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Abstract. When I was asked to write a contribution for this book about
something related to my research, I immediately thought of Communication
Complexity. This relatively simple but extremely beautiful and important
sub-area of Complexity Theory studies the amount of communication needed
for several distributed parties to learn something new. We will review the
basic communication model and some of the classical results known for it,
sometimes even with proofs. Then we will consider a variant in which the
players are allowed to flip fair unbiased coins. We will finish with a brief review
of more sophisticated models in which our current state of knowledge is less
than satisfactory. All our definitions, statements and proofs are completely
elementary, and yet we will state several open problems that have evaded
strong researchers for decades.

1 Introduction

As the reader can guess from the name, Communication Complexity studies
ways to arrange communication between several parties so that at the end of
the day they learn what they are supposed to learn, and to do this in the most
efficient, or least complex way. This theory constitutes a small but, as we will
see below, very beautiful and important part of Complexity Theory which,
in turn, is situated right at the intersection of Mathematics and Theoretical
Computer Science. For this reason I would like to begin with a few words
about Complexity Theory in general and what kind of problems researchers
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are studying there. The reader favoring concrete mathematical content over
philosophy should feel free to skip the introduction and go directly to Sec-
tion 2.

Complexity Theory is interested in problems that in most cases can
roughly be described as follows. Assume that we have a task T that we
want to accomplish. In most cases this involves one or more computers doing
something, but it is not absolutely necessary. There can be many different
ways to achieve our goal, and we denote the whole set of possibilities by
PT . Depending on the context, elements of PT can be called algorithms or,
as in our article, protocols. In most cases of interest it is trivial that there
is at least one algorithm/protocol to solve T , that is the set PT is non-
empty.

While all P ∈ PT solve our original task T , not all solutions are born
equal. Some of them may be better than others because they are shorter,
consume less resources, are simpler, or for any other reason. The main idea of
mathematical complexity theory is to try to capture our intuitive preferences
by a positive real-valued function µ(P ) (P ∈ PT ) called complexity measure
with the idea that the smaller µ(P ) is, the better is our solution P . Ideally,
we would like to find the best solution P ∈ PT , that is the one minimizing the
function µ(P ). This is usually very hard to do, so in most cases researchers
try to approach this ideal from two opposite sides as follows:

• try to find “reasonably good” solutions P ∈ PT for which µ(P ) may per-
haps not be minimal, but still is “small enough”. Results of this sort are
called “upper bounds” as what we are trying to do mathematically is to
prove upper bounds on the quantity

min
P∈PT

µ(P )

that (not surprisingly!) is called the complexity of the task T .
• Lower bound problems: for some a ∈ R we try to show that µ(P ) ≥ a for

any P , that is that there is no solution in PT better than a. The class
PT is usually very rich and solutions P ∈ PT can be based upon very
different and often unexpected ideas. We have to take care of all of them
with a uniform argument. This is why lower bound problems are amongst
the most difficult in modern mathematics, and the overwhelming majority
of them is still wide open.

All right, it is a good time for some examples. A great deal of mathe-
matical olympiad problems are actually of complexity flavor even if it is not
immediately clear from their statements.
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You have 7 (or 2010, n, . . . ) coins, of which 3 (at most 100, an
unknown number, . . . ) are counterfeit and are heavier (are lighter,
weigh one ounce more, . . . ) than the others. You also have a scale
that can weigh (compare, . . . ) as many coins as you like (compare
at most 10 coins, . . . ). How many weighings do you need to identify
all (one counterfeit, . . . ) coin(s)?

These are typical complexity problems, and they are very much related to
what is called sorting networks and algorithms in the literature. The task T
is to identify counterfeit coins, and PT consists of all sequences of weighings
that allow us to accomplish it. The complexity measure µ(P ) is just the
length of P (that is, the number of weighings used).

You have a number (polynomial, expression, . . . ), how many addi-
tions/ multiplications do you need to build it from certain primitive
expressions?

Not only is this a complexity problem, but also a paradigmatic one. Can you
describe T,PT and µ in this case? And, by the way, if you think that the
“school” method of multiplying integers is optimal in terms of the number of
digit operations used, then this is incorrect. It was repeatedly improved in the
work of Karatsuba [13], Toom and Cook (1966), Schönhage and Strassen [26]
and Fürer [11], and it is still open whether Fürer’s algorithm is the optimal
one. It should be noted, however, that these advanced algorithms become
more efficient than the “school” algorithm only for rather large numbers
(typically at least several thousand digits long).

If you have heard of the famous P vs. NP question (otherwise I recom-
mend to check out e.g. http://www.claymath.org/millennium/P_vs_NP),
it is another complexity problem. Here T is the task of solving a fixed NP-
complete problem, e.g. SATISFIABILITY, and PT is the class of all deter-
ministic algorithms fulfilling this task.

In this article we will discuss complexity problems involving communi-
cation. The model is very clean and easy to explain, but quite soon we
will plunge into extremely interesting questions that have been open for
decades. . . And, even if we will not have time to discuss it here at length,
the ideas and methods of communication complexity penetrate today virtu-
ally all other branches of complexity theory.

Almost all material contained in our article (and a lot more) can be found
in the classical book [17]. The recent textbook [3] on Computational Com-
plexity has Chapter 13 devoted entirely to Communication Complexity, and
you can find its applications in many other places all over the book.

Since the text involves quite a bit of notation, some of it is collected
together at the end of the article, along with a brief description.
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2 The Basic Model

The basic (deterministic) model was introduced in the seminal paper by Yao
[27]. We have two players traditionally (cf. the remark below) called Alice and
Bob, we have finite sets X,Y and we have a function f : X × Y −→ {0, 1}.
The task Tf facing Alice and Bob is to evaluate f(x, y) for a given input
(x, y). The complication that makes things interesting is that Alice holds the
first part x ∈ X of their shared input, while Bob holds another part y ∈ Y .
They do have a two-sided communication channel, but it is something like a
transatlantic phone line or a beam communicator with a spacecraft orbiting
Mars. Communication is expensive, and Alice and Bob are trying to minimize
the number of bits exchanged while computing f(x, y).

Thus, a protocol P ∈ PT looks like this (see Figure 1). Alice sends a

All material contained in our article (and much more) can be found in the
classical monograph [1]. The recent textbook on Computational Complexity
[2] has the whole Chapter 13 devoted entirely to Communication Complexity,
and you can find its applications in many other paces all over the book.

After this introduction, let us do something slightly more technical. The
basic (deterministic) model was introduced in the seminal paper by Yao [3].
We have two players traditionally called Alice and Bob, we have finite sets
X,Y and we have a function f : X ×Y −→ {0, 1}. The task Tf facing Alice
and Bob is to evaluate f on a given input (x, y): f(x, y) =? The complication
that makes things interesting is that Alice holds the first part x ∈ X of their
shared input, while Bob holds another part y ∈ Y . They do have a two-sided
communication channel, but it is something like a transatlantic phone line
or beam communicators with a spacecraft orbiting Mars. Communication
is expensive, and Alice and Bob are trying to minimize the number of bits
exchanged while computing f(x, y).

Thus, a protocol P ∈ PT looks like this (see Figure 1). Alice sends a

a1 = f1(x)

x ∈ X y ∈ Y

b1 = g1(y, a1)

a2 = f2(x, a1, b1)

. . .
bt = gt(y, a1, b1, . . . , at)

bt = f(x, y)!

Figure 1: Protocol P for computing f(x, y)

message encoded for simplicity as a binary string a1 ∈ {0, 1}∗. Bob responds
with some b1 that depends only on his y and Alice’s message a1. They
continue in this way until one of them (say, Bob) is able to compute the
value of f(x, y) and communicate it to Alice in the tth round.

In this definition we deliberately left a few things imprecise. For example,
is the length of Alice’s message a1 fixed or is it allowed to depend on x?
Likewise, can the number of rounds t depend on x and y and, if so, how
can Alice know that Bob’s message bt is actually the last one and already
gives the final answer? It turns out, however, that all these details are very
inessential, and the reader can fill them any way he likes – this will change
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Fig. 1. Protocol P for computing f(x, y). (Picture of Alice by John Tenniel.)

message encoded for simplicity as a binary string a1 (i.e., a finite sequence of
zeroes and ones). Bob responds with some b1 that depends only on his y and
Alice’s message a1. They continue in this way until one of them (say, Bob) is
able to compute the value of f(x, y) and communicate it to Alice in the t-th
round.

Remark 1. It should be noted that Alice and Bob are by far the most lovable
and popular heroes in the whole literature on Complexity and the closely
related field of Cryptography. As such, they are summoned up in many other
episodes of this ongoing story, and, just like their real-life prototypes, they live
a busy life. Sometimes their goals coincide only partially, and they are very
cautious about leaking out unwanted information, then it is called Cryptog-
raphy. Often there is an evil eavesdropper (usually called, for obvious reasons,
Eve). Sometimes Alice and Bob do not even trust that the other party will
truthfully follow the protocol, although in such cases they usually change
their names to Arthur and Merlin. But in our article we will consider only
the simplest scenario: complete mutual trust, nothing to hide, perfect and
secure communication channel.
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In this definition we deliberately left a few things imprecise. For example,
is the length of Alice’s message a1 fixed or is it allowed to depend on x?
Likewise, can the number of rounds t depend on x and y and, if so, how
can Alice know that Bob’s message bt is actually the last one and already
gives the final answer? It turns out, however, that all these details are very
inessential, and the reader can fill them any way he or she likes — this will
change the complexity only by a small additive factor.

How to measure the complexity µ(P ) of this protocol P? There are several
ways of doing this, all of them reasonable. In this article we will focus only on
the most important and popular model called worst-case complexity. For any
given input (x, y) ∈ X×Y we define the cost of the protocol P on this input
as the total number of bits1 |a1|+ |b1|+ . . .+ |bt| exchanged on this input (cf.
Figure 1). And then we define the complexity (that, for historical reasons, is
also called cost in this case) cost(P ) of the protocol P as the maximal cost of
P over all inputs (x, y) ∈ X×Y . Finally, the communication complexity C(f)
of (computing) the function f : X × Y −→ {0, 1} is defined as the minimum
minP∈Pf cost(P ) taken over all legitimate protocols P , i.e., those protocols
that correctly output the value f(x, y) for all possible inputs. We would like
to be able to compute C(f) for “interesting” functions f , or at least get good
estimates for it.

The first obvious remark is that

C(f) ≤ dlog2 |X|e+ 1 (1)

for any problem2 f . The protocol of this cost is very simple: Alice encodes her
input x as a binary string of length dlog2 |X|e using any injective encoding
f1 : X −→ {0, 1}dlog2 |X|e and sends a1 = f1(x) to Bob. Then Bob decodes
the message (we assume that the encoding scheme f1 is known to both parties
in advance!) and sends the answer f(f−1

1 (a1), y) back to Alice.
Surprisingly, there are only very few interesting functions f for which we

can do significantly better than (1) in the basic model. One example that is
sort of trivial is this. Assume that X and Y consist of integers not exceeding
some fixed N : X = Y = {1, 2, . . . , N}. Alice and Bob want to compute
the {0, 1}-valued function fN (x, y) that outputs 1 if and only if x + y is
divisible by 2010. A much more economical way to solve this problem would
be for Alice to send to Bob not her whole input x, but only its remainder
x mod 2010. Clearly, this still will be sufficient for Bob to compute x + y
mod 2010 (and hence also fN (x, y)), and the cost of this protocol is only
dlog2 2010e+ 1 (= 12). Thus,

C(fN ) ≤ dlog2 2010e+ 1 . (2)

1 |a| is the length of the binary word a.
2 Note that complexity theorists often identify functions f with computational prob-
lems they naturally represent. For example, the equality function EQN defined below
is also viewed as the problem of checking if two given strings are equal.
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Now, complexity theorists are lazy people, and not very good at elementary
arithmetic. What is really remarkable about the right-hand side of (2) is that
it represents some absolute constant that magically does not depend on the
input size at all! Thus, instead of calculating this expression, we prefer to
stress this fact using the mathematical big-O notation and write (2) in the
simpler, even if weaker, form

C(fN ) ≤ O(1) .

This means that there exists a positive universal constant K > 0 that anyone
interested can (usually) extract from the proof such that for all N we have
C(fN ) ≤ K ·1 = K. Likewise, C(fN ) ≤ O(log2 N) would mean that C(fN ) ≤
K log2 N etc. We will extensively use this standard3 notation in our article.

Let us now consider a simpler problem that looks as fundamental as it
can only be. We assume that X = Y are equal sets of cardinality N . The
reader may assume that this set is again {1, 2, . . . , N}, but now this is not
important. The equality function EQN is defined by letting EQN (x, y) = 1
if and only if x = y. In other words, Alice and Bob want to check if their
files, databases etc. are equal, which is clearly an extremely important task
in many applications.

We can of course apply the trivial bound (1), that is, Alice can simply
transmit her whole input x to Bob. But can we save even a little bit over
this trivial protocol? At this point I would like to strongly recommend you
to put this book aside for a while and try out a few ideas toward this goal.
That would really help to better appreciate what will follow.

3 We should warn the reader that in most texts this notation is used with the equal-
ity, rather than inequality, sign, i.e., C(fN ) = O(log2 N) in the previous example.
However, we see numerous issues with this usage and in particular it becomes rather
awkward and uninformative in complicated cases.
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3 Lower Bounds

Did you have any luck? Well, you do not have to be distressed by the result
since it turns out that the bound (1) actually can not be improved, that is any
protocol for EQN must have cost at least log2 N . This was proven in the same
seminal paper by Yao [27], and many ideas from that paper determined the
development of Complexity Theory for several decades to follow. Let us see
how the proof goes, the argument is not very difficult but it is very instructive.

We are given a protocol P of the form shown on Figure 1, and we know
that upon executing this protocol Bob knows EQN (x, y). We should somehow
conclude that cost(P ) ≥ log2 N .

One very common mistake often made by new players in the lower bounds
game is that they begin telling P what it “ought to do”, that is, consciously or
unconsciously, begin making assumptions about the best protocol P based on
the good common sense. In our situation a typical argument would start off
by something like “let i be the first bit in the binary representation of x and y
that the protocol P compares”. “Arguments” like this are dead wrong since it
is not clear at all that the best protocol should proceed in this way, or, to that
end, in any other way we would consider “intelligent”. Complexity Theory
is full of ingenious algorithms and protocols that do something strange and
apparently irrelevant almost all the way down, and only at the end of the
day they conjure the required answer like a rabbit from the hat — we will see
one good example below. The beauty and the curse of Complexity Theory
is that we should take care of all protocols with seemingly irrational (in our
opinion) behavior all the same, and in our particular case we may not assume
anything about the protocol P besides what is explicitly shown on Figure 1.

Equipped with this word of warning, let us follow Yao and see what useful
information we still can retrieve from Figure 1 alone. Note that although we
are currently interested in the case f = EQN , Yao’s argument is more general
and can be applied to any function f . Thus, for the time being we assume
that f is an arbitrary function whose communication complexity we want to
estimate; we will return to EQN in Corollary 2.

The first thing to do is to introduce an extremely useful concept of a his-
tory or a transcript: this is the whole sequence (a1, b1, . . . , at, bt) of messages
exchanged by Alice and Bob during the execution of the protocol on some
particular input. This notion is very broad and general and is successfully
applied in many different situations, not only in communication complexity.

Next, we can observe that there are at most 2cost(P ) different histories as
there are only that many different strings4 of length cost(P ). Given any fixed
history h, we can form the set Rh of all those inputs (x, y) that lead to this
history. Let us see what we can say about these sets.

4 Depending on finer details of the model, histories may have different length, the
placement of commas can be also important etc. that might result in a slight increase
of this number. But remember that we are lazy and prefer to ignore small additive,
or even multiplicative factors.
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First of all, every input (x, y) leads to one and only one history. This means
that the collection {Rh} forms a partition or disjoint covering of the set of
all inputs X × Y :

X × Y =
[̇

h∈H
Rh , (3)

where H is the set of all possible histories. The notation
Ṡ

stands for disjoint
union and simultaneously means two different things: that X×Y =

S
h∈H Rh,

and that Rh ∩Rh0 = ∅ for any two different histories h 6= h0 ∈ H.
Now, every history h includes the value of the function f(x, y) as Bob’s

last message bt. That is, any Rh is an f-monochromatic set, which means
that either f(x, y) = 0 for all (x, y) ∈ Rh or f(x, y) = 1 for all such (x, y).

Finally, and this is very crucial, every Rh is a combinatorial rectangle
(or simply a rectangle), that is it has the form Rh = Xh × Yh for some
Xh ⊆ X, Yh ⊆ Y . In order to understand why, we should simply expand the
sentence “(x, y) leads to the history (a1, b1, . . . , at, bt)”. Looking again at Fig-
ure 1, we see that this is equivalent to the set of “constraints” on (x, y) shown
there: f1(x) = a1, g1(y, a1) = b1, f2(x, a1, b1) = a2, . . . , gt(y, a1, . . . , at) = bt.
Let us observe that odd-numbered constraints in this chain depend only on
x (remember that h is fixed!); let us denote by Xh the set of those x ∈ X
that satisfy all these constraints. Likewise, let Yh be the set of all y ∈ Y
satisfying even-numbered constraints. Then it is easy to see that we precisely
have Rh = Xh × Yh!

Let us summarize a little bit. For any protocol P solving our problem
f : X × Y −→ {0, 1}, we have been able to chop X × Y into at most 2cost(P )

pieces so that each such piece is an f -monochromatic combinatorial rectangle.
Re-phrasing it a little bit differently, let us denote by χ(f) (yes, complexity
theorists love to introduce complexity measures!) the minimal number of f -
monochromatic rectangles into which we can partition X × Y . We thus have
proved, up to a small multiplicative constant that may depend on finer details
of the model:

Theorem 1 (Yao). C(f) ≥ log2 χ(f). ut

Let us return to our particular case f = EQN . All f -monochromatic com-
binatorial rectangles can be classified into 0-rectangles (i.e., those on which
f is identically 0) and 1-rectangles. The function EQN has many large 0-
rectangles. (Can you find one?) But all its 1-rectangles are very primitive,
namely every such rectangle consists of just one point (x, x). Therefore, in or-
der to cover even the “diagonal” points {(x, x) | x ∈ X }, one needs N different
1-rectangles, which proves χ(EQN ) ≥ N . Combining this with Theorem 1,
we get the result we were looking for:

Corollary 2. C(EQN ) ≥ log2 N . ut

Exercise 1. The function LEN (less-or-equal) is defined on {1, 2, . . . , N} ×
{1, 2, . . . , N} as

LEN (x, y) = 1 iff x ≤ y .
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Prove that C(LEN ) ≥ log2 N .

Exercise 2 (difficult). The function DISJn is defined on {0, 1}n × {0, 1}n

as
DISJn(x, y) = 1 iff ∀i ≤ n : xi = 0 ∨ yi = 0 ,

that is, the sets of positions where the strings x and y have a 1 are disjoint.
Prove that C(DISJn) ≥ Ω(n).

(Here Ω is yet another notation that complexity theorists love. It is dual to
“big-O” and means that there exists a constant ε > 0 that we do not want
to compute such that C(DISJn) ≥ εn for all n.)

Hint. How many points (x, y) with DISJn(x, y) = 1 do we have? And what
is the maximal size of a 1-rectangle?

4 Are These Bounds Tight?

The next interesting question is, how good is Theorem 1 in general? Can
it be the case that χ(f) is small, that is we do have a good disjoint cover-
ing by f -monochromatic rectangles, and nonetheless C(f) is large, so that
in particular we can not convert our covering into a decent communication
protocol? Figure 2 suggests at least that this question may be non-trivial: it

4

Fig. 2. What should Alice do?

gives an example of a disjoint covering by only five rectangles that does not
correspond to any communication protocol.

As in many similar situations, the answer depends on how precise you
want it to be. In the next influential paper on communication complexity [1],
the following was proved among other things:

Theorem 3 (Aho, Ullman, Yannakakis). C(f) ≤ O(log2 χ(f))2.

The proof is not very difficult, but still highly non-trivial. The reader can try
to find it by himself or consult e.g. [17].
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Can we remove the square in Theorem 3? For almost thirty years that have
elapsed since the paper [1], many people have tried to resolve the question
one or the other way. But it has resisted all efforts so far. . .

Open Problem 1. Is it true that C(f) ≤ O(log2 χ(f))?

Besides Theorem 3, the paper [1] contains many other great things per-
taining to the so-called non-deterministic communication complexity. In this
model, Alice and Bob are also given access to a shared string z not deter-
mined by the protocol (whence comes the name) but rather given to them
by a third all-powerful party trying to convince them that f(x, y) = 1. We
require that a convincing string z exists if and only if f(x, y) is indeed equal
to 1, and we note that in this definition we give up on the symmetry of an-
swers 0 and 1. Due to lack of space we discuss this important concept only
very briefly, and complexity measures we mention during the discussion will
hardly be used in the rest of the article.

Define t(f) in the same way as χ(f), only now we allow the monochromatic
rectangles in our cover to overlap with each other. Clearly, t(f) ≤ χ(f), but
it turns out that the bound of Theorem 3 still holds: C(f) ≤ O(log2 t(f))2.
On the other hand, there are examples for which C(f) is of order (log2 t(f))2.
This means that the (negative) solution to the analogue of Problem 1 for not
necessarily disjoint coverings is known.

Let χ0(f) and χ1(f) be defined similarly to χ(f), except now we are in-
terested in a disjoint rectangular covering of only those inputs that yield
value 0 (respectively, value 1); note that χ(f) = χ0(f) + χ1(f). Then
still C(f) ≤ O(log2 χ1(f))2 and (by symmetry) C(f) ≤ O(log2 χ0(f))2.
By analogy, we can also define the quantities t0(f) and t1(f) (the non-
deterministic communication complexity we mentioned above turns out to
be equal to log2 t1(f)). We cannot get any reasonable (say, better than expo-
nential) bound on C(f) in terms of log2 t1(f) or log2 t0(f) only: for example,
t0(EQN ) ≤ O(log2 N) (why?) while, as we already know, C(EQN ) ≥ log2 N .
In conclusion, there is no good bound on the deterministic communication
complexity in terms of the non-deterministic one, but such a bound becomes
possible if we know that the non-deterministic communication complexity of
the negated function is also small.

The next landmark paper we want to discuss is the paper [19] that intro-
duced to the area algebraic methods. So far all our methods for estimating
χ(f) from below (Corollary 2 and Exercises 1 and 2) were based on the same
unsophisticated idea: select “many” inputs D ⊆ X × Y such that every f -
monochromatic rectangle R may cover only “a few” of them, and then apply
the pigeonhole principle. This method does not use anyhow that the covering
(3) is disjoint or, in other words, it can be equally well applied to bounding
from below t(f) as well as χ(f). Is it good or bad? The answer depends. It is
always nice, of course, to be able to prove more results, like lower bounds on
the non-deterministic communication complexity log2 t1(f), with the same
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shot. But sometimes it turns out that the quantity analogous to t(f) is al-
ways small and, thus, if we still want to bound χ(f) from below, we must
use methods that “feel” the difference between these two concepts. The rank
lower bound of Mehlhorn and Schmidt [19] was the first of such methods.

We will need the most basic concepts from linear algebra like a matrix M
or its rank rk(M), as well as their simplest properties. If the reader is not yet
familiar with them, then this is a perfect opportunity to grab any textbook
in basic linear algebra and read a couple of chapters from it. You will have
to learn this eventually anyway, but now you will also immediately see quite
an unexpected and interesting application of these abstract things.

Given any function f : X × Y −→ {0, 1}, we can arrange its values in the
form of the communication matrix Mf . Rows of this matrix are enumerated
by elements of X, its columns are enumerated by elements of Y (the order is
unimportant in both cases), and in the intersection of the x-th row and the
y-th column we write f(x, y). The following result relates two quite different
worlds, those of combinatorics and linear algebra.

Theorem 4. χ(f) ≥ rk(Mf ).

Proof. The proof is remarkably simple. Let R1, . . . , Rχ be disjoint 1-rectangles
covering all (x, y) with f(x, y) = 1 so that χ ≤ χ(f). Let fi : X×Y −→ {0, 1}
be the characteristic function of the rectangle Ri, i.e., fi(x, y) = 1 if and
only if (x, y) ∈ Ri, and let Mi = Mfi be its communication matrix. Then
rk(Mi) = 1 (why?) and Mf =

Pχ
i=1 Mi. Therefore, rk(Mf ) ≤

Pχ
i=1 rk(Mi) ≤

χ ≤ χ(f). ut

In order to fully appreciate how useful Theorem 4 is, let us note that
MEQN

is the identity matrix (we tacitly assume that if X = Y then the
orders on rows and columns are consistent) and, therefore, rk(MEQN

) = N .
This immediately gives Corollary 2. MLEN is the upper triangular matrix,
and therefore we also have rk(MLEN ) = N . Exercise 1 follows. It does require
a little bit of thinking to see that the communication matrix MDISJn is non-
singular, that is rk(MDISJn) = 2n. But once it is done, we immediately obtain
C(DISJn) ≥ n which is essentially tight by (1) and also stronger than what
we could do with combinatorial methods in Exercise 2 (the Ω is gone).

How tight is the bound of Theorem 4? It had been conjectured for a while
that perhaps χ(f) ≤ (rk(Mf ))O(1) or maybe even χ(f) ≤ O(rk(Mf )). In this
form the conjecture was disproved in the series of papers [2, 23, 21]. But it
is still possible and plausible that, say,

χ(f) ≤ 2O(log2 rk(Mf ))2 ;

note that in combination with Theorem 3 that would still give a highly non-
trivial inequality C(f) ≤ O(log2 rk(Mf ))4.

Despite decades of research, we still do not know the answer, and we
actually do not have a very good clue how to even approach this problem
that has become notoriously known as the Log-Rank Conjecture:
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Open Problem 2 (Log-Rank Conjecture). Is it true that

χ(f) ≤ 2(log2 rk(Mf ))O(1)
?

Equivalently (by Theorems 1, 3), is it true that C(f) ≤ (log2 rk(Mf ))O(1)?

5 Probabilistic Models

This is all we wanted to say about the basic model of communication com-
plexity. Even more fascinating and difficult problems arise when we introduce
some variations. The most important of them, and the only one that we treat
in sufficient detail in the rest of this article, is the model of probabilistic com-
munication complexity.

Assume that Alice and Bob are now slightly less ambitious and agree to
tolerate some small probability of error when computing the value of f(x, y) ∈
{0, 1}. Both of them are equipped with a fair unbiased coin (scientifically
known as generator of random bits) that they can toss during the execution
of the protocol, and adjust the messages they send to each other according to
the result. Everything else is the same (that is, as on Figure 1) but we have to
specify what it means that the protocol P correctly computes the function f .

Fix an input (x, y) and assume that Alice and Bob together flip their coins
r times during the execution, which gives 2r possible outcomes of these coin
tosses. Some of them are good in the sense that Bob outputs the correct value
f(x, y), but some are bad and he errs. Let Good(x, y) be the set of all good
outcomes, then the quantity

pxy =
|Good(x, y)|

2r
(4)

is for obvious reasons called the probability of success on the input (x, y).
What do we want from it? There is a very simple protocol of cost 1 that

achieves pxy = 1/2: Bob simply tosses his coin and claims that its outcome
is f(x, y). Thus, we definitely want to demand that

pxy > 1/2 . (5)

But how well should the probability of success be separated from 1/2?
It turns out that there are essentially only three different possibilities

(remember that we are lazy and do not care much about exact values of
our constants). In the most popular and important version we require that
pxy ≥ 2/3 for any input (x, y). The minimal cost of a probabilistic protocol
that meets this requirement is called bounded-error probabilistic communica-
tion complexity of the function f and denoted by R(f). If for any input pair
(x, y) we only require (5) then the model is called unbounded-error, and the
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corresponding complexity measure is denoted by U(f). In the third model
(that is less known and will not be considered in our article), we still require
(5), but now Alice and Bob are also charged for coin tosses. This e.g. implies
that in any protocol of cost O(log2 n), (5) automatically implies the better
bound px,y ≥ 1

2 + 1
p(n) for some polynomial p(n).

Why, in the definition of R(f), did we request that pxy ≥ 2/3, not pxy ≥
0.9999? By using quite a general technique called amplification, it can be
shown not to be very important. Namely, assume that Alice and Bob have at
their disposal a protocol of cost R(f) that achieves pxy ≥ 2/3, they repeat it
independently 1000 times and output at the end the most frequent answer.
Then the error probability of this repeated protocol of cost only 1000R(f)
will not exceed 10−10. . . (In order to prove this statement, some knowledge
of elementary probability theory, like Chernoff bounds, is needed.)

Are coins really helpful for anything, that is are there any interesting prob-
lems that can be more efficiently solved using randomization than without
it? An ultimate answer to this question is provided by the following beautiful
construction, usually attributed to Rabin and Yao, that has to be compared
with Corollary 2.

Theorem 5. R(EQN ) ≤ O(log2 log2 N).

Proof. In order to prove this, it is convenient to represent elements of X and
Y as binary strings of length n, where n = dlog2 Ne. Furthermore, we want to
view the binary string x1x2 . . . xn as the polynomial x1 + x2ξ + . . . + xnξn−1

in a variable ξ. Thus, Alice and Bob hold two polynomials g(ξ) and h(ξ) of
the form above, and they want to determine if these polynomials are equal.
For doing that they agree beforehand on a fixed prime number p ∈ [3n, 6n]
(such a prime always exists by Chebyshev’s famous theorem). Alice tosses
her coin to pick a random element ξ ∈ {0, 1, . . . , p− 1}. Then she computes
the remainder (!) g(ξ) mod p and sends the pair (ξ, g(ξ) mod p) to Bob.
Bob evaluates h(ξ) mod p and outputs 1 if and only if h(ξ) mod p is equal
to the value g(ξ) mod p he received from Alice.

The cost of this protocol is only O(log2 n) as required: this is how many
bits you need to transmit a pair of integers (ξ, g(ξ) mod p) not exceeding
p ≤ O(n) each. What about the probability of success? If EQ(g, h) = 1 then
g = h and Bob clearly always outputs 1, there is no error in this case at
all. But what will happen if g 6= h? Then (h − g) is a non-zero polynomial
of degree at most n. And any such polynomial can have at most n different
roots in the finite field Fp. If you do not understand the last sentence, then
you can simply trust me that the number of bad ξ ∈ {0, 1, . . . , p − 1}, i.e.,
those for which Bob is fooled by the fact g(ξ) = h(ξ) mod p, does not exceed
n ≤ p

3 . And since ξ was chosen completely at random from {0, 1, . . . , p− 1},
this precisely means that the probability of success is at least 2/3. ut

Let us now review other problems that we already saw before in the light of
probabilistic protocols. The function less-or-equal from Exercise 1 also gives
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in to such protocols: R(LEN ) ≤ O(log2 log2 N), although the proof is way
more complicated than for equality [17, Exercise 3.18]. On the other hand,
randomization does not help much for computing the disjointness function
[4, 12, 24]:

Theorem 6. R(DISJn) ≥ Ω(n).

The proof is too complicated to discuss here. It becomes slightly easier for
another important function, inner product mod 2, that we now describe.

Given x, y ∈ {0, 1}n, we consider, like in the case of disjointness, the set of
all indices i for which xi = 1 and yi = 1. Then IPn(x, y) = 1 if the cardinality
of this set is odd, and IPn(x, y) = 0 if it is even. Chor and Goldreich [9] proved
the following:

Theorem 7. R(IPn) ≥ Ω(n).

The full proof is still too difficult to be included here, but we would like to
highlight its main idea.

So far we have been interested only in f -monochromatic rectangles, i.e.,
those that are composed either of zeros only or of ones only. We typically
wanted to prove that every such rectangle is small in a sense. In order to tackle
probabilistic protocols, we need to consider arbitrary rectangles R. Every
such rectangle has a certain number N0(f,R) of points with f(x, y) = 0,
and N1(f,R) points with f(x, y) = 1. We need to prove that even if R
is “large” then it is still “well balanced” in the sense that N0(f,R) and
N1(f,R) are “close” to each other. Mathematically, the discrepancy under
uniform distribution5 of the function f : X × Y −→ {0, 1} is defined as

Discu(f) = max
R

|N0(f,R)−N1(f,R)|
|X|× |Y | ,

where the maximum is taken over all possible combinatorial rectangles R ⊆
X × Y .

It turns out that

R(f) ≥ Ω(log2(1/Discu(f))) , (6)

that is, low discrepancy implies good lower bounds for probability protocols.
Then the proof of Theorem 7 is finished by proving Discu(IPn) ≤ 2−n/2

(which is rather non-trivial).

What happens if we go further and allow probabilistic protocols with un-
bounded error, that is we only require the success probability (4) to be strictly
greater than 1/2? The complexity of the equality function deteriorates com-
pletely [20]:

Theorem 8. U(EQN ) ≤ 2.

5 This concept can be generalized to other distributions as well.
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The disjointness function also becomes easy, and this is a good exercise:

Exercise 3. Prove that U(DISJn) ≤ O(log2 n).

The inner product, however, still holds the fort:

Theorem 9. U(IPn) ≥ Ω(n).

This result by Forster [10] is extremely beautiful and ingenious, and it is one
of my favorites in the whole Complexity Theory.

6 Other Variations

We conclude with briefly mentioning a few modern directions in communica-
tion complexity where current research is particularly active.

6.1 Quantum Communication Complexity

Well, I will not even attempt to define what quantum computers are or if
they have anything to do with the Quantum of Solace — most readers have
probably heard of these still imaginary devices. Let me just say that they can
be utilized for solving communication problems as well [28] and denote by
Q(f) the corresponding complexity measure. Quantum computers have an
implicit access to random bits that implies Q(f) ≤ R(f). On the other hand,
the discrepancy lower bound (6) still holds for quantum protocols [16] that
gives for them the same bound as in Theorem 7. Something more interesting
happens to the disjointness function: its complexity drops from n to

√
n

[7, 25]. Can a quantum communication protocol save more than a quadratic
term over the best probabilistic protocol? This is one of the most important
and presumably very difficult problems in the area:

Open Problem 3. Is it true that R(f) is bounded by a polynomial in Q(f)
for functions f : X × Y −→ {0, 1}?

6.2 Multiparty Communication Complexity

Now we have more than 2 players, Alice, Bob, Claire, Dylan, Eve. . . , who
collectively want to evaluate some function f . Depending on how the input
to f is distributed among the players, there are several different models, the
simplest being the scenario in which every player is holding her own set of
data not known by any of the others. It turns out, however, that the most
important one of them (by the token of having a really great deal of various
applications) is the following number-on-the-forehead model. In this model,
k players still want to evaluate a function f(x1, . . . , xk), xi ∈ {0, 1}n. An
interesting twist is that the i-th player has xi written on his forehead, so
he can actually see all pieces of the input except for his own. Let Ck(f)
as always be the minimal number of bits the players have to exchange to
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correctly compute f(x1, . . . , xk); for simplicity we assume that every message
is broadcasted to all other players at once.

Our basic functions DISJn and IPn have “unique” natural generalizations
DISJk

n and IPk
n in this model. (Can you fill in the details?) The classical paper

[5] proved the following bound:

Theorem 10. Ck(IPk
n) ≥ Ω(n) as long as k ≤ ε log2 n for a sufficiently small

constant ε > 0.

If we only could improve this result to a larger number of players (even for any
other “good” function f), that would give absolutely fantastic consequences
in complexity theory, some of which are outlined already in [5]. But this seems
to be well out of reach of all methods that we currently have at our disposal.

Open Problem 4. Prove that Ck(IPk
n) ≥ nε for, say, k = d(log2 n)2e and

some fixed constant ε > 0.

The multiparty communication complexity of DISJk
n was completely un-

known for quite a while even for k = 3. Very recent breakthrough [8, 18, 6]
gives lower bounds on Ck(DISJk

n) that are non-trivial up to k = ε(log2 n)1/3

players.

6.3 Communication Complexity of Search Problems

So far we have been considering functions that assume only two values, 0
and 1. In complexity theory such functions are often identified with decision
problems or languages. But we can also consider functions of more general
form f : X × Y −→ Z, where Z is some more complicated finite set. Or we
can go even one step further and assume that the function f is multi-valued,
or in other words, we have a ternary relation R ⊆ X × Y × Z such that for
any pair (x, y) there exists at least one z ∈ Z (a “value” of the multi-valued
function f) such that (x, y, z) ∈ R. Given (x, y), the protocol P is supposed
to output some z ∈ Z with the property (x, y, z) ∈ R. Otherwise this z can
be arbitrary. This kind of problems is called search problems.

The complexity of search problems is typically even more difficult to an-
alyze than the complexity of decision problems. Let us consider just one
important example, somewhat inspired by the equality function.

Assume that X,Y ⊆ {0, 1}n, but that these sets of strings are disjoint:
X ∩Y = ∅. Then EQ(x, y) = 0 for any x ∈ X, y ∈ Y and there always exists
a position i where they differ: xi 6= yi. Assume that the task of Alice and
Bob is to actually find any such position.

This innocently-looking communication problem turns out to be equivalent
to the second major open problem in computational complexity concerning
computational depth [15, 22] (the first place being taken by the famous P
vs. NP question). We do not have any clue as to how to prove lower bounds
here. A simpler problem is obtained in a similar fashion from the disjointness
function. That is, instead of X ∩Y = ∅ we assume that for any input (x, y) ∈
X × Y there is a position i such that xi = yi = 1. The task of Alice and
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Bob is once again to exhibit any such i. Lower bounds for this problem were
indeed proved in [15, 22, 14], and they lead to very interesting consequences
about the monotone circuit depth of Boolean functions.

7 Conclusion

In this article we tried to give some impression of how soon simple, elementary
and innocent questions turn into open problems that have been challenging us
for decades. There are even more such challenges in the field of computational
complexity, and we are in the need of young and creative minds to answer
these challenges. If this article has encouraged at least some of the readers
to look more closely into this fascinating subject, the author considers its
purpose fulfilled in its entirety.

List of Notation

Since this text uses quite a bit of notation, some of the most important
notations are collected here together with a brief description, as well as the
page of first appearance.

Complexity Measures

cost(P ) cost of protocol P — maximal number of bits to transmit in order to
calculate the value of a function on any input (x, y) using protocol
P 5

C(f) (worst-case) communication complexity of function f — minimal
cost of any protocol computing f 5

χ(f) partition number of function f — minimal number of pairwise dis-
joint f -monochromatic rectangles covering domain of f 9

t(f) cover number of function f — minimal number of f -monochromatic
rectangles covering domain of f 11

χ0(f) minimal number of pairwise disjoint f -monochromatic rectangles
covering f−1({0}) 11

χ1(f) minimal number of pairwise disjoint f -monochromatic rectangles
covering f−1({1}) 11

t0(f) minimal number of f -monochromatic rectangles covering f−1({0})
11

t1(f) minimal number of f -monochromatic rectangles covering f−1({1})
(log2 t1(f) is called non-deterministic communication complexity of
f) 11
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R(f) bounded-error probabilistic communication complexity of function
f — minimal cost of randomized protocol that assures that for any
input the output will be correct with probability at least 2

3 13
U(f) unbounded-error probabilistic communication complexity of func-

tion f — minimal cost of randomized protocol that assures that
for any input the output will be correct with probability greater
than 1

2 14
Discu(f) discrepancy (under uniform distribution) of function f — maxi-

mal difference of how often values 0 and 1 occur on any rectangle
(divided by |X × Y |, where X × Y is the domain of f) 15

Q(f) quantum communication complexity of function f — minimal cost
of quantum computer protocol evaluating f 16

Ck(f) multi-party communication complexity of function f — minimal
number of bits that k players have to transmit in order to correctly
compute the value of f (in number-on-the-forehead model) 17

Binary Functions

EQN equality function — maps {1, 2, . . . , N} × {1, 2, . . . , N} to {0, 1}
with EQN (x, y) = 1 iff x = y 6

LEN less-or-equal function — maps {1, 2, . . . , N}×{1, 2, . . . , N} to {0, 1}
with LEN (x, y) = 1 iff x ≤ y 9

DISJn disjointness function (“NAND”) — maps {0, 1}n×{0, 1}n to {0, 1}
with DISJn(x, y) = 1 iff for all i ≤ n we have xi = 0 or yi = 0 10

IPn inner product mod 2 — maps {0, 1}n × {0, 1}n to {0, 1} with
IPn(x, y) = 1 iff xi = yi = 1 for an odd number of indices i 15

DISJk
n generalized disjointness function — maps ({0, 1}n)k to {0, 1} with

DISJk
n(x1, . . . , xk) = 1 iff for all i ≤ n there exists ν ∈ {1, . . . , k}

with xν
i = 0 17

IPk
n generalized inner product mod 2 — maps ({0, 1}n)k to {0, 1} with

IPk
n(x1, . . . , xk) = 1 iff the number of indices i ≤ n for which x1

i =
x2

i = . . . = xk
i = 1 is odd 17

Growth of Functions6 and Other

O(f(n)) g(n) ≤ O(f(n)) iff there is C > 0 with g(n) ≤ Cf(n) for all n 6
Ω(f(n)) g(n) ≥ Ω(f(n)) iff there is ε > 0 with g(n) ≥ εf(n) for all n 10

dxe the smallest integer n ≥ x, for x ∈ R 5

6 The more traditional notation is g(n) = O(f(n)) and g(n) = Ω(f(n)); see also
footnote 3.
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[11] Martin Fürer, Faster integer multiplication. SIAM Journal on Computing 39 3
(2009), 979–1005.

[12] Bala Kalyanasundaram and Georg Schnitger, The probabilistic communication
complexity of set intersection. SIAM Journal on Discrete Mathematics 5 4
(1992), 545–557.

[13] Anatolii A. Karatsuba and Yuri P. Ofman, Multiplication of many-digital num-
bers by automatic computers. Proceedings of the USSR Academy of Sciences
145 (1962), 293–294.

[14] Mauricio Karchmer, Ran Raz, and Avi Wigderson, Super-logarithmic depth
lower bounds via direct sum in communication complexity. Computational Com-
plexity 5 (1995), 191–204.

[15] Mauricio Karchmer and Avi Wigderson, Monotone circuits for connectivity
require super-logarithmic depth. SIAM Journal on Discrete Mathematics 3 2
(1990), 255–265.

[16] Ilan Kremer, Quantum communication. Master’s thesis, Hebrew University,
Jerusalem, 1995.

[17] Eyal Kushilevitz and Noam Nisan, Communication complexity. Cambridge Uni-
versity Press, Cambridge, 1997.

[18] Troy Lee and Adi Shraibman, Disjointness is hard in the multiparty number-
on-the-forehead model. Computational Complexity 18 2 (2009), 309–336.

[19] Kurt Mehlhorn and Erik M. Schmidt, Las Vegas is better than determinism in
VLSI and distributive computing. In: Proceedings of the 14th ACM symposium
on the theory of computing, ACM Press, New York, 1982, 330–337.



Communication Complexity 21

[20] Ramamohan Paturi and Janos Simon, Probabilistic communication complexity.
Journal of Computer and System Sciences 33 1 (1986), 106–123.

[21] Ran Raz and Boris Spieker, On the “log-rank”-conjecture in communication
complexity. Combinatorica 15 4 (1995), 567–588.

[22] Alexander Razborov, Applications of matrix methods to the theory of lower
bounds in computational complexity. Combinatorica 10 1 (1990), 81–93.

[23] Alexander Razborov, The gap between the chromatic number of a graph and the
rank of its adjacency matrix is superlinear. Discrete Mathematics 108 (1992),
393–396.

[24] Alexander Razborov, On the distributional complexity of disjointness. Theoret-
ical Computer Science 106 (1992), 385–390.

[25] Alexander Razborov, Quantum communication complexity of symmetric predi-
cates. Izvestiya: Mathematics 67 1 (2003), 145–159.

[26] Arnold Schönhage and Volker Strassen, Schnelle Multiplikation großer Zahlen.
Computing 7 (1971), 281–292.

[27] Andrew Yao, Some complexity questions related to distributive computing. In:
Proceedings of the 11th ACM symposium on the theory of computing, ACM
Press, New York, 1979, 209–213.

[28] Andrew Yao, Quantum circuit complexity. In: Proceedings of the 34th IEEE
symposium on foundations of computer science, IEEE Computer Society, Los
Alamitos, 1993, 352–361.


