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Abstract

Razborov, À.À., Îï the distributional complexity of disjointness, Theoretical Computer ScienCe 106
(1992) 385-390.

We prove that the distributional communication complexity of the predicate "disjointness" with
respect to à very simple measure îï inputs is Ùï).

1. Introduction

ÒÜå following concept of the G-error probabilistic communication complexity Ñ.(À)

of à binary predicate À(õ, ó) was introduced Üó Óào [3]. Assume that two infinitely

powerful computers evaluate the predicate À(õ, ó) in the situation when the first

computer possesses õ and the second possesses ó (õ and ó are binary strings of length

ï). ÒÜåó do this Üó interchanging messages between åàñÜ other. Both'Computers are

allowed to flip à coin. At the end of the communication for åàñÜ õ and ó they must

output the correct value of À(õ, ó) with probability at least 1-â. ÒÜå complexity is

measured Üó the expected number of communications in the worst case. For more

details see [3, 1].

In [4], Óào suggested àï approach to estimating Ñ.(À) from below and gave àï

application of this approach. It is based èðîï the notion of the G-error distributional

communication complexity D.(A) of à binary predicate À(õ, ó). This notion, in turn,

was generalized in [1] to the concept of the G-error distributional communication
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complexity De(A I Jl) under àï arbitrary probabilistic measure Jl îï inputs (De(A) is just
De(A I Jl) with uniform Jl). This concept is somewhat dual to Ñã(À): now the computers
run à deterministic protocol and are required to output the correct value of À(õ, ó)

everywhere except for at most e-fraction (with respect to the measure Jl) of inputs. It
was proved in [4] for uniform Jl and generalized in [1] to arbitrary Jl that
Ce(A);::::tD2e(AiJl) for any A,Jl and å>O.

Several authors studied these complexity measures for the predicate "disjointness".
Let DISn denote this predicate (we will recall its definition below). Babai et al. [1]
proved that De(DISnIJl);::::.Q(nl/2), where Jl is some measure on inputs and å>O is
sufficiently small. This implies Ce(DISn);::::.Q(nl/2) for any e<t. ÒÜå measure Jl in [1]
is à product measure that is the product of à measure on columns and à measure on
rows. In comparison with the lower bound it was also proved in [1] that

De(DISnIJl)::;::;O(nl/21ogn) for any product measure Jl and arbitrary å>O. Then
Kalyanasundaram and Schnitger [2] established the best possible lower bound
Ce(DISn);::::.Q(n) (å< 1/2) for the e-error probabilistic communication complexity of

"disjointness".
Probably alllower bounds for Ñã(À) known prior to the paper [2] were actually

lower bounds for the distributional complexity De(A I Jl) with some suitable measure
Jl. But the proof in [2] involves complicated arguments related to the Kolmogorov
complexity and this results in the fact that the measure Jl implicitly "nieant" in the
proof depends on the protocol given Üó "the adversary".

ÒÜå aim of this note is to show that the "random coupling" arguments of
Kalyanasundaram and Schnitger can Üå carried over to yield the lower bound
De(DISIi I Jl ) ;:::: Ï( ï) for à very simple measure Jl described below (this does not
contradict the result from [ 1] since our Jl is not à product measure ). ÒÜå proof involves
only classical probabilistic arguments and does not appeal to the Kolmogorov

complexity.

2. ÒÜå result

We will identify throughout binary predicates and their characteristic 0-1 matrices.
Given à predicate À(õ, ó) (ÕÅÕ, ÓÅ Ó), the e-error distributional complexity De(A I Jl)
under à probabilistic measure Jl îï inputs (i.e., on Õ õ Ó) is the minimal possible length
of à deterministic communication protocol which, given the random input (õ, ó)
according to the measure Jl, outputs àõó with probability at least 1-å [4,1]. Fix the
notation DISn for the so-called disjointness matrix DISn over Õ := Ó:= f!jJ([n]) given
Üó (DISn)xy := 1 iff õïó=ô. Let (Õo,óo) [(Õl, Ól )] Üå the random input according to the
uniform distribution on {(õ, y)llxl =Iyl =Ln/4 J, Ixnyl =ô} [ {(õ, y)llxl =Iyl =Ln/4 J,

Ixnyl=l}, respectively}. Let (õ,ó) Üå taken with probability i as (Õo,óo) and with
probability t as (Õl,Ól). Denote Üó Jl the measure corresponding to (õ,ó). ÒÜå main
result of this note is the following theorem.
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Theorem. D.(DISn l.è);;;:Q(ï)for àïó sufficiently small Â>O.

Proof. Note that (õ,,' ó,,) (VE{O, 1} ) isjust the input (õ, ó) under the condition 'õïó! =V.
Because ofP[lxnyl=v];;;:Q(l) the theorem follows from the following statement (cf.

[4,1]).

Main Lemma. For àïó Õ, Ys;;f!/([n]),

Ð[(Õl'Ól)ÅÕ Õ Ó] ;;;:à(ð[(õî,óî)ÅÕ Õ Ó])-2-Ùï).

Proofofmain lemma. We òàó assume ï=4ò-1 and, therefore, Ixl=lyl=m. First we
need à somewhat exotic way of generating random inputs (Õo,Óo) and (Õl'Ól). Namely,
let t :=(Zx, Zy, { i} ) üå the random partition of [ï] into three sets of cardinalities 2ò-1,
2ò-1 and 1, respectively. Let õ üå the random member of[zxu{i} ]ò,ó Üå the random
member of [Zyu{ i} ]ò (õ andy are assumed to Üå independent). Let (õo, óo) üå this (õ, ó)
under the condition iôx, iôy and (Õl,Ól) Üå (õ,ó) under the condition iEX, iEy. Note
that °ur construction is invariant under the action ofthe symmetric group Sn; therefore,
we obtain in this way the random inputs corresponding to the uniform distributions on
{(õ, y)llxl=lyl=m, Ixnyl=0} and {(õ,ó) Ilxl=lyl=m, Ixnyl= l},i.e.,exactly(xo,Yo)
and (õ 1, ó 1) used in the definition of.è (itis also easy to see that (õ, ó) coincides with °ur
main distribution but we will not need this fact in what follows).

Given à partition t = (zx, Zy, { i} ), set

Px(t) :=Ð[ÕÅÕ I (Zx, Zy, { i} )=t],

py(t) :=Ð[ÓÅ Ó! (Zx, Zy, { i} )=t],

Px,o(t) :=P[xoEXI(zx, Zy, {i})=t],

Ðõ, 1 (t):=P[Xl ÅÕ I (Zx, Zy, { i} )=t],

Ðó, o(t):=P[YoE Ó! (Zx, Zy, { i} )=t],

Py.l(t):=P[ylEYI(zx,zy, {i})=t].

Then

Ð[(õo,óo)ÅÕÕ Y]=E[px.o(t).py.o(t)],

Ð[(Õl'Ól)ÅÕ Õ Y]=E[px.l(t).Py.l(t)].

We now collect some easy facts about these random variabIes.

Fact 1. Px(t)=!(Px.o(t)+PX.l(t)), Py(t)=!(py,o(t)+Py.l(t)).
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Proof. The result follows from the observation P[iEXI(zx,Zy, {i})=t]=
P[iEYI(zx,Zy,{i})=t]=!. D

Fact 2. Px(zx, Zy, { i} ) and Ðó, o(zx, Zy, { i} ) depend only îï Zy. Py(zx, Zy, { i} ) and
Ðõ, o(zx, Zy, { i} ) depend only îï zx.

Set å := 0.01. Let us say that t is x-bad if

Px,1(t)<1Px,o(t)-2-en (1)

and t is y-bad if

Ðó, 1 (t) <ipy, o(t)- 2 -åï .

t is bad if it is either x-bad or y-bad.

Claim 3. For àïó Zx,ZyE[n]2m-l,P[(zx,zy,{i}) is x-badlzy=zy]<! and

P[(zx, Zy, {i}) is y-bad I zx=zx]<t.

Proof. Âó symmetry, it is sufficient to prove the first inequality. Âó Fact 2, having fixed
Zy forces Ðõ( Zx, Zy, { i} ) to üå constant. Denote Ðõ( Zx, Zy, { i} ) Üó Ðõ. If Ðõ < 2 -.ï then, Üó

(1) and Ðõ, o(t)~2px(t) (see Fact 1), P[(zx, Zy, {i} ) is x-bad I Zy=Zy] =0 and we are done.

So, assume

px~2-eï. (2)

Denote Xn[co-zy]m Üó S. Then Px=ISI/(2:);px,1(Zx,Zy, {i})=2pxP[iES];
Px,o(zx, Zy, {i})=2pxP[iis], where S is the random member ofS. So, if(zx, zy,{i}) is

x-bad then, Üó (1),

P[iES] ~1P[iis], (3)

i.e., P[iES]~i. Îî the other hand, s=(S~,S2'...'S2m), where Sl,S2,...,S2m are the
characteristic functions of events i1ES, i2ES,..., i2mES ({i1, i2,..., i2m}=co-Zy).
Assume, contrary to the statement ofthe claim, that Ð [(zx, Zy, {i} ) is x-bad I Zy=Zy] ~!
and, hence, (3) holds for at least 2ò/5 values of iECO -Zy. Then, counting the entropy, we

get

2ò
m(2-4e-o(1))~H(s) (Üó (2))~ L H(s;)~8m/5+2m/5.H(1/4)~1.93m,

i= 1

à contradiction. D

Let us denote Üó Xx(t) [Xy(t), X(t)] the indicator of the event "t is x-bad" [y-bad,

bad].

Claim 4. E[px,o(t)py,o(t)X(t)] ~!E[px,o(t)py,o(t)].
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ProoC. Because X(t) :::;;Xx(t) + Õó( t), itis sufficient to prove that Å[ðõ, o(t) Ðó, o(t)Xx(t)] :::;;

~E[px,o(t)py,o(t)]. Let us fix Zy and prove that

Å[ðõ, o(Zx, Zy, {;} )Ðó,o (Zx, Zy, { ;} ) Xx(Zx, Zy, { ;} ) I Zy=Zy]

:::;;~E[px,o(Zx, Zy, {;})Py,o(Zx, Zy, {;})Izy=zy].

Note that Ðó, o(Zx, Zy, { ;} ) and Px(Zx, Zy, { ;} ) are constant under the condition

Zy = Zy (see Fact 2). Denote them Üó Ðó, î and Ðõ. It is also clear that

Å[ðõ, o(Zx, Zy, { ;} ) I Zy=Zy] = Ðõ since this expectation is just Ð[ÕoÅÕ I Zy =Zy] and

Õo under the only condition Zy=Zy takes all values Crom [co-Zy]m with the same

probability ( 2:) -1, i.e., coincides with õ under the same condition. ThereCore,

Å[ðõ, o(Zx, Zy, { ;} )Ðó, o(Zx, Zy, { ;} )Xx(Zx, Zy, { ;}) I Zy =Zy]

= Ðó, oÅ [Ðõ, o(Zx, Zy, { ;} ) Xx(Zx, Zy, { ;} ) I Zy = Zy]

:::;; 2ðó, oðõÅ [Õõ( Zx, Zy, { ;} ) I Zy = Zy] (Üó Fact 1)

:::;; ~ Ðó, oÐõ (Üó Claim 3)

=ipy,oE[px,o(Zx, Zy, {;} ) I Zy=Zy]

=iE[px,o(Zx,Zy,{;})Py,o(Zx,Zy,{;})lzy=zy]. (J

ProoC îÑ main lemma (conclusion). Now the prooC îÑ the main lemma is completed Üó

the easy computation

Ð[(Õ1,Ó1)ÅÕ õ Y]=E[px,l(t).Py,l(t)]~E[Px,l(t).Py,l(t).(l-X(t)]

~ Å [(iPx, o(t)- 2-åï) .(ipy. o(t)- 2-åï) .(1- X(t)] (Üó(l))

~ .Q(E[px, o(t) .Ðó, o(t) .(1- X(t)])- 2 -Î(ï)

~.Q(E[px,o(t).py,o(t)])-2-n(n) (Üó Claim 4)

=.Q(P[(Xo,yo)EX õ Ó])-2-Î(ï). (J
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