� n���k�d�� t �� s

to f�j�k � � � � � fS j�k � where f�� � � � � fS is the complete list of the functions
computed at the k�th level� and �k is the restriction found at the previous
step� Then� assuming that the desired �k�� does not exist� we glue the
resulting mappings together and get an injective mapping

R� �� R��s � ��s�s � S� ����

Up to this point we still were in the theory S�����

It is not clear if S� can de�ne binomial coe�cients

�
jN j
a

�
and prove

their primary properties� But any of the two theories S�� � U
�
� certainly
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can do that� S�� merely exploits the de�nition

�
n
a

�
�� n


a
�n�a�
 � and in

U�
� we can naturally enumerate the set 	n�a� In particular� both theories

prove the bound

�
jN j
�

�
�

�
jN j
� � s

�
�
�
jNj���s

�

�s
�for U�

� we also need

the assumption s � O�jN j�jjN jj� since otherwise the bit size of the right�
hand side can be too large�� This allows us to rewrite ���� as an injective
mapping

�
n
�

�
� 
n�� ��

�
n

� � s

�
� 
n���s � ��s�s � S�

But the existence of a mapping of this form contradicts the weak pigeon
hole principle which is provable in both S���� and U

�
� �see 	��� for the case

of S������ This contradiction completes the inductive step�

The rest of the proof of 	�� Theorem 
��� does not present any problems�
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