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We present some criteria for obtaining lower bounds for the formula size of Boolean func-
tions. In the monotone case we get the bound #?(°#" for the function “MINIMUM COVER”
using methods considerably simpler than all previously known. In the general case we are only
able to prove that the criteria yield an exponential lower bound when applied to almost all func-
tions. Some connections with graph complexity and communication complexity are also given.

Introduction

One of the main tasks of the lower bounds theory is to discover some com-
binatorial or algebraic properties of boolean functions which would imply high
complexity in interesting computational models. In the present paper we give a
series of such properties for formula size. We deal with three different versions
of this complexity measure, namely monotone formula size, formula size over a
complete basis and formula size within graph complexity (the last notion was con-
sidered in [19, 6]). The starting point for our methods is Theorem 1.3 implicitly
used in [8] and first proved in [7]. We give a new proof of this theorem based on an
interpretation of the formula size as existence of a winning strategy for one of the
players in a two-person game and an incomplete converse to it. This game, in turn,
is a modification of that considered in [14].

In the monotone case we prove the bound n?@°¢" for the monotone formula
size of the function “MINIMUM COVER” using one of our criteria. Note that
previously there were known two methods for obtaining superpolynomial lower
bounds for monotone formula size: the method of approximations [3, 4, 1, 10, 21, 2]
(actually suitable for arbitrary monotone circuits) and th: method of restrictions
[14]. In particular, for the function “MINIMUM COVER” it is possible to prove
a much stronger result using approximations (see [10, Prop. 5.1]). The method
presented here is essentially simpler than both previous methods and seems to be
interesting in its own right. , v

We design, as an intermediate step, a non-singular matrix over F, of size
m2Ueem wwhich possesses a covering by m°? monochromatic submatrices. Similar
matrices (with a bit worse estimate for the order) were used in [17] for constructing
a predicate such that both it and its complement have nondeterministic communica-
tion complexity O(z) whereas its deterministic communication complexity is
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Q(t%/log?*t). As a by-product we obtain the improvement of this gap to Q(¢2)
(it is achieved for the predicate “DISJOINTNESS OF O(log m)-SUBSETS OF AN
m-SET”); the quadratic gap matches the upper bound O(¢2) from [9]. Conversely,
we show that any example of a superlinear gap between DCC(4) and

max (NCC(4), NCC(14))

can be used for obtaining superpolynomial lower bounds for the monotone formula
size of a monotone Boolean function.

The quadratic gap between deterministic and non-deterministic communica-
tion complexities (but for a more complicated predicate) was also proved in [13].

One of the criteria considered in the present paper for formula size over a
complete basis and formula size in graph complexity is similar to that communicated
to me (without proof) by P. Pudlak (see [18]). We deduce below this criterion from
other ones (see Corollary 3.6). We also prove that this criterion is partially invertible
and hence yields exponential lower bounds when applied to “almost all” bipartite
graphs and “almost all” boolean functions. This can be extended to all other criteria
from which the criterion is deduced. But by now I have failed to prove a nontrivial
lower bound for an explicitly given boolean function (or a graph) based on these
criteria.

The paper is organized as follows. In Section 1 we define a two-person game
and prove the initial criterion (Theorem 1.3). In Section 2 we consider monotone
and communication complexities; in Section 3 — the complexity over the stand-
ard complete basis and the complexity of bipartite graphs. In Section 4 we present
two open questions. :

1. The game “FORMULA’’ and coverings of matrices

Throughout the paper B" denotes an n-dimensional boolean cube and F,[E™"]
the set of all boolean functions [the set of all monotone boolean functions respectively]
in n variables. For u€B" u' (1=i=n) means the ith bit in u. Let X{={u¢ B"|u'=¢}
for 1=i=n, e€{0,1}. Given a variable x;, set x}=x;; x?=("1x;). Given f€F,,
USB", g€{0, 1}, the statement VucU(f(u)=¢) will be written in the simplified
form f(U)=s. :

By a formula (over the standard basis) we mean a usual expression of the
propositional calculus constructed from variables x,, x,, ..., x, with connectives
V, &, 7; every formula &(x,, x,, ..., x,) computes in a natural way some func-
tion from F,. The size s(®) of a formula @ is the total number of occurrences of
variables in ¢. Using De Morgan’s laws we can transform every formula into a
formula with tight negations (i.e. such a formula in which negations occur only
in the form (7x;)) without enlarging its size. Given f¢F,, the formula size L(f)
is min {s(®)|® computes f}. A formula is monotone if it contains no negations
at all; the monotone formula size L,,,(f) of an feF™" is defined by analogy with
L(f). The depth of a formula is defined in the standard way; we denote the cor-
responding complexity measure by D( f) [D,,.,(f) for the monotone case]. It is clear
that L(f)=exp(O(D(f))), the opposite inequality -D(f)=0(log L(f))) is the
deep result due to Spira [20].

The game “FORMULA” is a game of two players Up (upper) and Lo (lower).
Up will try to prove an upper bound for the formula size of a Boolean function;
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Lo will try to interfere him. A position is a triplet (U, V, t) where U, VER",
UNV =0, t=1 is an integer. Up begins the game. He obtains a position (U, V, 1),
chooses one of the two sets U, V (say, U), somehow represents U and ¢ in the form

¢} U=U'UU", t=t+t" (t,t"=1)

and hands to Lo the two positions (U’ V,t’) and (U”,V,t”). If Up chooses
the set ¥V, the description of his actions is given in the analogous way.

Lo chooses one of the two positions offered to him and returns it to Up
(the remaining position is thrown out). Then Up moves as above (in the new posi-
tion) and so on. The game is over when Up receives a position of the form (U * V1)
Up wins if

2 Ji,e(l=i=n & e{0,1} & U*S X} & V*c X179
otherwise Lo wins.

Theorem 1.1. Up has a winning strategy in a position (U, V, t) iff there exists JEF,
such that

3 fU)=0, fr)y=1, L(H)=t.
Proof. By induction on t.

Base t=1 is clear because (2) just means that x{(U*)=0, xj(¥*)=1 holds for a
variable or its negation xj.

Inductive step. Assume that the theorem is proved for all values of ¢ less than a
given one. First assume that Up has a winning strategy in (U, V, t) and this strat-
egy requires Up to make the move (1). Then Up has winning strategies in both
positions (U’, V,t’), (U”,V,t”), hence, by the inductive hypothesis, there are
f’» f7€E, such that f(U)=0, f(V)=1, L(f)=t’ and f(un=0, f1(V)=1,
L(f”)=t". Then the function f=f" & f” [f'Vf” if Up chooses V] satisfies (3).

To prove this in the other direction, assume that fcF, satisfies (3) and @
is a formula with tight negations computing f such that s(®)=¢. Suppose that
@ is of the form & & ®” (the case when @ is a disjunction is treated with a dual
argument). Then, by the inductive hypothesis, Up wins if he makes the move ¢))
where U =(&)"*(0)NU; U"=(@")"1(O)NU; t'=5(P); t"=s(2"). |

Consider now a modification “FORMULA 17 of this game. The only dif-
ference from the game “FORMULA” is that Up is obliged to make only those
moves (1) for which U'NU"=0.

Lemma 1.2. Given a position, Up has a winning strategy in “FORMULA 1” iff he
has such a strategy in “FORMULA”.

Proof. Clearly, each winning strategy of Up in the game “FORMULA 1” wins
also in “FORMULA”. Conversely, given a winning strategy of Up in the game
“FORMULA” with move (1) required in a position (U, ¥, t), we obtain a move
permitted in the game “FORMULA 1” by replacing U” with N\ (cuU”). It
18 easy to see that this strategy of Up in the game “FORMULA 1” is winning. [}

Assume now that we are given two finite sets U and V (in general, of arbi-
trary nature). A rectangle (over U, V) is an arbitrary subset of the cartesian product
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UXV which has the form U, XV, where U,SU, ¥,SV. Every set # of rectangles
such that UZ=UXV will be called a covering (over U, V). A covering # is dis-
Joint if the intersection of any two rectangles from % is empty. A covering %, is
embedded in a covering &, if VR,€R;, IR,€R, (RLER,). Finally, set

) (%) = min {|#’||#" is a disjoint covering embedded in 2}.

Given U,VESB" such that UN V=ﬂ,v we can define a special cbvering
over U, V by letting #,,(U, V)= {R1, Roa, ..., Rons Ryz; Rus, ..., Ry,} where

(5) Ry=(UNXHXWNXEY (1=i=n, e€{0, 1))

R ..,(U, V) is a covering because for any ucU, v€¥ there exists / such that =,
We call this covering canonical. Given f€F,, set Rouu(f)=Rean(f72(0), f71(1)).
Now we are in position to formulate the initial criterion.

Theorem 1.3 [8, 7). Given U, VSB” such that UNV =0 and given fcF, such that
SU)=0,f(V)=1, the inequality L(f)Z0(R (U, V)) holds. In particular, L(f)=
éa(‘%can(f))' » ' -

Proof. Let f(U)=0, f(V)=1, L(f)=t. Then, by Theorem 1.1 and Lemma 1.2, Up
has a winning strategy in the position (U, V,t) in the game “FORMULA 17,
Fix one of these strategies S. Call the protocol of a game regular if Up was using
the strategy S throughout this game. It can be proved by an obvious induction on
t that the total number of regular protocols is just ¢. Given ucU and v€V, denote
by L(u,v) the strategy of the player Lo which, after a move (1) of Up, consists
in choosing the position (U, V,t’) if ucU’ and (U”,V,t”) if ucU”. If Up
has splitted the set ¥, Lo makes his decision by using » in an analogous manner.
Let P(u,v) be the (regular) protocol resulting from competition between the strat-
egies S and L(u, v). Finally, for any regular protocol P set R,={(u, v)|P(u, v)=P}.
Then #={R,|P ‘is a regular protocol} is a disjoint covering of UXV. Moreover,
the R.’s are rectangles because it is easy to see that R,=U*(P)XV*(P) where
(U*®), v*(p), 1) is the final position of a protocol P. Hence £ is a disjoint cov-
ering by rectangles over U, V of cardinality ¢. Finally, by (2) and the fact that § is
a winning strategy, # is embedded into Z..,(U, V). So, a(R..(U,V))=t. }

Remark 1.4. This theorem was proved in [8, 7] by using an analysis on so-called
II, -networks (these are a special form of common boolean formulas). It is also
possible to give a very short proof just by a straightforward induction on 7. We have
chosen the bit longer way above to clarify the connection with communication
complexity and especially with the paper [14].

Remark 1.5. Two rectangles (UN\Uy)X(V\V;) and U,XV¥, will be called com-
plementary. A covering # is self-complementary if it contains (UN\Uy)X(V\JV,)
whenever it contains U,XF,. For instance, any canonical covering is self-com-
plementary. On the other hand, we can assign to any self-complementary covering

R = {U XV, (UNUDX(PNKD, Up X ¥, (UNUD X (VNFD), ...
oo UXF, (ONUD X (N}

over U, V of cardinality 2» a mapping i: UUV—~B" such that i{(U)Ni(V)=0
and R, (i(U),i(V))=2 (in order to determine #, we set the v’th bit in i(x) to be



MATRIX METHODS IN COMPLEXITY THEORY 85

1iff ‘u€U, and the v'th bit in i(¥) to be 1 iff »¢V,). So, Theorem 1.3 would
imply good lower bounds for the formula size of a boolean function as soon as such
bounds were proved for the value o(#) where £ is any covering over sets U, V of
arbitrary nature.

We conclude this section with the following statement which is an incomplete
converse to the Theorem 1.3:

Theorem 1.6, Given U,VEB* such that UNV =@, there exists f€F, such that
f(U)=0, f(V)=1 and D(f)=0 ((log (R an(U, V)))z). In particular, D(f)=
=0((log 2(Z.an(1)))D). -

Proof. Fix a disjoint covering # embedded into #,,,(U, V) with |#|=(2 ., (U, ).
Assign to any Re€# the number i(R){l, ..., n} such that Fe€ {0, 1} (RER,,n))-
Assign to any pair (4, v) the number i(u, v)=i(R) where R is the rectangle con-
taining (u, v). Note that £ is a disjoint covering by rectangles which are mono-
chromatic with respect to the function i(w, v). Therefore, by the result of Aho,
Ullman, Yannakakis [9], there exists a communication (cooperative) protocol which
runs within O((log |#|)?) communications and, given # and v, outputs i(u,v).
Note also that, by definitions, # and v differ at i(u, v). Now the theorem follows
from [14]. }

Remark 1.7. Let us note that Theorems 1.3 and 1.6 together imply D(f)=
=0((log L(f))?) and this was proved without appealing to the construction of
Spira [20]. Apparently this shows the deep analogy between the simulation D(f)=
=0(log L(f)) and the result by Aho, Ullman and Yannakakis [9].

2. Monotone and communication complexities

In this section we put on U, VEB" a restriction stronger than UNV =6,
namely :

(6 VucUYoeV3i (=0 & v =1).

Note that (6) holds iff 3 fEE,’”""( f(U)=0 & f(¥)=1). Consider the following col-
lection of rectangles:

‘%mon(Us V) = {-ROIa R02a sees ROn}’

where R,; was defined in (5). By (6) this collection is a covering over U, V. We can de-
fine the game “MONOTONE FORMULA” by replacing (2) with Fi(l=i=n &
U*CX? & V*S X}). After this all arguments of the Section 1 can be word-by-word
transferred to the monotone case and we obtain the following theorem:

Theorem 2.1, Let U, VSB® be such that (6) holds. Then for any feEM™ such that
f(U)__'O’ f(V)= 1, Lman(f)ga('%mon(Us V))' I

The monotone analog of the Theorem 1.6 also holds.

This time, however, any covering (not necessarily self-complementary) can
be represented in the form £,,,(U, V) in the sense of Remark 1.5 (we shall see
below an example of such an encoding). So, we assume that U, V are finite sets of
an arbitrary nature. '
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By a matrix over U, V we mean a matrix over a field £ whose rows are in-
dexed by elements of the set U and columns by elements of the set V. Given a rec-
tangle R, we denote by. 4 the corresponding submatrix of a matrix 4. Ay is the
matrix over U, V obtained from A by replacing those a,, for which (u, )¢ R by 0.

Theorem 2.2. For any covering & over U, V and any non-zero matrix A over U, V
(over an arbztrary field), the inequality

rk(4)
«(R) = max rk(A4p)
holds.

Proof. Let &’ be a disjoint covering embedded in % such that |#'|=a(%). Then
A= 3 Ay therefore rk(A)= rk( 2’ AR)S rk(AR) On the other hand, for

Rea’
any ReA’ we can find some R1€92 such that RCR1 Hence rk(A r=rk(4p)=
=rk(4g,) and rk(4)=|%’|- -max rk(4g). 1

Corollary 2.3. Given a covering # and a matrix A such that for any RER all entries
of the matrix Ag coincide, we have o(R)=rk(4). |}

Assume now that U=V=[m]=* (the family of all subsets of the set
{1, 2, ..., m} whose cardinality is at most k) and let 4,, be the matrix over U, V'
deﬁned by

_{0, if uNo=@
wl, if uNv=240.

Lemma 2.4. A, is non-singular over any field.

Proof. It follows from a general result [15, Theorem 2] that det(4,;)=1 or —1
(another proof for the field F, can be found in [5, Lemma 4]). .

Set now R?={ulicu}X{v|icv} (1=i=m). The ‘collection of rectangIes
{R)I1=i=m} covers all zeros of A,,. Given &€B™, set R:={u|Vicu(é =1)}X
X {v|Viev(e'=0)}. It is clear that all elements of (4,,)r: equal 1.

Lemma 2.5. There exist &, &, ..., §€B™ where

(M o | = |2k4* In m]
1

such that | ) R}, covers all ones of A.
=1

Proof. Pick independently at random ¢,, &, ..., §€B™. Then

P[E(u, v)EUXV(uﬂv=ﬂ & (u, v)({tQRi']é'

= U1 V]~ maxP[(u, )¢ .L'J-R%J =

<m%*. max (1=2-1=Pl) = m*expl(— -27%) ='1. |}
un v— .
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Remark 2.6. As observed by one of the referees, a weaker (but sufficient for our
purposes) statement can be proved constructively using properties of the so-called
Paley graphs. Namely, if m is a prime and ¢, &, ..., £,€B™ are given by &/=1
iff i—j is a quadratic residue mod m then the conclusion of Lemma 2.5 holds for
I=m and k=Q(log m).

So, when k=0 (log m) we see (either by Lemma 2.5 or by Remark 2.6)
that there exists a covering # of cardinality m°® for which the assumptions of
the Corollary 2.3 hold and thus «(#)=m?¢™  This implies the corresponding
lower bound for the monotone formula size of a boolean function. Let us check
that this function actually is a subfunction of the function “MINIMUM COVER”.

MINIMUM COVER

Instance. A bipartite graph H=(P, Q, E) and an integer k.

Question. Does there exist some PSP such that |Bj=k and Vg€Q
3peR ((p, 9)€E)?

Fix P, O, k and assign a boolean variable x,, to any potential edge (p, 9).
Then “MINIMUM COVER” corresponds to the boolean function

® NOG) = Y, B Y,

Suppose now that a set of edges ECPXQ is fixed. Let {¢P?} be the boolean
vector corresponding to E. Given PSP, Q'SQ, consider the instance of the
function “MINIMUM COVER” obtained by replacing the graph H=(P, Q, E)
by the induced graph (P, ON\Q’, EN(P’XON\Q")). The corresponding boolean
function in variables {y,|p€P}, {z,lq¢ Q} (representing the sets P’ and Q’ respec-
tively) is monotone and can be written in the form

&) MCy(r,2)= V & V ((r,3e29)V z,).
'I%%:qu Q pep,

Comparing (8) and (9) we see that for any E,
(10) 2Lyon(MC) = Lyyon(MC).

Let now P={p;,ps, .... Pu}» O={t>qa> ..., q} where [ is given by (7).
Choose ¢, , &, ..., £, B™ in accordance with the Lemma 2.5 and set E= {(p;, 9,)|e}=1}.
Define two injective mappings iy, i from [m]=F to 2(PUQ) by

iy(x) = {pli¢x}U{q;| iex(p;, )¢ E};
iv(x) = {pliex}U {qjlviéx(pis q;)¢ E}.

After identifying #(PUQ) and B™*! we see that MCy(iy(x))=1 (we have to
take the set {pjicx} itself as B) and MCg(iy(x))=0 (for any RS {pli¢x}, by
our choice of E, there exists g€Q such that Vi€x(p;, g)€E and Vp€Py(p, Q4 E).
It is easy to see that 2,,,(iy(Im]=*), iy ((m]=%)) is just the covering

(R, RS, ...,RY, R, ..., R}

defined above. Hence (10), Theorem 2.1, Corollary 2.3 and Lwem a 2.4 impl the
following result:
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Theorem 2.7. Under the condition |Q|=2k4*In |P| the bound L,,,,(MC)= — (“;:l]

holds. In particular, when k=0 (log|P|), we obtain L,,,,,,,(MC)_Z_n"(’“") where
n=|P|.|0| is the total number of variables in the function MC. |}

We turn now to connections with communication complexity. The under-
lying concepts of deterministic and nondeterministic protocols were introduced by
A. Yao[23] and R. Lipton, R. Sedgewick [16] respectively. There are different
versions of these notions but all of them coincide up to a constant factor. From
the combinatorial point of view, the nondeterministic communication complexity
NCC(A) of a 0—1 matrix 4 is |logs] of the minimal possible number of rectangles
covering all ones of the matrix 4 [16]. The deterministic communication complexity
DCC(A) is harder to describe in combinatorial terms. It can be estimated from
below by log, of the minimal possible number of disjoint rectangles covering all
ones of the matrix A4 [23], the last number being estimated, in turn, by log, of the
rank of A over any field [17] Taking as A4 the matrix A, when k=0 (logm),
we obtain '

Theorem 2.8. The nondetermz’nistz’c communication complexity of both the predicate
“DISTJOINTNESS OF TWO O(log m)-SUBSETS OF A m-SET” and its comple-
ment is O(log m) whereas the deterministic communication complexity of the same
predicate is Q((log m)®). |

The first result of such kind was the gap Q((#/log ¢)?) shown in [17]. The
truly quadratic gap (but for a predicate more complicated than the “DISJOINT-
NESS OF TWO O(log m)-SUBSETS OF A m-SET”) was independently proved
in [13]. Let us also note that this gap never exceeds 2(¢2) [9], i.e. the bound of [13]
and Theorem 2.8 is tight. In the other direction, the result of the paper [9] implies
the following theorem restricting possibilities of the Corollary 2.3:

Theorem 2.9. Given a covering ® and a matrix A (not necessary 0—1) such that
for any RER all elements of Ag are equal, we have rk(A)=|%|00s12D, |

We conclude this section with an important observation made by one of
the referees. We have already seen that any 0—1 matrix A gives rise to a monotone
Boolean function f in.2¥CC(4) 4 2NCCA4) variables with the lower bound L,,,(f)=
=r1k(A4) for its monotone formula size.- The observation is that actually this lower
bound can be improved to L,,,(f)=2%0cc4), This follows from L,,,(f)=
Z=22WmonlM [22] and the Theorem 2.2 from [14].

So, any example of a superlinear gap between DCC(A4) and

max (NCC(4), NCC(T14))

can be used for obtaining superpolynomial lower bounds for the monotone formula
size of a monotone Boolean function.
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3. Complexity over the standard basis and complexity of bipartite graphs

A partial matrix over U, V is a usual matrix over U, ¥V with the exception
that some entries can be left empty, without placing into them any elements of
the underlying field. The rank of a partial matrix A is defined to be the minimal
rank of all possible full extensions of the partial matrix 4. -

Theorem 3.1. Let & be a covering over U, V represented in the form R=%R,\J%,,
let £ be a field and let a,, a,€£. Define the partial matrix A by

a;, if {u,¢ UR,
ayy, =142, lf <u’ U)Q U‘QZ
left empty otherwise.
Then a(R)=r1k(A4).

Proof. Let &’ be a disjoint covering embedded in & such that |#’'|=a(Z). Let

R =R Ry; RNAy=0 where &R, is embedded in &, and X; is embedded in

R,. Let J be the matrix over U, ¥V with all entries equal to 1. Then the matrix

a, > Jg+a, > Jg has rank at most |#'| and extends A; hence a(#)=
ReR)y Reay

=rk(4). 1

So, dividing somehow variables of a boolean function f into two groups we
obtain, by Theorems 1.3 and 3.1, a partial matrix A4 such that L(f)z=rk(4). It
turns out however that the rank of the same matrix also estimates the formula
size of the bipartite graph corresponding to f and the division under consideration.

To be more precise, fix two finite sets P, Q. A bipartite graph of the form
(P, O, E) will be identified with the characteristic function of the set ESPXQ.
Assign a boolean variable xp, to any RSP and a variable yg, to any Q,&Q.
Set Xp,=PXQ and Y, =PXQ,. We think of xp, as the graph (P, O, Xp) and
of yp, as the graph (P, Q,Y,). Then any boolean formula in variables {xp},
{vo,} computes in the natural way a graph. So, we can define the corresponding
formula size of a bipartite graph E denoted by L, (E) and its depth denoted by D, (E).
Because of T1xp,=Xp_p,s 1¥g,=Yg-0, W€ can consider only monotone formulas;
negations have no power in this computational model. Finally, note that it is pos-
sible to associate the bipartite graph H(f)=({0, 1}", {0, 1}", E( f)) with any Boolean
function f(xy, Xz, .- Xns V1, Va» ---» ¥a) (here E(f)={(e, 6)| f(s, 6)=1}). After this
we obtain L(f)=L,(E(f)) therefore the problem of proving lower bounds for
complexity of boolean functions is reduced to the same problem for bipartite graphs.
More information about graph complexity can be found in [19, 6, 11].

Assume now that U, VEPXQ, UNV=f. Define #,(U,V) to be the
covering over U, V consisting of the following two collections of rectangles:

11 {(UNXp)X(V N Xp)IP, & P},

(12) {(UN\Yo) X(V NYy)IQ, < Q).

For EESPXQ set R,(E)=2R,(E, PXQ\E). Repeating word by word
the arguments of Section 1 we obtain

Theorem 3.2. Let U,VEPXQ, UNV=@. Then for any graph ESPXQ such
that UNE=$, VEE we have L, (E)zo(R,(U,V)). §
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The statemernit analogous to the Theorem 1.6 is:

Theorem 3.3. Let U, VS PXQ, UNV=0. Then there exists a graph ESPXQ
such that UNE=@, VEE and D,,(E)SO((log «(R,,. (U, V))?).

. This theorem. can be proved just as Theorem 1.6. Below we will see another
proof of it grounded on entirely new ideas. [}

... . Given U, V such that U,VEPXQ, UNV=0, and two. elements a;, a,
from a field £, define the partlal matrix A(U,V, a,, a;) by

a if edges u and v have a common vertex in the set P
a,, = 14, if edges # and v have a common vertex in the set Q
left empty otherw1se

‘For ESPXQ set A(E, ay,a,)= A((PXQ\E),E ay, a).
‘ Applying Theorem 3.1 to the covering #=4%,,(U, V) and the division (11),
(12) of this covering into two parts we obtain

Theorem 3.4. Let U, VS PXQ, UNV =0, £ be an arbitrary field and ay, a,€£.
Then a(R, (U, V))=rk(A(U,V, a,, ay)). In particular,

o(R(E)) = 1k(A(E, ay, ag). |

From now on we consider only the case U=E, V=PXQO\E but all the
results below can be automatically extended for the general case.

. Denote by I(4,d) the intersection graph of the family S(4,d) formed by
all affine subspaces (of arbitrary dimension) of a d-dimensional affine space A%
over the field £. We say that a bipartite graph (P, Q, E) is realizable in I(£, d)
if there exists a mapping i: PUQ—S(#£,d) (not necessarily injective) such that
(7, Q€ E=i(p)Ni(g)#0. Denote by adim,(E) the affine dimension of E that is
the minimal d for which (P, Q, E). is realizable in I(4, d).

Theorem 3.5. Let ECPXQ; # be an arbitrary field, a,,a,c#4, a,#a,. Then
tk(A(E, a,, a;)) = adim, (E).

Proof. Let B be a usual matrix of rank d=rk(4(E, ay, a,)) extending A(E, a,, ay).
Let U=PXQN\E, V=E. Take the affine subspace in 4V generated by 0 and all
columns of B as 4%. Given v€V, denote by j(v) the corresponding column. Given
re PUQ, let i(r) be the affine subspace in 4% generated by vectors {j(v)jv is in-
cident to r}. We claim that i is the desirable reahzatlon
If v=(p, )€V then j(v) belongs to the intersection of z(p) and i(g)-
Assume u=(p, g)€U. Define the aﬂine functional =, : A—~£ as the com-

position 44 ~4Y £, £ where p, is the prOJectlon onto the ¥’s position. Then for

any veV adjacent to p we have =,( f(v))=a,,=a, and, similarly, if v is adjacent

to ¢, ,,( j@)=a;. Hence n,,(z(p {al} - (z(q)) {as). Th1s 1mp11es z(p)ﬂ
Ni@)=0. 1

‘ As an application we obtam the followmg result '
Corollary 3.6, For any EC PXQ and any field £, L,,(,E) Zadmn, (E) |
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For finite fields this result can be partially reversed as follows:
Theorem 3.7. For any finite field £, D, (E)=0((log adim, (E))?).

Proof. Let d=adim,(E) and i: PUQ—~S(£,d) be an affine representation of
the graph E. For r¢ PUQ write down i(r) in the form

i(r) = a(r)+Span (a,(r), ..., 4y (r))

where d(r) is the affine dimension of i(r) and Span (ay, ..., a,) is the linear space
generated by a, ..., a,. Then

(P, PEE =
i(p)Ni(g) =0«
(13) a(p)—a(q)¢ Span (01(17), ey ad(p)(p)’ ay(q), ---» ad(q)(q)) <
dim Span (al(p)s caes ad(p)(p)’ a,(q), ---» aa(q)@)) =
dim Span (‘11(17)’ cors Qg (D) a1(9), ---» ayq (@) a(p)—a (Q))

But the rank of a dXd matrix over a finite field can be computed by a
Boolean circuit of depth O((logd)?) (see [12]). Therefore, the fact (13) can be
tested by a Boolean circuit of depth O((log 4)?) and this circuit also works in the
graph complexity framework. J

Theorems 3.4, 3.5 and 3.7 together provide a new proof of the Theorem 3.3.
We conclude this section by discussing connections with the paper [18].
Let BPP,(E) be the size of a minimal branching program (measured by the number
of non-sink nodes) computing the graph E (the node questions to an input pair
(p, q) are of the forms “p€B?” or “q€Q,?” where F, and Q, are arbitrary subsets

of Pand Q). Then, just as in the Boolean case, :
(14 BPF,(E) = L, (E).

The projective dimension pdim, (E) is defined like adim,(E) with the difference
that i(p) and i(g) this time should be linear subspaces and (p, )¢ E«i(p)Ni(g)# {0}.

P. Pudlak and V. Rédl showed that adim, (E)=(pdim, (E))? for every field
4 and adim, (E)=pdim, (E)— 1 if #£ is infinite. By methods entirely different from
those of the present paper they proved

(15) p dim, (E) = BPE(E)+2

(actually P. Pudlak and V. Rédl stated this only for Boolean branching programs
but their arguments can be straightforwardly extended for the graph complexity
framework). So, the results from [18] imply L, (E)=(adim, (E))? for every field
and L,(E)=adim,(E)—1 if £ is infinite which is only a little worse than our
bound L, (E)=adim,(E). An interesting corollary of Theorem 3.7 and results by
P. Pudlak and V. Roédl is the following theorem.

Theorem 3.8. For any finite field £,
p dim(E) = adim,(E)°C4=«®
Proof. From (15), (14), L, (E)=exp (0(D,(E)) and Theorem 3.7. J
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I do not know any purely combinatorial proof of the Theorem 3.8. Note
also that, at least in this form, it is not true for infinite fields. Say, if E is the com-
plement of an N to N matching then, as proved by L. Lovasz, pdim, (E)=Q(log N)
(for any field £) but it is easy to see that adim, (E)=2 if £ is infinite.

4. Open questions

We do not present here obvious questions an answer to which would imply
superpolynomial lower bounds for the formula size of explicitly given Boolean
functions. Among others are the following two.

Question 4.1, What is the best lower bound for formula size over the standard
basis with negation which could be obtained using Theorem 2.2? More precisely, let

rk(A4) ]

g2 (40

B(n) = max max[
: |R|=2n A

where Igllayg( ranges over all self-complementary coverings of cardinality 2» and
=2an
max ranges over all non-zero matrices of the corresponding size over arbitrary

fields. What is the magnitude of growth of the function B(n)? In particular, does
B(n) grow superpolynomially?* ’

Question 4.2. Can D, (E) be nontrivially bounded from above in terms of N and
adim, (E) for an infinite field £? In particular, is it true that D,,(E) is polynomial in
loglog N and log adim, (E)?
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