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Braids ñàï Üå represented as two-dimenSional diagrams showing the crossings of

strings or as words over the generators of à braid group. À minimal braid is îïå

with the fewest crossings (or the shortest words) among all possible repre~entations

topologically equivalent to that braid. ÒÜå main result of this paper is that the set

of minimal braids is co-NP-complete. @ 1991 Academic Press. lnc.

1. INTRODUcrION

Algorithmic problems in braid groups have received much attention

since [À1]. An algorithm for the word problem was given Üó Artin [À1,

A2],and Garside solved the conjugacy problem [G]. More recently, with

the increasing interest in complexity, these problems have Üååï reexam-

ined with regard to efficiency. Artin's algorithm involves generating à

canonical form of length exponential in the length of the original word.

Apparently the first polynomial-time algorithm for the word problem

results from recent work of Thurston [Th]. Whether there exists à polyno-

mial-time algorithm for the conjugacy problem seems to Üå unknown.

In his polynomial-time algorithm for the word problem Thurston pro-

duces à canonical form for braid group elements whose length is quadratic
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in the length of the original word. Neither his form nOr Artin's îïå is à
minimal word representing the given braid. This situation is nOt very
ñîòòîï in group theory; e.g., for free groups, HNN-extenSionS, free
products, àïä so îï, the known nOrmal forms are minimal when the
generators are chosen in à natural way.

ÒÜå present paper provides some complexity intuition as to why such à
form with "nice" properties cannOt exist for braid groups (unless Ð = NP).

We show that the set of minimal braids is co-NP-complete. This implies
that (again, unless Ð = NP) there is ïî polynomial algorithm to produce à

minimal representation of à given braid. It is of interest to compare our
result with that of Tatsuoka [Òà], which shows that this problem ñàï Üå
solved in polynomial time for àïó fixed braid group.

There are two quite different approaches to braid groups, geometric
àïä algebraic (compare [À, àïä Ì]); åàñÜ has some advantages àïä
disadvantages. In this paper we follow àï intermediate course. We say as
precisely as possible what should Üå calculated àïä how, but the calcula-
tionS themselves are omitted whenever the result is clear from geometric
intuition.

2. DEFINITIONS AND MAIN THEoREM

Throughout, letters q, Ã, ..., z stand for words over àï alphabet, letters
à, Ü, Ñ, ...for symbols from this alphabet; Izi is the length of z àïä À is
the empty word; " = " stands for graphical equality (i.e., as words), " = "

for the equivalenCe of two words representing the same element in à
group. Sn is the symmetric group îï ï symbols. ÒÜå nOtation u * v * w is
used to denOte the corresponding occurrenCe of the word v in the context
uvw.

ÒÜå group Âï of braids with ï strings has the following representation:

Âï = «}"l'...'(}"n-ll(}"i(}"j = ~(}"i forj > i + 1,(}"i(}"i+l(}"i = (}"i+l(}"i(}"i+l,

~
for 1 ~ i ~ ï -2>. (1)

ÒÜå (}"i'S are called the standard generators of Âï. À geometric picture of
(}"i is given Üó Fig. 1. We shall sometimes refer to standard generators as
positive crossings àïä to their inVerses as negative crossings. In the follow-
ing development there is à special rOle for the initially leftmost string of
the braids, which we shall ñà" the weft. ÒÜå other strings will Üå called
wires. ÒÜå problem we conSider is presented in the style of Garey àïä
JohnSon [GJ].
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FIG. 1. Picture of generator è;.

DEFINITION (NON-MINlMAL BRAIDS).
Instance. À braid group Â, and à word w, in the standard generators

of Â.
Question. Is there à shorter word w' equivalent to w in Â?

MAIN THEOREM. NON-MINlMAL BRAIDS is NP-complete.

Proof NON-MINlMAL BRAIDS is clearly in NP, since the word
problem for braids is solvable in polynomial time [ÒÜ].

Òî show that this set is NP-hard we will use instances representing the
fol1owing set of braids .r= Urm>l.9;m. For åàñÜ r,m,.9;m ~B1+cò'
where ñ is à parameter depend~nt on ~ and ò to Üå chose~ just below.
ÒÜå strings of Â1 +ñò are partitioned into the weft (the leftmost string),
and ò consecutive blocks of wires, to Üå called cables, consisting of ñ
wires åàñÜ. ÅàñÜ ñàÛå is label1ed with à symbol from the alphabet
I = {1, ..., r}. It wil1 Üå convenient to refer to cables label1ed with i as
i-cables and to their wires as i-wires. ÒÜå weft traverses the cables in s
identical stages, åàñÜ having r levels numbered sequential1y from 1 to r
and åàñÜ level consisting of t loops. We wil1 choose these parameters as
s = 8ò2, ñ = rms, and t = r6m12s6.

For åàñÜ loop in level j, the weft starts on the left and travels al1 the
way to the right, passing under i-cables where i ~ j, and over i-cables,
where i < j; then it returns, passing under any i-cable, where i > j, and
over any i-cable, where i ~ j, thus enfolding precisely the j-cables.

It is clear how to write the corresponding word in the standard genera-
tors; we denote this Üó x(q ), where q = àl ...àò Å Im and à; is the
label of the ith ñàÛå.

ÒÜå special word wo = wo(q), such that wo(q) = x(q), describes the

fol1owing wiring layout:

(i) ÅàñÜ 1-ñàÛå is passed under the other cables and accumulated
in à block on the left, then the 2-cables are passed under the remaining
cables and accumulated in à block to the right of the 1-block, and so on. In
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this process, îî cables with the same labels ever cross each other and the
cables are sorted into numerical order Üó label using left-over-right trans-
positions of cables. The weft remains îî the extreme left.

(ii) The weft is brought under the l-block, then wrapped around the
whole block as à coil with t -1 tums leaving the block îî the right. The
weft continues, making à similar coil around the 2-block, and so îî for
each block in tum, finally retuming over à" the cables. This whole
sequence is repeated s times.

(iii) The ñàÛå crossings of part (i) are now reversed, using right-
over-left transpositions, to restore the original ordering of the cables.

If ê transpositions of cables are needed to sort the cables in part (i) then,
since à ñàÛå crossing uses ñ2 wire crossings, we have

Iwol = 2Êñ2 + 2tmcs .

We want to see under what conditions the special word is minimal.

DEFINITION. The number of inversions of à string q = àl ...àò Å Im

with respect to à permutation 1ò of I is defined as

inv(q,1T) =1{(i,j)li <jand 1T(ai) > 1T(aj)}I.

Note that inv(q, 1ò ) is just the minimal number of transpositions re-
quired to permute q in accord with 1Ò, and inv(q,1T) ~ ò(ò -1)/2.

THEOREM 1. The special word wo is î! minimallength i! and only i! the
identity permutation, ", is à value î! 1ò Å Sr which minimizes inv (q, 1ò ).

Proof ( Only if) Suppose that there is à permutation 1ò such that
inv(q, 1ò ) < inv(q, ") = Ê. Consider the word w' corresponding to the

following layout:

(i) Arrange the cables into blocks using inv(q, 1Ò) .ñ2 wire crossings.
The procedure here is similar to that in the special word, except that the
blocks are ordered according to the ordering of I given Üó 1ò , and in each
crossing the wire with the smaller label is taken under that with the larger
label.

(ii) Visit the blocks in numerical order to make the coils, finishing at
the left. This requires at most (r + 1 + 2t)mCs crossings.

(iii) Restore the original order of the cables Üó reversing the crossings
used in (i).
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Since ñ = mzs, we have

Iw'l ~ 2inv(q,1T) .ñ2 + (r + 1 + 2t)mCs < 2Êñ2 + 2tmcs = Iwol

and the special word is not minimal.
Figure 2 shows wo(213l23213), except that we have used s = 2 and

t = 8 for clarity .This word is not minimal, since it is better to arrange the

cables in the pattern "222111333" for coiling.
(If) Suppose w is à minimal word such that w = x(q) and Iwl < Iwol. We

want to show that there is à permutation 1ò Å Sr such that inv(q, 1ò ) <
inv(q, "). ÒÜå main algebraic part of our proof is contained in the follow-
ing lemma.

LEMMA 1. Ifw = x(q), then

(i) w has at least 2tmcs positive crossings between the weft and

wires;

(ii) if the length of w is minimal then there exists some permutation
1ò of I such that w has at least 2ñ2 .inv(q, 1ò ) crossings between the
wires.

Òî preserve the momentum of the proof we defer to the next section the
proof of Lemma 1 and the precise algebraic definitions corresponding to
its geometric notions.

If w is à minimal word corresponding to q Å Im and 1ò is à permuta-
tion as assured Üó Lemma l(ii), then Iwl ~ 2tmcs + 2ñ2 .inv(q, 1ò ). Since
Iwl < Iwol, we have inv(q, 1ò ) < inv(q, ") as required. D{Theorem 1}

Òî complete our proof we show that the following problem, SNMP
(sorting does not minimally partition), is NP-complete.

DEFINITION (SNMP).
Instance. q Å I*, where I = {l,...,r}.

Question. Is there à permutation 1ò of [1, ..., r] such that inv(q, 1ò ) <
inv(q, "), where L is the identity permutation.

THEOREM 2. SNMP is NP-complete.

Proof. It is clearly in NP. We show it to Üå NP-hard Üó à chain of
reductions.

À very similar problem, GROUPING ÂÓ SW APPING, was shown
NP-complete Üó Ò. D. Howell (unpublished manuscript, 1977, referred to
in [GJ]), but we require here à stronger result.

It is à straightforward strengthening of Cook's theorem that 3SAT
remains NP-complete even when the input formula is always accompanied
Üó some assignment which satisfies à" but îïå of the clauses. This follows
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from the observation that àïó nondeterministic polynOmial-time Turing
machine ñàï Üå modified to accept the same set in the same time but also
to Üàóå à standard terminating rejection computation. Under suitable
conventions the latter computation tranSforms to àï assignment satisfying
all but îïå of the clauses.

Our next step is to show the NP-hardness of the following set:

NON-MINIMAL FEEDBACK ARC SET.
Instance. À directed graph G àïä à subset s of arcs of G such that

åàñÜ circuit in G contains some arc of S; i.e., s is à feedback
arc set.

Question. Is there à feedback arc set S' with IS'I < ISI?

LEMMA 2. NON-MINlMAL FEEDBACK ARC SET is NP-complete.

Proof. For àïó inStanCe, Ð, of 3SAT with è variables àïä ñ clauses we
define à corresponding directed graph, GF. GF has 4èñ vertices, àè i' Üè i'
Au.i' àïä Bu.i for 1 :$ è :$ è, 1 :$ i :$ ñ. There are arcs (àè.;' Üè.;),
(Au.i' Bu.i)' (bu.i' Au.j), (Bu.i' au.j) for alll :$ è :$ è, 1 :$ i :$ ñ, 1 :$ j :$
ñ, together with some further arcs corresponding to åàñÜ clause.

We shall think of the arcs (àè i' Üè i)' (Àè i' Âè i) as corresponding to
the potential occurrenCe of liter~ls Õ.è àïä ~ Õè, .respectively, in the ith
clause. It ñàï Üå verified that the only feedback arc sets of minimal size for
the graph defined so far consist of the union over all è,l :$ è :$ è, of
either àÏ the arcs corresponding to Õè or àÏ those corresponding to -, Õè.
Thus there is à natural correspondence between these potential feedback
sets àïä assignments to the variables. However, GF has in addition, for
åàñÜ clause Ci, 1 :$ i :$ ñ, three arcs which connect the arcs corresponding
to the literals of Ci into à circuit. For example, if Ci = {Õç, -, Õ4' Õ6} the

three arcs are (ÜÇ i' À4 i)' (Â4 i' à6 i)' àïä (Ü6 i' àç i).
When îïå of the potential feedback sets described àÜîóå is removed,

the only possible circuits remaining in GF are some 6-circuits correspond-
ing to clauses. If the potential feedback set chosen corresponds to à
satisfying assignment to F then àÏ of these circuits will Üå broken. In this
case we Üàóå à minimal feedback arc set of size ñè. If there is ïî such
satisfying assignment then at least îïå further arc is ïååäåä. When we are
given àï assignment satisfying àÏ but îïå of the clauses, at most îïå extra
arc is ïååäåä. Thus Jor those instances (GF, S), where s corresponds to
àï assignment satisfying àÏ but îïå clause of Ð, the satisfiability of F is
equivalent to the nOn-minimality of S. D{Lemma 2}

We complete the proof that SNMP is NP-complete Üó reducing NON-
MINIMAL FEEDBACK ARC SET to SNMP. Let G = (V, À) àïä

suppose (G, S) is àï instance of NON-MINIMAL FEEDBACK ARC
SET. Since s is à feedback arc set for G, the vertex set v ñàï Üå ordered
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SO that every arc io À \ S is à "fo1Ward arc," i.e., of the foml <à, ü ),
where à < ü io this orderiog. Without loss of geoerality, suppose that
v = {1, ..., r}, where the oatural orderiog provides such àî orderiog. We

coostruct à word wG,S over the alphabet v such that sortiog wG,S with
respect to v provides à mioimal-traospositioo partitiooiog if aod ooly if S
is à mioimal size set of feedback arcs.

Coosider first àî arbitrary paliodrome, Ð, over V. It is easy to see that
the partitioo of ð with respect to àîó permutatioo of v requires exactly
the same oumber of traospositioos. If ð is oow modified Üó ioterchaogiog
îîå pair of adjaceot symbols, say ij is chaoged to ji, theo àîó pemlutatioo
of V, where i precedes j, wil1 require two more traospositioos thao the
others. À similar observatioo holds wheo several such ioterchaoges are
made. We therefore coostruct wG,S as fol1ows.

Suppose that À = {àl' ..., àð}. For 1 ~ j ~ ð, let ej = èè aod Ej = èè,
where aj = <è, è ). Theo

wG,S = ålå2 ...åðåð ...å2å1

which is paliodromic except for traospositioos correspoodiog to each arc
of À. Let q Üå the oumber of traospositioos required to partitioo the
paliodromic striog ålå2 ...åðÅð ...Å2Å1. As observed àÜîóå, q is iode-
peodeot of the orderiog choseo for the partitioo. For àîó pemlutatioo 1ò
of V, let back(G,1T) = {<1Ò(ï,1ÒÈ» EAli >Ë. Theo

iOV(WG,S'1T) = q -IAI + 2lback(G,1T)I.

Íåîñå,

<G,S) Å NON-MINIMALFEEDBACKARCSET

= 31Ò such that Iback( G, 1ò ) I < ISI

= 31Ò suchthatiov(wG,S'1T) < iov(wG,S")

= wG,S Å SNMP. O{Theorem2}

This also completes the proof of the Maio Theorem. O{Main Theorem}

3. PROVING LEMMA 1

We first col1ect some wel1-known geoeral defioitioos aod facts about
braid groups which wil1 Üå used io the proof. The mappiog #:
{èl' ..., Un-J -+ Sn, defioed Üó

CTi# = (i,i + 1), (2)
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FIG.Ç. x(u*a*v)={i,j}.

ñàî Üå extended to à homomorphism #: Âï -+ Sn. ÒÜå kemel of # is

denoted Üó ~. Geometrical1y, Õ# is the permutation îî strings realized
Üó à braid Õ, and ~ is the subgroup consisting of those braids which
ultimately return the strings to their initial order. Given àî occurrence
è*à*è of à letter à from the alphabet {U1'...'lTn-J:t1 in à word èàè,
denote Üó õ(è * à * è) the initial indices of the (unordered) pair of strings
that cross at u * à * è. Formal1y, if à = lTk:t 1 then

õ(è*à*è) = {(u#)-l(k),(u#)-l(k + 1)}. (3)

Given I ~ {1, ..., ã} and à word õ we define à new word JLI(X) in
111- 1 generators. Geometrical1y, JLfx) is the result of "dissolving" al1
strings not belonging to I. Òî give àî algebraic definition, we first
introduce à mapping lJI, îî occurrences of the form u * (Tk:t1 * è and
taking values in the set {è l' ..., (Tlll-1' À} :t 1, defined Üó

(JI( u * è; * è) = è; if õ( u * è; * è) ~ I,

= À otherwise ( À is the empty word) , ( 4 )

where q is the number of those i for which 1 ~ i ~ k and (è#)-1(;) Å I.
Geometrical1y, it is the crossing obtained from u * lTk:t 1 * è Üó deleting

strings numbered Üó {1, ..., ï} \ I; if at least îîå string forming u * lTk:t 1 * è

is deleted then this crossing is destroyed and the result is À. Now ä! ñàî
" Üå extended to arbitrary occurrences Üó

(JI(u*a1 ...àï*è) = ï (JI(ua1 ...aj-1*aj*aj+1 ...àïè).
lsisn

Final1y, set

JLI(X) = (JI(*X*). (5)

ÒÜå fol1owing three facts are clear from the geometry and ñàî Üå checked
Üó calculation.



402 PATERSON AND RAZBOROV

Fact 1. õ = ó implies .èl(X) = .èl(Y).

Therefore .è! ñàï Üå regarded as à mapping from Âï to BIII.

Fact 2. .è 1 restricted to ~ is à group homomorphism from ~
to ~ll.

Fact 3. (Jj and õ "commute"; i.e., if õ(è * 0"; * v) ~ [, then ,;.

X«(JI( * u * O"kv) * (JI(U * 0"; * v) * (JI(UO"k * v *»)

coinGides with õ(è * 0"; * v ), renumbered relative to [.

Some facts about the particular group ÂÇ are also needed and these are
proved in the next three lemmas. We shall ex:ploit the fact that the
structure of ÂÇ (unlike larger braid groups) is very clear. Indeed, applying
the automorphism

À-1 -2 À ( -1 -1 À . )0"1 = Q à, 0"2 = aQ, à = 0"1 0"2 , Q = 0"20"10"2

to the presentation (1) with ï = 3, we see that in the new generators ÂÇ

has the form

ÂÇ = (~,al~-2 = à3>;

i.e., ÂÇ is à free product with amalgam (see, e.g., [LS]). ÅàñÜ element
ó Å ÂÇ has à uniquely determined normal form

ó = ~2PaeO~ael~ ...aer-l~aer,

where åo, åò Å {0,1,2}, å1' ..., åò-1 Å {1,2}, and ð Å 7L. For instance,

-À -À -1- 2À 0"-1- Àà 20"1 = Qa, 0"2 = aQ, 0"1 = à Q, 2 = Q ~

show the normal forms for the original generators and their inverses.
For àïó word in {~, ~ -1, à} (i.e., with °nly positive occurrences of à) "'

define w(z) to Üå the number of occurrences of à in Z. Note that, for the
normal forms given above,

w(~a) = w(a~) = 1; w(a2~) = w(~a2) = 2.

Àïó such word z ñàï Üå reduced to its normal form Üó successive
a-replacements, where à3 is replaced Üó ~ -2, and ~-operations, where ~ is
cancelled with ~ -1, ~ -1 is replaced Üó ~~ -2 or àï occurrence of ~:t:2

is transferred to the left end. We observe that, in such à situation, w is
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reduced Üó 3 with åàñÜ a-replacement and is inVariant under A-oper-
ationS. An a-syllable of à word is à maximal nOnempty subword containing
only a's.

.~ LEMMA 3. Let õ Üå à word îèåã {è1' (J"J :t 1 such that õ = (è1 (J"i(J"l)d in

ÂÇ !îã some d, and õ contains 9 negative occurrences. Then õ does not
contain àïó subword èÅÊ+3' where 8 Å {1,2}.

Proof. ÒÜå nOrmal form for õ is A2d(Aa2Aa2)d and W(A2d
(Aa2Aa2)d) = 4d. Using the obvious homomorphism 77: ÂÇ -.<7L, + ),
given Üó 77(è1) = 77«(J"J = 1, we find that the nUmber of positive crossings

in õ must be4d + g. Substituting the nOrmal forms for è1' è2' (J"11, and
è21 in õ, we obtain à longer (possibly reducible) word õ' with w(x') = 4d

+ 3g. Therefore, Üó the observation above, exactly 9 a-replacements are
used in reducing õ' to its nOrmal form. Suppose õ containS à subword
èÅÊ+3' then õ' containS à subword (àÀ)Ê+2à. SinCe the reduced nOrmal
form of õ'(= õ) containS a's only in occurrenCes of à2, åàñÜ of the 9 + 1
single occurrenCes of à identified in the subword of õ' must Üå either
replaced or combined with other a's when going from õ' to its nOrmal
form. Òî do this at least 9 + 1 a-replacements are needed. This contra-
diction completes the proof. O{Lemma 3}

ÒÜå following claim is proved in à similar way, except that we count
occurrenCes of à2 in õ' rather than of single a's.

LEMMA 4. Let õ Üå à word îèåã { (J" l' (J" J :t 1 such that õ = ( (J" 1 (J" it (J" ft -1 )S

îã õ = «(J"ft-1(J"it(J"1)S !îã some t, s, and õ contains 9 negative occurrences.

Then àïó positive subword î! õ has at most 3g + 2s altemations between è1
and è2.

Proof. Beginning as in the proof of Lemma 3, we obtain à (possibly
reducible) word õ', with w(x') = 4ts + 3g, and õ' = õ. As before, 9

a-replacements are used in the reduction from õ' to its nOrmal form. ÅàñÜ
occurrenCe of è1è2 or è2è1 yields directly or indirectly àï adjacency
between à pair of a's in õ', but the nOrmal form for õ has just 2s
occurrenCes of à2. SinCe adjacenCies between a's are only removed (at
most three at à time) Üó a-replacements, we deduce that the nUmber of
altemationS in õ ñàï Üå at most 3g + 2s. O{Lemma 4}

We nOw need à deeper fact about subwords of those words conSidered
in Lemma 4.

LEMMA 5. Let õ üå à word îèåã {è1' (J"J :t 1 such that õ = «(J"1(J"it(J"ft-1 )S

îã õ = «(J"ft-1(J"it(J"1)S !îã some t, s. Suppose õ contains à subword è such

that the .function õ considered îï àï one-letter occurrences in è misses at
least îïå î! the three possible values; i.e., some pair does ïît cross within è,
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and õ contains at most lul/4- 3t negative occurrences. Then !îã 6 = 1,2,

è contains at least 2t occu"ences î! O"B:t 1.

Ðãîî! Let õ' Üå the word obtained from õ Üó performing all "free"
canCellationS, i.e., cancellations of O"â-lO"â or O"âO"â-1. ÒÜå image è' of è in .!

õ' cannOt contain àïó occurrences of the form 0"1:t10";0"1:t1 or 0"2:t10"t0"2:t1,
for odd integer è, because these would contradict the assumed property of
Õ. Such occurrenCes and the forms O"â-lO"â, O"âO"â-1 (6 Å {1,2}) we shall refer

to as !orbidden.
As in the proofs of Lemmas 3 and 4, substitute the normal forms for

0"1:t 1 and 0"2:t 1 in õ' and è'. If õ" and è" are the resulting words, the same

arguments as before show that the total number of a-replacements in õ"
when going to its normal form is g, where g(~ lul/4 -3t) is the number
of negative occurrenCes in Õ. We also know that è' does nOt contain àïó
forbidden occurrenCes and that lu'l ~ lul -2g. This allows us to represent
the process of going from è" to its normal form è"' in àï especially simple

way.
We first perform in è" à" possible A-operationS and obtain à word

è" = A2PaBoAaBIA ...aBr-IAaBr where " " > 0 and " " > 1 It, , , "0"'ã- "1'..."'ã-1- .
is easy to check that the absence of forbidden occurrenCes in è' implies
that actually 60' 6ã Å {0,1,2,4} and 61' ..., 6ã-1 Å {1,2,4}. Now the nOr-
mal form è'" is obtained from è" Üó merely replacing åàñÜ à4 Üó àÀ2 and
then tranSferring à" occurrenCes of À2 to the left end, i.e., Üó using à
single level of a-replacements. Thus åàñÜ a-syllable in è" ñàòå either
from à single letter in è' or from two adjacent letters, and so è" (and
Üåïñå è"') contains at least lu'I/2 ~ lul/2 -9 a-syllables. No more
than 9 + 2 of them ñàï Üå affected within õ", therefore è'" and õ"', the
normal forms of è" and õ", contain à ñîòòîï piece ð with at least
lu'I/2 ~ lul/2 -2g -2 ~ 6t -2 a-syllables. But õ'" = Õ, and so õ'" =

À2âÀ, for some å, where À is à subword of the periodic word
(a2A(aA)2t-2)oo. Therefore ð contains at least three a-syllables of the
form à2, say ð = P1a2A(aA)2t-2a2A(aA)2t-2a2Ap2.

À word over {0"1' O"J :t 1 with ïî forbidden occurrenCes conSists, except

for à short prefix and suffix, of à sequenCe of the pairs O"f, O"f, 0"12,0"22,
with ïî cancellations. À long subword of the form (àÀ)* in the normal
form of à word over {0"1' O"J:t1 with ïî forbidden occurrenCes ñàï only Üå
generated from à long periodic subword of îïå of the following three
types: O"i, O"i, or {0"120"22}*. This is easily checked Üó à case analysis.

Consider the generation of à single syllable of à2 with à long string of
a's îï åàñÜ side. There are six possible origins for the à2 syllable. It òàó
Üå formed from two à syllables in two different ways,

(i) 0"10"2 = Àà2À,

(ii) 0"20"1 = àÀÀà = À2à2,
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or it òàó Üå the à2 syllable of the first or second èl1 in è12,

(iii) è12 = a2~a2~,

(iv) è12 = a2~a2~,

or it òàó Üå from either è21 in è22,

(ó) è22 = ~a2~a2,

(iv) è22 = ~a2~a2.

In åàñÜ of the six cases, the preceding and succeeding sequences of pairs
to generate the a's are unique. We show below for åàñÜ case in the àÜîóå
order à necessary subword required to generate ~(a~ft-2a2~(a~)2t-2:

(i) uftuit = ~(a~ft-1a2~(a~ft~1,

(ii) uituft = ~2(a~ft-1a2(~aft-1,

(iii) uit-1uI2(u22uI2)t-1 = ~ -2t+2(a~ft-1a2(~aft'-la~,

(iv) (uI2u22)t-1uI2uit-1 = ~ -2t+2a(a~ft-1a2(~a)2t-1~,

(ó) uft-1u22(uI2u22)t-1 = ~ -2t+Ç(a~ft-1a2(~a)2t-1a,

(vi) (u22uI2)t-1u22uft = ~-2t+Ça(a~ft-1a2(~aft-1.

SO, è' (and therefore also è) contains at least 2t occurrences of U1:t 1 and

of U2:t 1, and the lemma is proved. O{Lemma 5}

For your convenience we repeat the statement of Lemma 1.

LEMMA 1. Let w Üå à word such that w = x(q). Then

(i) w has at least 2tmcs positièe crossings between the we!t and wires;

(ii) i! the length î! w is minimal then there exists some permutation 1ò
î! I such that w has at least 2ñ2 .inè(q, 1Ò) crossings between the wires.

Proo! î! Lemma l(i). It is evident that, for à" i, JL{weft,iIX(q» = ufts Å
Â2. (1) implies that Â2 = 1L, and Üåïñå the (possibly reducible) word
JL{Weft,iIW), equivalent to ufts, contains at least 2ts positive occurrences of
è1. A11 these occurrences must Üàóå ñîòå from positive occurrences of the
form è * à * v with õ(è * à * è) = {weft, i}. Summing over à" i, we find
that the number of positive occurrences u * à * v for which weft Å
õ(è * à * è) is at least 2tmcs. O{Lemma l(i)}

Proo! î! Lemma l(ii). Set ï = rm2s ( = òñ). We Üàóå already seen
that there exists à Wo such that Wo = x(q) and Iwol < ï2 + 2tsn, therefore,

Iwl < ï2 + 2tsn. (6)
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From (6) and Lemma l(i), we obtain

(nUmber ofnegative occurrenCes in w) < ï2. (7)

Let ò Üå the nUmber of crossings ÜåÌååï wires in different cables. We
shall actually prove à stronger result than that stated in Lemma l(ii),
namely that for some permutation 1ò Å Sr' ò ~ 2ñ2 .inv(q, 1ò ). Pick at
random à system of representatives i1, ..., im in the cables, îïå wire per
ñàÛå. ÒÜåï the expectation of the total nUmber of crossings among
i1, ..., im is ò /ñ2. Choose such à system i1, ..., im that the nUmber of
crossings is minimal and apply JL{weft,iv...,i"J to w. ÒÜåï our problem is
reduced to the case ñ = 1 with the differenCe that JL{Weft,iv...,imlw) ñàï Üå

nOD-minimal. However, (7) stil1 holds for JL{weft,iv...,i }(w). SO, assume
ñ = 1 and à word w is given such that w = x(q) and (7)holds.

If w containS at least ò2 wire crossings then the result is proved.
Otherwise, w containS à piece è ( w = puq ) with ïî wire crossings within è
such that lul ~ 2ts/m, because Iwl ~ 2tsm Üó Lemma l(i) with ñ = 1. Òî

complete our proof it is!isufficient to show that, for al1 k, ð# arranges the
k-wires into à conSecutive block, because we ñàï then take the permuta-
tion of the alphabet induced Üó ð# as 1ò .

Start Üó choosing à wire (sayjo) such that the weft has at least 2tS/m2
crossings with this wire within è.

CLAIM. If aj * ajo (1 ~ j ~ ò) then within è the weft has at least 2t
crossings with the wire j.

Proo! î! claim. Apply JL{weft,j,jo} to the word w. We obtain à word
. 1 ( 2t 2t-l )s ( 2t-l 2t )s (J ( ) . f . equlva ent to (Òl(Ò2 (Òl or (Òl (Ò2 (Òl .{weft,j,jo} ð * è * q satls les

the conditionS of Lemma 5, because j and jo do not intersect within è and
Üó (7) the total nUmber of negative occurrenCes in JL{weft, j, jo}( w ) is less than
ï2 and ï2 ~ IJL{weft,j,jo}(U)I/4 -3t. Íåïñå Üó Lemma 5 there are at least
2t occurrenCes of (TE:t 1 in (J{weft,j,jo}(p * è * q) for Å = 1, 2. SinCe

(J{weft,j,jo}(p * è * q) does nOt contain àïó (j, jo)-crossings, then if p#(jo) <
ð#È), õ of àïó occurrenCes (T2:t 1 is {weft, Ë; otherwise õ of àïó occur-

renCe (Tl:tl is {weft,n. ÒÜå claim is proved. D{Claim}

Assume now that k (1 ~ k ~ r) is fixed. Âó the claim and the observa-
tion that 2tS/m2 ~ 2t, we ñàï choose à k-wire i such that there are at
least 2t crossings in w ÜåÌååï i and the weft. Âó (7), there exists à
segment V, where w = pUlvu2q, containing at least 2ï4( = 2t/n2) cross-

ings ÜåÌååï the weft and wire i, and there are ïî negative crossings. We
claim that (ðèl)#' and therefore ð# because there are ïî wire crossings
within ð * è * q, takes al1 the wires associated with k to à conSecutive
block. Suppose not. ÒÜåï there exists à k'-wire j inSide the k-block such
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that k' * k. Choose also in the k-block à k-wire i' such that j lies
between i and i'. ConSider two cases.

Case 1. There exists à subsegment è' of è (W = p'v'q'), containing at

least ï2 + 2 crossings of the weft with i but ïî crossings of the weft
with i'.

SinCe wires do nOt intersect each other within è, p'#(j) lies between
ð'#(ï and p'#(i'), as it was for ð and ðè1. We nOw apply the mapping
(J = (J{weft, j, j'} to the word w and find that

( 2 ) tS JL{weft,j,j'}(W)=(J(*W*)= 0'10'20'1 .

From our knowledge of ð' * è' * q', the only possible crossings in
ä(ð' * è' * q') are between the weft and wire i. Therefore ä(ð' * è' * q') =

O'åå, where å ~ ï2 + 2 and Å Å {1,2}. This yields à contradiction with (7)
and Lemma 3.

Case 2. There is ïî such subsegment as in Case 1. This implies that
the sequenCe õ of pairs representing successive crossings of è containS at
least 4ï2 -4 altemationS of {weft, i} and {weft, i'}. SinCe (ðè1)#È) lies
between (ðè1)#(ï and (pU1)#(i'), between àïó such altemating pair in õ
there exists at least îïå occurrenCe of {weft, Ë. So, there are at least
4ï2 -4 altemationS of {weft, i} and {weft, Ë. Applying the mapping
JL{weft,j,j}' we find that:

(i) JL{weft,j,j}(pu1 * è * U2q) has at least 4ï2 -4 altemationS of 0'1' 0'2;
( ..) ( ) - ( 2t-1 2t )S ( 2t 2t-1 )S
11 JL{weft,j,j} w = 0'1 0'20'1 or 0'10'20'1 .

Because 4ï2 -4 > 3(ï2 -1) + 2s, this contradicts Lemma 4.

This contradiction with the assumption that there exists à k'-wire lying

within the k-block shows that for àïó k, ð# takes all the k-wires to

à conSecutive block. As observed above, this completes the proof of

Lemma l(ii), sinCe the required permutation 1ò is just that induced

Üó ð#. D{Lemma l(ii)}
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