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We present some crjterja Cor obtajnjng 1ower bounds Cor the Cormula sjze îÑ Boolean Cunc.
tjons. In the monotone case we get the bound ng(IO8n) Cor the Cunctjon '.MINIMUM COVER';
usjng methods consjderab1y sjmpler than all prevjously known. In the general case we are only
àÛå to prove that the crjterja yield an exponentlallower bound when appljed to a1most all Cunc-
tjons. Some connectjons wjth graph complexjty and communjcatjon complexjty are also gjven.

Introduction

One of the main tasks of the lower bounds theory is to discover some ñîò-
binatorial or algebraic properties of boolean functions which would imply higIi
complexity in interesting computational models. In the present pape:r we give à
series of such properties for formula size. We deal with three different versions
of this complexity measure, namely monotone formula size, formula size over à
complete basis and formula size within graph complexity (thelast notion was ñîî-
sidered in [19, 6]). ÒÜå starting point for our methods is Theorem 1.3 implicitly
used in [8] and first proved in [7]. We give à new proof of this theorem based on an
interpretation of the formul~ size as existence of à winning strategy for one of the
players in à two-person game and àî incomplete converse to it. This game, in tum,
is à modification of that considered in [14].

In the monotone case we prove the bound nQ(logn) for the monotone formula
size of the function "MINIMUM COVER" using one of our criteria. Note that
previous1y there were known two methods for obtaining superpolynomial lower
bounds for monotone formu1a size: the method of approximations [3, 4, 1, 10, 21, 2]
(actual1y suitable for arbitrary monotone circuits) and th~ method of restrictions
[14]. In particular, for the function "MINIMUM COVER" it is possible to proye
à much stronger result using approximations (see [10, Prop,5.1]). ÒÜå method
presented here is essential1y simpler than both previous methods and seems to Üå
interesting in its own right.

We design, as àî intermediate step, à non-singu1ar matrix over F2 of size
mQ(logm) which possesses à covering Üó òO(l) monochromatic submatrices. Simi1ar
matrices (with à bit worse estimate for the order) were used in [17] for constructing
à predicate such that both it and its comp1ement Üàóå nondeterministic communica-
tion comp1exity O(t) whereas its deterministic communication comp1exity is
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O(t2/1og2 t). As à by-product we obtain the improvement of this gap to O(t2)
(it is achieved for the predicate "DISJOINTNESS OF O(log m)-SUBSETS OF AN
m-SET..); the quadratic gap matches the upper bound O(t2) from [9]. ConVersely.
we show that àïó åõàòðlå of à superZinear gap between ïññ(À) and

òàõ (NCC(A), NCC(lA»)

ñàï Üå used for obtaining superpoZynomiaZ lower bounds for the monotone formUla
size of à mOnOtone Âîîlåàï funCtion.

ÒÜå quadratic gap between deterministic and non-deterministic communica-
tion complexities (but for à mOre complicated predicate) was also proved in [13].

Oïå of the criteria considered in the present paper for formula size over à
complete basis and formUla size in graph complexity is similar to that communicated
to òå (without proof) Üó Ð. Pudlak (see [18]). We deduce below this criterion from
other ones (see Corol1ary 3.6). We alsoprove that this criterion is partial1y inVertible
and Üåïñå yields exponential lower bounds when applied to "almost al1.. bipartite
graphs and "almost al1.' Üîîlåàï funCtionS. This ñàï Üå extended to al1 other criteria
from which the criterion is deduced. But Üó now I üàóå iailed to prove à nontrivial
lower bound for àï explicitly given Üîîlåàï function (or à graph) based îï these
criteria.

ÒÜå paper is organized as fol1ows. In Section 1 we define à two-person game
and prove the initial criterion (Theorem 1.3). In Section 2 we conSider mOnOtone
and communication coinplexities; in Section 3 -the complexity over the stand-
ard complete basis and the complexity of bipartite graphs. In Section 4 we present
two îðåï questions.

1. ÒÜå game "FORMULA " and coverings of matrices

Throughout the paper âï denotes àï n-dimenSional Üîîlåàï cube and Fn[Fnmon]
the set of al1 Üîîlåàï funCtionS [ the set of al1 mOnOtone Üîîlåàï funCtionS respectively]
in ï variables. For èÅâï è; (1 ::§i::§n) meanS the ith bit in è. Let Xi.= {uEBHlui=8}
for l::§i::§n. 8Å{0, 1}. Given à variable Xi' set X}=Xi; xf=(lxJ. Given fEFn,
è~B", 8Å{0, 1}, the statement VuEU(f(u)=8) wil1 Üå written iQ the simplified
form f(U)=8.

Âó à formUla (over the standard basis) we òåàï à usual expression of the
propositional calculus conStructed from variables Õl, Õ2, ..., Õï with connectives
V. &, l; åóåòÓ formUla Ô(Õl'Õ2' ...,Õï) computes in à natural way some func.
tion from Fn .ÒÜå size s( Ô) of à formula ô is the total number of occurrenCes of
variables in Ô. Using De Morgan.s laws we ñàï tranSform every formUla into à
formuZa with tight negations (i.e. such à formUla in which negations occur only
in the form (lXJ) without enlarging its size. Given fEFn, the formuZa size L(f)
is min {s(Ô)IÔ computes Ë. À formUla is monotone if it contains ïî negations
at al1; the monotone formuZa size Lmon(f) of àï fEFnmon is defined Üó analogy with
L(f). ÒÜå depth of à formUla is defined in the standard way; we denOte the cor-
responding complexity measure Üó ï(!) [ïòîï(!) for the mOnotone case]. It is clear
that L(f)::§exp(O(D(f)), the opposite inequality D(f)~O(log L(f)) is the
deep result due to Spira [20].

ÒÜå game "FORMULA" is à game oftwo players Up (upper) and Lo (lower),
Up will try to prove àï upper bound for the formUla size of à Âîî1åàï function;
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Lo wi11 try to interfere him. À posi(ion is à trip1et (è, V, () where è, V~B",
ènV=0, (~1 is àî integer. Up begins the game. Íå obtains à position (è, V, (),
chooses îîå of the two sets è, v (say, U), somehow represents è and ( in the form

(1) è = è'U è", ( = (' +(í ((', (" ~ 1)

and hands to Lo the two positions (è', V, (') and (èí, V, (í). If Up chooses
the set V, the description of his actions is given in the ana1ogous way.

Lo chooses îîå of the two positions offered to him and returns it to Up
(the remaining position is thrown out). Then Up moves as àÜîóå (in the new posi-
tion) and so îî. The game is over when Up receives à position ofthe form (È*, V*, 1).
Up wins if

(2) 3i,8(1~i~n & 8Å{0,1} & è*~X; & V*~XI-')

otherwise Lo wins.

Theorem 1.1. Up has à winning s(ra(egy in à posi(ion (è, V, () iff (here exis(s fEF"

such (ha(
(3) f(è) = Î, f(V) = 1, L(f) ~ (.

Proof. Âó induction îî (.

Base (= 1 is c1ear because (2) just means that xf(è*)=o, x,'(V*)= 1 holds for à
variab1e or its negation õ: .

Inductive step. Assume that the theorem is proved for à11 va1ues of ( 1ess than à
given îîå. First assume that Up has à winning strategy in (è, V, () and this strat-
egy requires Up to make the òîóå (1). Then Up has winning strategies in both
positions (è', V, ('), (èí, V, ("), hence, Üó the inductive hypothesis, there are
f', f"EFII such that f'(è')=o, f'(V)= 1, L(f')~(' and f"(è")=o, f"(V)= 1,
L(f")~(H. ÒÜåî the function f=f' & f" [f'Vf" if Up chooses V] satisfies (3).

Òî prove this in the other direction, assume that fEFII satisfies (3) and ô
is à formu1a with tight negations computing f such that s(Ô)~(. Suppose that
ô is of the form ô' & ô" (the case when ô is à disjunction is treated with à dua1
argument). ÒÜåî, Üó the inductive hypothesis, Up wins if he makes the òîóå (1)

where è'=(Ô')-l(0)nè; èH=(ô")-l(0)nè; ('=s(Ô'); tH=s(ô"). I

Consider now à modification "FORMèLA 1" of this game. ÒÜå îî1ó dif-
ference from the game "FORMULA " is that Up is ob1iged to make îî1ó those

moves (1) for which è'nèH=0.

Lemma 1.2. Given à position, Up has à winning stra(egy in "FORMèLA 1" iff he
has such à s(ra(egy in " FORMèLA".

Proof. C1ear1y, åàñÜ winning strategy of Up in the game "FORMULA 1" wins
a1so in "FORMULA". Converse1y, given à winning strategy of Up in the game
.'FORMULA" with òîóå (1) required in à position (è, V, (), we obtain à òîóå
permitted in the game "FORMULA 1 " Üó rep1acing è" with ~ è' ( ~ è"). It

lS easy to see that this strategy ofUp in the game "FORMULA 1" is winning. I

Assume now that we are given two finite sets è and V (in genera1, of arbi-
trary nature). À rec(angle (over è, V) is àï arbitrary subset ofthe cartesian product
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UxV which has the form èîõÓî where èo~è, Vo~V. Every set 9l ofrectangles
such that U ffI- = èõ V will Üå called à coz;ering ( over è, V). À covering 9l is dis-
joint if the intersection of àïó two rectangles from 9l is empty. À covering 9l1 is
embedded in à covering 9l2 if v R1E9l1 3R2E9l2 (Rl~RJ. Finally, set

(4) (X(9l) = min {19l'IIffl-i is à difjoint covering embedded in 9l}.

Given è, V~Bn such that Un V =0, we can define à special covering
over è, V Üó letting 9lcan(U, V)= {ROl' RO2, ..., Ron, R11, R12, ..., R1n} where

(5) R.i = (unxi.)x(vnxf-.) (! ~ i ~ ï, 6Å{O, 1}).

ffl-can(U' v) is à covering because for àïó èÅ è, vE v there exists i such that ul;;CVI.
We call this coveri~g can.o~ical. Given fEFn, ~et. .9lcan~f)~9lcan(f-1(0),f-1(1».

Now we are m posltlon to formulate the Inltlal cntenon.

Theorem 1.3 [8,7]. Giren è, V~Bn such that unV=0 andgiven fEFn such that
f(U)=O,f(V)= I, the inequality L(f)~(X(9lcan(U, V» holds. Inparticular, L(f)~
~ (X(ffl-can(f).

Proof. Let f(U)=O,f(V)=I, L(n=t. Then, Üó Theorem 1.1 and Lemma 1.2, Up
has à winning strategy in the position (è, V, t) in the game "FORMULA I".
Fix îïå of these strategies S. Call the protocol of à game regular if Up was using
the strategy s throughout this game. It can Üå proved Üó àï obvious induction îï
t that the total number of regular protocols is just t. Given èÅ è and vE V, denote
Üó L(u, v) the strategy of the player Lo which, after à òîóå (I) of Up, consists
in choosing the position (È', V, t') if èÅÈ' and (è", V, t") if èÅÈ". If Up
has splitted the set V, Lo makes his decision Üó using v in an analogous manner.
Let Ð(è, v) Üå the (regular) protocol resulting from competition between the strat-
egies s and L(u, v). Finally, for àïó regular protocol Ð set Rp= {(è, v)IP(u, v)=P}.
Then 9l= {RpIP is à regular protocol} is à disjoint covering of ÈÕ V. Moreover,
the Rp's are rectangles because it is easy to see that Rp=U*(P)XV*(P) where
(È*(Ð), V*(P), 1) is the final position of à protocol Ð. Íåïñå 9l is à disjoint ñîó.
ering Üó rectangles over è, v of cardinality t. Finally, Üó (2) and the fact that s is
à winning strategy, 9l is embedded into 9lcan(U, V). So, (X(9lcan(U, V»~t. .

Remark 1.4. This theorem was proved in [8, 7] Üó using an analysis îï so-called
Ï! -networks (these are à special form of common boolean formulas). It is also
possible to give à very short proof just Üó à straightforward induction îï t. We Üàóå
chosen the bit longer way àÜîóå to clarify the connection with communication
complexity and especially with the paper [14].

Remark 1.5. Two rectang]es (~Uo)X{V"Vo) and ÈîõÓî will Üå called ñoò-
plementary. À covering 9l is se/f-complementary if it contains (U"Uo)X(V,,~)
whenever it contains ÈoX~. For instance, àïó canonical covering i$ self-com-
plementary. On the other hand, we ñàï assignto àïó self-complementary covering

9l = {U1X~, (~uJX(V,,~), è2X~, (~U2)X(V,,~), ...

..., UnxJi:;, {U"un)X(V"Ji:;)}

over è, v of cardina]ity 2ï à rf1apping [: UUV-Bn such that [(u)ni(V)=0
and 9lcan(i(U), i(V»=9l (in order to determine i, we set the v'th bit in i(u) to Üå



ÌÀÒÞÕ METHODS JN COMPLEXITY THEORY 85

1 iff èÅèó and the v'th bit in i(v) to Üå 1 iff vEtV ó). So. Theorem 1.Ç would
imply good lower bounds for the formula size of à boolean function as soon as such
bounds were proved for the óà1èå (X(/Jf,) where /Jf, is any covering over sets è. Vof
arbitrary nature.

We conclude this section with the fol1owing statement which is an incomplete
converse to the Theorem 1.3:

Theorem 1.6. Ghen è. V~B" such that un V =0. there exists fEFn such that
f(U)=O. f(V)=l and D(f)::§0((log(X(/Jf,ca/I(U.V»)2). [ï particular. D(f)::§
::§0((log (X(f!Aca/I(f))2). .

Proof. Fix à disjoint covering /Jf, embedded into /Jf,ca/I(U. V) with 1/Jf,1 =(X(/Jf,ca/I(U. V»).
Assign to any RE/Jf, the number i(R)E {1. ï} such that 3åÅ {Î. 1} (R~R..i(RJ.
Assign to any pair (è. v) the number i(u, v)=i(R) where R is the rectangle con-
taining (è, v). Note that /Jf, is à disjoint covering Üó rectangles which are mono-
chromatic with respect to the function i(u. v). Therefore. Üó the result of ÀÜî.
Ul1man. Yannakakis [9]. there exists à communication (cooperative) protocol which
runs within O((log 1/Jf,1)2) communications and, given è and v. outputs i(u. v).
Note also that. Üó definitions. è and v differ at i(u. v). Now the theorem fol1ows
from [14]. I

Remark1.7. Let us note that Theorems1.Ç and 1.6 together imply D(f)~
::§0((log L(f)2) and this was proved without appealing to the construction of
Spira [20]. Apparently this shows the deep analogy between the simulation D(f)~
::§0(log L(f)) and the result Üó ÀÜî, Ul1man and Yannakakis [9].

2. Monotone and communication complexities

In this section we put on è. V~B/I à restriction stronger than unv=0.
namely

(6) ÓèÅ uvvEV3i (è' = 0 & VI = 1).

Note that (6) holds iff 3fEF/Imo/I(f(U)=0 & f(V)= 1). Consider the fol1owing ñol-
lection of rectangles :

/Jf,mo/I(U' V) = {Rol. RO2. ..., Ro/1}'

where ROi was defined in (5). Âó (6) this col1ection is à covering over è, V. We can de-
fine the game I'MONOTONE FORMULA'. Üó replacing (2) with 3i(1~i~n &
U*~XlO & V*~Xll). After this al1 arguments of the Section 1 can Üå word-by-word
transferred to the monotone case and we obtain the fol1owing theorem :

Theorem 2.1. Let è. V~B/I Üå such that (6) holds. Then for àïó fEF/Imo/I such that
f(U)=O. f(V)= 1. Lmo/I(f)~(X(/Jf,mo/I(U' V»). I

ÒÜå monotone analog of the Theorem 1.6 also holds.
This time. however. àïó covering (not öecessari1y self-complementary) can

Üå represented in the form /Jf,mo/I(U. V) in the sense of Remark 1.5 (we shal1 see
belowan åõàòð1å of such an encoding), So. we assume that è. V are finite sets of
an arbitrary nature.
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Âó à matrix over è, v we òåàî à matrix over à fieldl whose rowS are io-
dexed Üó elemeots of the set è aod columos Üó elemeots of the set V. Giveo à rec-
taogle R, we deoote Üó, Àÿ the correspoodiog submatrix of à matrix À. AR is the
matrix over è, v obtained from À Üó replaciog those àèè for which (è, v)E!:R Üó Î.

Theorem 1.2: For àïó covering r!#, over è, v and àïó non-zero matrix À over V, v( over àï arbitrary fteZd) , the inequaZity , ,

à r!#, ;;;:: rk(A)
( ) -òàõ rk(AR)

RE~
hoZds.

Proof. Let r!#,' Üå à disjoiot coveriog embedded io r!#, such that 19l'1 =a(r!#,). ÒÜåî
À= z Àÿ therefore rk(A)=rk ( z Àÿ);;§ z rk(AR). 00 the other haod, for

ÿE~' ÿE~' ÿE~'
àoó REr!#,' we ñàï find some R1Er!#, such that R~R1. Íåîñå rk(AR)=rk(AR)~

;;§rk(AR) aod rk(A);;§Ir!#,'I. òàõ rk(AR). I
ÿ1E~

CoroIlary 2.3. Gil:en à covering r!#, and à matrix À such that !or àïó REr!#, aZl entries
î! the matrix Àÿ coincide, we have a(9l)~rk(A). I

Assume oow that U=V=[m]~k (the family of all subsets of the set
{1,2, ..., ò} whose cardioality is at most k) aod let Amk Üå the matrix over è, v
defioed Üó

à = {0, if unv ~ .0
èè I, if unv=.0.

Lemma 2.4. Amk is non-singuZar ol:er àïó fieZd.

ProoL It fol1owsfrom à geoeral result [15, Theorem 2] that det (Amk)= 1 or -1
(aoother proof for the field F2 ñàï Üå fouod in [5, Lemma 4]). I

Set oow R?={uliEu}X{vliEv} (l;;§i;;§m). ÒÜå col1ectioo of rectaogres
{R?11~i~m} covers aIl zeros of Amk. Giveo 8ÅÂò, set R~={ul\iiEu(8i=1)}X
X{vt\i iEv(8.;;§0)}. It is clear that al1 e1emeots of (Amk)R~ equall.

èòòà 2.5. There exist 81' 82' ..., 8/ÅÂò where

(7) 1 = L2k4k 10 ò]

I
such that u R~, covers aZl ones î! Amk .

1=1

Proof. Pick iodepeodeotly at raodom 81' 82' ..., 8/ÅÂò. ÒÜåî

1
Ð [3(è, v)E uXV(unv = .0 & (è, v)E!: u R~,] ~

1=1

1
~ I UI.lvl. òàõ Ð [(è, v)E!: UR~.] <

unv=0 '=1

Ñ, < m2k .òàõ (1-2-lul-Ivl)' ;;§ jn2k åõð! (- .2-2k) ~ I. I
unv=0
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Remark 2.6. As observed Üó îïå of the referees, à weaker (but sufficient for our
purposes) statement ñàï Üå proved conStructively using properties of the so-ca11ed
Ðàlåó graphs. Namely, if ò is à prime and ål' å2' ..., åòÅÂò are given Üó å{=1
iff i -j is à quadratic residue mod ò then the conClusion of Lemma 2.5 holds for
[=ò and k=.Q(logm).

So, when k=e(log ò) we see (either Üó Lemma 2.5 or Üó Remark 2.6)
that there exists à covering .1?#- of cardinality òO(l) for which the assumptionS of
the Coro11ary 2.3 hold and thus (X(.1?#-)~mfl(logm). This implies the corresponding
lower bound for the monotone formula size of à Üoolåàï function. Let us check
that this funCtion actua11y is à subfunCtion of the function "MINIMUM COVER".

MINIMUM COVER
Instance. À bipartite graph í =(Ð, Q, Å) and àï integer k.
Question. Does there exist some Po~P such that IPol=k and VqEQ

3ðÅÐ" ((Ð, q)EE)?
Fix Ð, Q, k and assign à Üoolåàï variable Xpq to àïó potential edge (Ð, q).

Then "MINIMUM COVER " corresponds to the Üoolåàï funCtion

(8) ÌÑ(õ) = v & v Xpq.
Po~P qEQ ðÅÐo
IPol=k

Suppose now that à set of edges E~ ÐÕ Q is fixed. Let {epq} Üå the Üoolåàï
vector corresponding to Å. Given P'~P, Q'~Q, conSider the inStance of the
funCtion "MINIMUM COVER" obtained Üó replacing the graph Í=(Ð, Q, Å)
Üó the induced graph (Ð', Q"Q', En(P'xQ"Q'»). The corresponding Üoolåàï
funCtion in variables {YplpEP}, {zqlqE Q} (representing the sets ð' and Q' respec-
tively) is monotoneand ñàï Üå written in the form

(9) MC~(y, z) = v & v ((Yp&epq)V Zq).
Po~P qEQ ðÅÐo
IPol=k

Comparing (8) and (9) we see that for àïó Å,

(10) 2Lmon(MC) ~ Lmon(MCE).

Let now Ð={Ðl'Ð2' ...,Ðò}, Q={ql' q2' ..., q,} where 1 is given Üó (7).
Choosee1, å2' ..., elEBm in accordanCewiththe Lemma2.5 and setE= {(Pi' qj)le~= 1}.
Define two injective mappings iu, iv from [m]~k to f!JI(PU Q) Üó

iu(x) = {p;iiEtx}U {qfi 3 iEx(Pi' qflEtE};

iv(x) = {p;iiEx} U {qfi V iEx(Pi' qflEt Å}.

After identifying f!JI(PU Q) and âò+! we see that MC~(iv(x»)= 1 (we have to
take the set {p;iiEx} itself as ÐO) and MCE(iu(x»)=O (for àïó Po~ {PJi~x}, Üó
our choice ofE, there exists qEQ such that ViEx(Pi' q)EE and VpEPo(p, q)EtE).
It is easy to see that .I?#-mon(iu([m]~k), iv([m]~k») is just the covering

{R~, Rg, ..., R::., R~l' ..., R~,}

defined above. Íåïñå (10), Theorem 2.1, Coro11ary 2.3 and LUIem à 2.4 impl the
fo11owing result:
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Theorem 2.7. Under the condition IQI ~2k4k 1ï IPI the bound Lmon(MC)~ ~ (I~I)

holds. In particular, when k=fa(log IP\), we obtain Lmon(MC)~nD(logn) where
n=IPI.IQI is the total number o!variables in the !unction ÌÑ. I

We turn now to connections with communication comp1exity. The under-
1ying concepts of deterministic and nondeterministic protoco1s were introduced Üó
À. Óào [23] and R. Lipton, R. Sedgewick [16] respective1y. There are different
versions of these notions but à11 of them coincide èð to à constant factor. From
the combinatoria1 point of view, the nondeterministic communication compZexity
NCC(A) of à 0-1 matrix À is L1og2] of the minima1 possib1e number of rectang1es
covering àÏ ones of the matrix À [16]. The deterministic communication comp1exity
ïññ(À) is harder to describe in combinatoria1 terms. It ñàï Üå estimated from
be1ow Üó log2 of the minima1 possib1e number of disjoint rectang1es covering àÏ
ones of the matrix À [23], the 1ast number being estimated, in turn, Üó log2 of the
rank of À over àïó öe1d [17]. Taking as À the matrix Amk when k=fa(log ò),
we obtain

Theorem 2.8. The nondeterministic communication complexity î! both the predicate
"DISJOINTNESS OF TWO O(log m)-SUBSETS OF À m-SET" and its comple-
ment is O(log ò) whereas the deterministic communication complexity î! the same
predicate is .Q((log ò)2). I

The first resu1t ofsuch kind was the gap .Q((t/1og t)2) shown in [17]. The
èè1ó quadratic gap (but for à predicate more complicated than the "DISJOINT -
NESS OF TWO O(log m)-SUBSETS OF À m-SET") was independent1y proved
in [13]. Let us a1so note that this gap never exceeds .Q(t2) [9], i.e. the bound of [lÇ]
and Theorem 2.8 is tight. In the other direction, the resu1t of the paper [9] imp1ies
the fol1owing theorem restricting possibi1ities of the Corol1ary 2.Ç :

Theorem 2.9. Gh.en à covering 9l' and à matrix À (not necessary 0-1) such that
!or àïó RE9l' aZ/ elements î! Àÿ are equal, we have rk(A)~I9l'IO(logllRl). I

We conc1ude this section with àï important observation made Üó îïå of
the referees. We have a1ready seen that àïó 0-1 matrix À gives rise to à monotone
Âoo1åàï function!in2NCC(A)+2NCC(lA) variab1es with the lower bound Lmon(f)~
~rk(A) for its monotone formu1a size.The observation is that actual1y this lower
bound ñàï Üå improved to Lmon(f)~2D(DCC(A». This fol1ows from Lmon(f)~
~2D(Dmon(m [22} and the Theorem 2.2 from [14].

So, àïó åõàòð1å of à superlinear gap between ïññ(À) and

òàõ (NCC(A), NCC(lA»)

ñàï Üå used for obtaining superpolynomial1ower bounds for the monotone formu1a
size of à monotone Âoo1åàï function.
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3. Complexity over the standard basis and complexity of bipartite graphs

À partial matrix over è, v is à usual matrix over è, v with the exception
that some entries ñàï Üå left empty, without placing into them àïó elements of
the underlying field. The rank of à partial matrix À is defined to Üå the minimal
rank of àll possible full extensions of the partial matrix À.

Theorem 3.1. Let.l?#- Üå à covering over è, v represented in theform .I?#-=.1?#-lU.1?#-2'
let If Üå à field and let à1, a2EIf .Define the partial matrix À Üó

lal' if <è, v)~ U.1?#-l
àè" = à2' if <è, v)~ U.1?#-2

le!t empty otherwise.
Then (X(.1?#-)~rk(A).

Proof. Let .1?#-' Üå à disjoint covering embedded in f!I- such that 1f!1-'l =(X(f!I-). Let
.I?#-'=.1?#-~Uf!I-;; .I?#-~n.1?#-;=0 where .1?#-~ is embedded in .1?#-2 and f!I-; is embedded in
.1?#-2. Let J Üå the matrix over è, v with àll entries equal to I. Then the matrix
à1 L: JR+a2 L: JR has rank at most 1.1?#-'1 and extends À; hence (X(f!I-)~

REfN~ REfN~
~rk(A). I

So, dividing somehow variables of à Üîîlåàï function f into two groups we
obtain, Üó Theorems 1.3 and 3.1, à partial matrix À such that L(J)~rk(A). It
turns out however that the rank of the same matrix also estimates the formula
size of the bipartite graph corresponding to f and the division under consideration.

Òî Üå more precise, fix two finite sets Ð, Q. À bipartite graph of the form
(Ð, Q, Å) wil1 Üå identified with the characteristic function of the set E~PXQ.
Assign à Üîîlåàï variable ÕÐO to àïó Po~P and à variable YQo to àïó Qo~Q.
Set Õð =PoXQ and YQo=PXQo. We think of ÕÐO as the graph (P,Q, õðo) and
of YQo "as the graph (Ð, Q, YQo). Then àïó Üîîlåàï formula in variables {õðo}.
{YQo} computes in the natural way à graph. So, we ñàï define the corresponding

!ormula size î! à bipartite graph Å denoted Üó Lgr(E) and its depth denotedby Drg{E).
Because of lxpo=xp-po' lYQo=YQ-Qo we ñàï consider îïló monotone formulas;
negations have ïî power in this computational model. Final1y, note that it is pos-
sible to associate the bipartite graph Í(Ë=( {Î, l}ï, {0, I}ï, Å(Ë) with àïó Âîîlåàï
function f(Xl'X2, ...'Õï'Ól'Ó2' ...,Óï) (here E(J)={<8,{,)I!(8,ä)=1}).Afterthis
we obta~n L(J)~Lgr(E(J) th~refore the problemof proVing lo",:,er b.ounds for
complexrty of Üîîlåàï functlons IS reduced to the same problem for blpartlte graphs.
More information about graph complexity ñàï Üå fourid in [19, 6, 11].

Assume now that è, V~PXQ, unv=0. Define .I?#-gr(U, v) to Üå the
covering over è, v consisting of the fol1owing two col1ections of rectangles :

(11) {(U",Xpo)X(V nxp.)IPo ~ Ð},

(12) {(È"-.YQo)X(vnyQo)IQo ~ Q}.

For E~PXQ set .I?#-lIr(E)=.1?#-gr(E, PxQ",E). Repeating word Üó word
the arguments of Section 1 we obtain

Theorem 3.2. Let è, V~PX Q, un v =0. Then for àïó graph E~PX Q such
that unE=0, V~E we have Lgr(E)~(X(.1?#-gr(U' v)). I
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ÒÜå statement analogous to the Theorem 1.6 is :

Theorem 3.3. Let è, Y~PXQ, unv=.0. rhen there exists à graph E~PXQ
.fuch that unE=.0, V~E and Dgr(E)~0«(log (X(9lgr(U, V))2).

Thistheorem ñàï Üå proved just as Theorem 1.6. Below we will see another
proof of it grounded îï entirelynew ideas. I

Given è, Vsuch that è, V~PXQ, unv=.0, and two elements a1, à2
from à field l, definethe partial matrix À(è, V, a1, à2) Üó

!
{à if edges u and v Üàóå à ñîòòîï vertex in the set Ð

auv = à2 if edges u and .v Üàóå à ñîòòîï vertex in the set Q

left empty otherwlse.

For E~PXQ set À(Å, al' a2)=A«(PXQ",E),E, al' à2).
Applying Theorem3.1 to the covering ~=9lgr(U, V) and the division (11),

(12) of this covering into two parts we obtain

Theorem 3.4. Let è, V~PXQ, unv=.0, l Üå àï arbitrary field and al' a2El.
Then (X(~gr(U, V))~rk(A(U, V, a1, à2)). In particular,

(X(9lgr(E)) ~ rk(A(E, a1, à2)). I

From now îï we consider îïló the case è=Å, V=PXQ",E but àll the
results below ñàï Üå automatical1y extended for the general case.

DenOte Üó I(l, d) the intersection graph of the fami1y S(l, d) formed Üó
a1l affine subspaces (of arbitrary dimenSion) of à d-dimensional àòïå space A~
over the field l. We say that à bipartite graph (Ð, Q, Å) is realizable in I(l, d)
if there exists à mapping i: PUQ-S(l, d) (not necessarily injective) such that
(ð, q)EE<=>i(p)ni(q)~.0. DenOte Üó adiml(E) the affine dimension ofE that is
the minimal d for which (Ð, Q, Å) is realizable in I(l, d).

Theorem 3.5. Let E~ ÐÕ Q; l Üå àï arbitrary field, a1, a2El, a1 ~ à2 .Then

tk(A(E, a1, a2))~adiml (Å).

Proof. Let ÂÜå à usual matrix of rank d=rk(A(E, a1, à2)) extending À(Å, a1, à2).
Let U=PxQ",E, V=E. Take the àòïå subspace in lU gei1erated Üó Î and al1
columns of Â as A~. Given vE V, denote Üó j(v) the corresponding column. Given
rEPUQ, let i(r) Üå theaffine subspace in A~ generated Üó vectors {.j(v)lv is in-
cident to r },We claim that [ is the desirable realization.

If v=(p,q)EV then j(v) belongs to the intersection of i(p) and i(q).
Assume è=(ð, q)E è. Define the àòïå functional ïè: Af-l as the ñîò-

position A~ -lU Ü... l where JLu is the projection onto the u's position. ÒÜåï for
àïó vE v adjacent to ð wehave 1tu(j(~))::;::~uv=a1/apd, similarly, if v is adjacent
to q, 1tu(j(v))=a2. Íåïñå 1tu(i(p))= {qJ, 1tu(i(q))= {à2}. Jhis implies i(p)n

ni(q)=.0. I

As anapplication we ~btain the fol1ow(in~ result.

CorolIary 3.6. For àïó E~PXQ and àïó field:.l,. Lgr(ro~adim.t(E). I~
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For finite fields this result ñàî Üå partially reversed as follows:

Theorem 3.7. For anyfinite fieZd '-, D,r(E)~0(log adimL (Å»2).

Proof. Let d=adimL (Å) and [: PUQ-S(.l, d) Üå àî affine representation of
the graph Å. For rEPUQ write down i(r) in the form

i(r) = a(r)+Span (al(r), ..., ad(r)(r»)

where d(r) is the affine dimension of i(r) and Span (à1, ..., àò) is the linear space
generatedby à1, .,., àò. Then

(ð, q)E Å <=>

i(p)ni(q) ~ 0<=>

(13) a(p)-a(q)ESpan(al(p), ..., ad(p)(p), al(q), ..., ad(q)(q») <=>

dimSpan(al(p), ...,ad(p)(p),al(q), ...,ad(q)(q») =

dimSpan(al(p), ..., ad(p)(p),al(q), ..., ad(q)(q),a(p)-a(q»).

But the rank of à dXd matrix over à finite field ñàî Üå computed Üó à
Boolean circuit of depth O(log d)2) (see [12]). Therefore, the fact (13) ñàî Üå
tested Üó à Boolean circuit of depth O(log d)2) and this circuit also works in the
graph complexity framework. I

Theorems 3.4, 3.5 and 3.7 together provide à new proofof the Theorem 3.3.
We conclude this section Üó discussing connections with the paper [18].

Let BPp'r(E) Üå the size of à minimal branching program (measured Üó the number
of non-sink nodes) computing the graph Å (the node questions to an input pair
(ð, q) are of the forms "ðÅÐo?" or "qEQo?" where Ðo and Qo are arbitrary subsets
of Ð and Q). ÒÜåî, just as in the Boolean case,

(14) BPp,r(E) ~ Lgr(E).

ÒÜå projecti1:e dimension pdimL (Å) is defined like adimL (Å) with the difference
that i(p) and i(q) this time should Üå Zinear subspaces and (ð, q)EE<=>i(p)ni(q):;C {Î}.

Ð. Pudlak and Ó. RDdl showed that adimL (Å) ~ (pdimL (Å) )2 for every field
.l and adimL (E)~pdimL (Å) -1 if.l is infinite. Âó methods entirely different from
those of the present paper they proved

(15) pdimL(E)~BPp,y(E)+2

(actually Ð. Pudlak and Ó. RDdl stated this only for Boolean branching programs
but their arguments can Üå straightforwardly extended for the graph complexity
framework). So, the results from [18] imply Lgr(E)~(adimL (Å»)1!2 for every field
and Lgr(E)~adimL (Å)-! if.l is infinite which is only à little worse than our
bound Lgr(E)~adimL (Å). Àî interesting coro1lary of Theorem 3.7 and results Üó
Ð. Pudlak and Ó. RDdl is the fo1lowing theorem.

Theorem 3.8. For àïó finite fieZd '-,

ð dimL(E) ~ adimL(E)O(adimL<E» .

Proof. From (15), (14), L,r(E)~exp(O(Dgr(E») and Theorem3.7. I
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I do not know àïó purely combinatoriaI proof of the Theorem 3.8. Note
aIso that, at Ieast in this form, it is not true for infinite fields. Say, if Å is the ñoò-
plement of àï N to N matching then, as proved Üó L. Lovasz, pdimi (E)~ .Q(Iog N)
(for àïó field /,) but it is easy to see that adimi (Å) =2 if /, is infinite.

4. Îðåî questions

We do noi present here obvious questionS àï anSwer to which would imply
superpolynoffiiaI Iower bounds for the formula size of explicitly given Boolean
functionS. Among others are the following two.

Question 4.1. What is the best Iower bound for formula size over the standard
basis with negation which could Üå obtained using Theorem 2.2? More precisely, Iet

( rk(A) )Âï=òàõòàõ, ( ) 1~1=2/I À òàõ rk(AR)
ÿE~

where òàõ ranges over all self-complemeritary coverings of cardinality 2n and
1~1=2/I

òàõ ranges over all noD-zero matrices of the corresponding size over arbitrary
À

fields. What is the magnitude of growth of the funCtion Â(ï)? In particular, does

Â(ï) grow superpolynomially?l

Question 4.2. Ñàï Dgr(E) Üå nontrivially bounded from above in terms of N and
adimi (Å) for àï infinite field /,? In particular, is it true that Dgr(E) is polynoffiiaI in
Iog Iog N and Iog adimi (Å)?
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