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Asymptotic Structure of Graphs with
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We consider the problem of minimizing the number of triangles in a graph of given

order and size, and describe the asymptotic structure of extremal graphs. This is
achieved by characterizing the set of flag algebra homomorphisms that minimize the
triangle density.

1. Introduction

The famous theorem of Turán [Tur41] determines ex(n,Kr), the maximum number of

edges in a graph with n vertices that does not contain the r-clique Kr (the case r = 3 was

previously solved by Mantel [Man07]). The unique extremal graph is the Turán graph

Tr−1(n), the complete (r − 1)-partite graph of order n whose part sizes differ at most

by 1. Thus, for fixed r, we have ex(n,Kr) = (1− 1
r−1 )

(
n
2

)
+O(1).

Rademacher (unpublished, 1941) proved that a graph with ex(n,K3) + 1 edges has

at least ⌊n/2⌋ triangles. This prompted Erdős [Erd55] to pose the more general prob-

lem: what is gr(m,n), the smallest number of Kr-subgraphs in a graph with n vertices

and m edges? Various results have been obtained by Erdős [Erd62, Erd69], Moon and

Moser [MM62], Nordhaus and Stewart [NS63], Bollobás [Bol76], Fisher [Fis89], Lovász

and Simonovits [LS76, LS83], Razborov [Raz07, Raz08], Nikiforov [Nik11], Reiher [Rei12],

and others.

Let us consider the asymptotic question, that is, what is the limit

gr(a)
def
= lim

n→∞

gr
(
⌊a
(
n
2

)
⌋, n

)(
n
r

)
for any given a ∈ [0, 1] and r? While it is not difficult to show that the limit exists,

determining gr(a) is a much harder task that was accomplished only relatively recently
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(for r = 3 by Razborov [Raz08], for r = 4 by Nikiforov [Nik11], and for r ≥ 5 by

Reiher [Rei12]).

The following construction gives the value of g3(a) (as well as gr(a) for every r ≥ 4).

Given a ∈ (0, 1), we choose integer t ≥ 1 and real c ∈
[

1
t+1 ,

1
t

)
such that the complete

(t + 1)-partite graph of order n → ∞ with t largest parts each of size (c + o(1))n has

edge density a+ o(1). Formally, let the integer t ≥ 1 satisfy

a ∈
(
1− 1

t
, 1− 1

t+ 1

]
(1.1)

and let

c =
t+

√
t(t− a(t+ 1))

t(t+ 1)
(1.2)

be the (unique) root of the quadratic equation

2

((
t

2

)
c2 + tc(1− tc)

)
= a (1.3)

with c ≥ 1
t+1 . Since a > 1− 1

t , it follows from (1.2) (or from (1.3)) that c < 1
t . Partition the

vertex set [n] = {1, . . . , n} into t+1 non-empty parts V1, . . . , Vt+1 with |V1| = · · · = |Vt| =
⌊cn⌋ for i ∈ [t]. Let G be obtained from the complete t-partite graph K(V1, . . . , Vt−1, U),

where U = Vt∪Vt+1, by adding an arbitrary triangle-free graph G[U ] on U with |Vt| |Vt+1|
edges1. Clearly, the edge density of G is a+ o(1). Thus g3(a) ≤ h(a), where

h(a)
def
= 6

((
t

3

)
c3 +

(
t

2

)
c2(1− tc)

)
. (1.4)

If a = 1, we let G be the complete graph Kn and define h(1) = 1. If a = 0, we take the

empty graph and let h(0) = 0. For a ∈ [0, 1], let Ha,n be the set of all possible graphs G

on [n] that arise in this way, Ha
def
= ∪n∈NHa,n, and H def

= ∪a∈[0,1]Ha. In general, Ha,n has

many non-isomorphic graphs and this seems to be one of the reasons why this extremal

problem is so difficult.

Although each of the papers [Raz08, Nik11, Rei12] implies the lower bound g3(a) ≥
h(a), it is not clear how to extract the structural information about extremal graphs

from these proofs. Here we partially fill this gap by showing that, modulo changing a

negligible proportion of adjacencies, the set H consists of all almost extremal graphs for

the g3-problem. Here is the formal statement.

Theorem 1.1. For every ε > 0 there are δ > 0 and n0 such that every graph G with

n ≥ n0 vertices and at most (g3(a) + δ)
(
n
3

)
triangles, where a = e(G)/

(
n
2

)
, can be made

isomorphic to some graph in Ha,n by changing at most ε
(
n
2

)
adjacencies.

We remark that although this statement resembles (and implies) the celebrated triangle

1 One possible choice is to take G[U ] = K(Vt, Vt+1), resulting in G = K(V1, . . . , Vt+1). But since
each edge of G[U ] belongs to exactly |V1| + · · · + |Vt−1| triangles, the choice of G[U ], due to its
triangle-freeness, has no effect on the triangle density.
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removal lemma, it does not say anything new in that direction since its proof relies on

the lemma. What our Theorem 1.1 can and should be compared to, is the following old

result due to Lovász and Simonovits:

Theorem 1.2 ([LS83, Theorem 2]). For any real ε > 0 and integers t ≥ r − 1 ≥ 2,

there are δ > 0 and n0 such that every graph G with n ≥ n0 vertices, (1 − 1
t ± δ)

(
n
2

)
edges, and at most (gr(1− 1

t ) + δ)
(
n
r

)
copies of Kr can be made isomorphic to Tt(n) by

changing at most ε
(
n
2

)
adjacencies.

Note that Tt(n) is o(n2)-close in the edit distance to H1−1/t,n, hence the difference

between them is immaterial. Thus, comparing our Theorem 1.1 to Theorem 1.2, note

that Theorem 1.1 covers all values of a (not only those that are close to critical points

a = 1− 1/t for an integer t ≥ r − 1) but it deals with the case r = 3 only.

Theorem 1.1 is obtained by building upon the flag algebra approach from [Raz08].

In order to prove it we have to characterize first the set of extremal flag algebra ho-

momorphisms for the g3-problem. This is done in Theorem 2.1 of Section 2, where

the precise statement can be found. This task requires some extra work in addition

to the arguments in [Raz08] and is an example of how flag algebra calculations may

lead to structural results about graphs. (For some other results of a similar type, see

e.g. [Pik11, CKP+13, DHM+13, HHK+13, PV13].)

Theorem 1.1 (or more precisely Theorem 2.1) can be viewed as a small step towards the

more general problem of understanding graph limits with given edge and triangle densi-

ties. The latter problem naturally appears in the study of exponential random graphs (see

e.g. [AR13, CD13, RY13, RS13, RRS14]) and large deviation inequalities for the triangle

density in Erdős-Rényi random graphs (see e.g. [CD10, CV11, CD14, LZ14, LZ15]).

Let us now briefly review what is known (and conjectured) about exact results. As

with any extremal problem, the two relevant and related questions here are the following

(cf. [LS83, Problems 1, 2]):

Question 1. Determine gr(m,n) as tightly as possible.

Question 2. Say as much as possible about the structure of extremal configurations.

Toward Question 1, it makes sense to compare gr(m,m) with the function gr(a), now

explicitly known due to [Raz08, Nik11, Rei12]. A straightforward blow-up construction

(see e.g. [Raz08, Theorem 4.1]) gives us

gr(m,n) ≥
nr

r!
gr(2m/n

2).

In the reverse direction, an obvious calculation based on the graphs from Ha,n gives

the estimate gr(m,n) ≤ nr

r! gr(2m/n
2) +O(nr+1/(n2 − 2m)). Nikiforov [Nik11, Theorem

1.3] improved this to

gr(m,n) ≤
nr

r!
gr(2m/n

2) +
nr

n2 − 2m
.

Lovász and Simonovits made the following remarkable conjecture.
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Conjecture 1.3 ([LS76, Conjecture 1]). For every r ≥ 3 there is n0 such that for

every n ≥ n0 and m with 0 ≤ m ≤
(
n
2

)
at least one of gr(m,n)-extremal graphs is

obtained from a complete partite graph by adding a triangle-free graph inside one part.

If Conjecture 1.3 is proved, then one may consider Question 1 combinatorially an-

swered: the number of Kr-subgraphs in such a graph G is some explicit polynomial in

m, n, and part sizes, and the question reduces to its minimization over the integers. This

task may be difficult but it involves no graph theory. In fact, it is not hard to show (see

e.g. [Nik11, Section 3]) that the optimal part ratios are approximately as those of the

graphs in Ha, where a = m/
(
n
2

)
. (However, our rounding |V1| = ⌊cn⌋, etc., was rather

arbitrary: it was chosen just to have the family Ha well-defined.)

Since the value of g3(m,n) resulting from Conjecture 1.3 does not even have a nice

analytical expression, it is conceivable that the only way of attacking Question 1 is via

Question 2, using the so-called stability approach. This indeed turned out to be so in

the only non-trivial intervals where the problem has been solved so far. Namely, assume

that ex(n,Kt) ≤ m ≤ ex(n,Kt) + ϵ(r, t)n2, where ϵ(r, t) > 0 is a rather small constant;

in other words, that a is in a small (upper) neighbourhood of a critical point 1 − 1/t.

Then for r ≥ 4 Lovász and Simonovits [LS83] proved Conjecture 1.3 in much stronger

universal form. Given recent developments, we would like to make the explicit conjecture

that their result can be extended to arbitrary values of m:

Conjecture 1.4. For every r ≥ 4 there is n0 such that for every n ≥ n0 and m with

0 ≤ m ≤
(
n
2

)
every gr(m,n)-extremal graph is obtained from a complete partite graph

by adding a triangle-free graph inside one part.

For the case r = 3 Lovász and Simonovits still verified Conjecture 1.3 in the same

neighbourhoods of critical points. Conjecture 1.4, however, is no longer true: for some

pairs (m,n), there are additional extremal graphs, see the families U0 and U2 in [LS83].

We hope that the techniques in our paper will turn out to be helpful in attacking

Conjectures 1.3 and 1.4 for arbitrary m.

The paper is organized as follows. We outline the main ideas behind flag algebras

and state some of the key inequalities from [Raz08] in Section 2. There, we also state

our result on the structure of g3-extremal homomorphisms (Theorem 2.1) and show how

this implies Theorem 1.1. Section 3 contains a sketch of the proof from [Raz08] that

g3(a) = h(a). Theorem 2.1 is proved in Section 4.

2. Flag Algebras

In order to understand this paper the reader should be familiar with the concepts intro-

duced in [Raz07]. We do not see any reasonable way of making this paper self-contained,

without making it quite long and repeating large passages from [Raz07]. Therefore, we

restrict ourselves to sketching the proofs in [Raz07, Raz08], during which we informally

illustrate the main ideas by providing some analogs from the discrete world. This serves
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two purposes: to state the key inequalities from [Raz07, Raz08] that we need here and

to provide some guiding intuition for the reader who is about to start reading [Raz07].

We stress that some flag algebra concepts do not have direct combinatorial analogs or

require a plethora of constants to state them in terms of graphs. Here we just try to

distill and present some motivational ideas. Besides, even if the theory was intentionally

developed to cover arbitrary combinatorial structures, in our brief exposition we confine

ourselves to the case of ordinary graphs, as the most intuitive one.

Many proofs in extremal graph theory proceed by considering possible densities of

small subgraphs and deriving various inequalities between them. These calculations often

become very cumbersome and difficult to keep track of “by hand”, especially since the

number of non-isomorphic graphs increases very quickly with the number of vertices. One

of the motivations behind introducing flag algebras was to develop a framework where

the mechanical book-keeping part of the work is relegated to a computer.

So suppose that we have a graph G. Let n = |V (G)| be its order.

The density of a graph F in G, denoted by p(F,G), is the probability that a random

|V (F )|-subset of V (G) spans a subgraph isomorphic to F . The quantities that we are

interested in are finite linear combinations
∑s

i=1 αip(Fi, G), where Fi is a graph and αi is

a real constant. One can view a formal finite sum
∑s

i=1 αiFi as a function that evaluates

to
∑s

i=1 αip(Fi, G) on input G. Since we would like to operate with these objects on

computers, we try to keep redundancies to minimum. In particular, the graphs Fi are

unlabeled and pairwise non-isomorphic. Let F0 consist of all (unlabeled non-isomorphic)

graphs and let RF0 be the vector space that has F0 as a basis. (The meaning of the

superscript 0 will be explained a bit later.)

There are some relations which are identically true when it comes to evaluations on

input G: for example if n ≥ ℓ ≥ |V (F̃ )| for some graph F̃ and we know the densities of

all subgraphs on ℓ vertices, then the density of F̃ can be easily determined:

p(F̃ , G) =
∑

F∈F0
ℓ

p(F̃ , F )p(F,G), (2.1)

where F0
ℓ ⊆ F0 consists of all graphs with exactly ℓ vertices. So it makes sense to factor

over K0, the subspace of RF0 generated by F̃ −
∑

F∈F0
ℓ
p(F̃ , F )F , over all choices of F̃

and ℓ ≥ |V (F̃ )|. Let

A0 def
= RF0/K0.

By (2.1), any element of A0 can still be identified with an evaluation on (sufficiently

large) graphs.

Let some Fi ∈ F0
ℓi
for i = 1, 2 be fixed. The product p(F1, G)p(F2, G) is the probability

that two random subsets U1, U2 ⊆ V (G) of sizes ℓ1 and ℓ2, drawn independently, induce

copies of F1 and F2 respectively. With probability 1−O(1/n) (recall that n = |V (G)|), the
sets U1 and U2 are disjoint. Let us condition on this event. The conditional distribution

can be generated as follows: first pick a random (ℓ1 + ℓ2)-set U and then take a random
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partition U = U1 ∪ U2 with |Ui| = ℓi. Thus

p(F1, G)p(F2, G) =
∑

F∈F0
ℓ1+ℓ2

p(F1, F2;F )p(F,G) +O(1/n), (2.2)

where p(F1, F2;F ) denotes the probability that F [Ui] ∼= Fi (i.e. the subgraph of F induced

by Ui is isomorphic to Fi) for both i = 1, 2 when we take a random partition U1∪U2 of the

vertex set of F ∈ F0
ℓ1+ℓ2

with part sizes ℓ1 and ℓ2. Since we are interested in the case when

n→ ∞, we formally define the product F1 ·F2 to be equal to
∑

F∈F0
ℓ1+ℓ2

p(F1, F2;F )F ∈
RF0 and extend this multiplication to RF0 by linearity. It is not surprising that this

definition is compatible with the factorization by K0, making A0 a commutative associate

algebra with the empty graph being the multiplicative identity, see [Raz07, Lemma 2.4].

Unfortunately, we do not have the property that graph evaluations preserve multi-

plication exactly. This can be rectified if we take as input not just a single graph G

but a sequence of graphs {Gn} which is convergent by which we mean that |V (G1)| <
|V (G2)| < . . . (we call such sequences increasing) and for every graph F the limit

ϕ(F )
def
= lim

n→∞
p(F,Gn) (2.3)

exists. Then the “value” of
∑s

i=1 αiFi ∈ RF0 on {Gn} is
∑s

i=1 αiϕ(Fi). One can take

the dual point of view, considering ϕ as a map from RF0 to R; it is routine to see that,

for each convergent sequence {Gn}, the corresponding map ϕ : RF0 → R is compatible

with the factorization by K0 and, in fact, gives an algebra homomorphism from A0 to

R (which we still denote by ϕ), see [Raz07, Theorem 3.3]. We say that ϕ is the limit of

{Gn} and, following the notation in [Raz07, Section 3.1], denote this as ϕ = limn→∞ pGn ,

where pGn(F )
def
= p(F,Gn) if |V (F )| ≤ |V (Gn)| and 0 otherwise.

Clearly, ϕ is non-negative, that is, ϕ(F ) ≥ 0 for every graph F . Let Hom+(A0,R) be
the set of all non-negative homomorphisms.

It turns out that every non-negative homomorphism ϕ : A0 → R is the limit of some se-

quence of graphs. It is instructive to sketch a proof of this, see Lovász and Szegedy [LS06,

Lemma 2.4] (or [Raz07, Theorem 3.3] in more general context) for details. Take some

integer n. Since the identity
∑

F∈F0
n
F = 1 holds in A0, we have that

∑
F∈F0

n
ϕ(F ) = 1,

that is, ϕ defines some probability distribution on F0
n. Let Gn,ϕ ∈ F0

n be drawn accord-

ing to this distribution with the choices for different values of n being independent. Fix

some F and ε > 0. Let n ≥ |V (F )|. An easy calculation shows that the expectation of

p(F,Gn,ϕ) is exactly ϕ(F ). Also, the variance of p(F,Gn,ϕ), which can be expressed via

counting pairs of F -subgraphs versus two independent copies of F , is O(1/n). Cheby-

shev’s inequality implies that the probability of the “bad” event |p(F,Gn,ϕ)−ϕ(F )| > ε

is O(1/n) and the Borel-Cantelli Lemma shows that with probability 1 only finitely many

bad events occur when n runs over, for example, all squares. Since there are only count-

ably many choices of F and, for example, ε ∈ {1, 12 ,
1
3 , . . . }, we conclude that {Gn2,ϕ}

converges to ϕ with probability 1. Thus the required convergent sequence exists.

If one wishes that the graph orders in the sequence span all natural numbers, one can

pick some convergent sequence and fill all orders by uniformly “blowing” up its members,

see e.g. [HHK+13, Section 2.3]. Alternatively, one can show that the sequence {Gn,ϕ}
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itself converges with probability 1 via a stronger concentration result for p(F,Gn,ϕ) that

considers its first four moments, see [Lov12, Lemma 11.7].

How can these concepts be useful for proving that g3(a) = h(a)? Pick an increasing

sequence of graphs {Gn} of edge density a+ o(1) such that the limit of p(K3, Gn) exists

and is equal to g3(a). A standard diagonalization argument shows that {Gn} has a

convergent subsequence; let ϕ be its limit. Then ϕ(K2) = a. Now, if we can show that

∀ϕ ∈ Hom+(A0,R) (ϕ(K2) = a =⇒ ϕ(K3) ≥ h(a)) , (2.4)

then we can conclude that indeed g3(a) = h(a), as it was done in [Raz08].

In this paper, we achieve more: we describe the set of all extremal homomorphisms,

that is, those ϕ ∈ Hom+(A0,R) that achieve equality ϕ(K3) = g3(ϕ(K2)).

Let Φ ⊆ Hom+(A0,R) consist of all possible limits of convergent sequences {Gn} for

which there is a ∈ [0, 1] such that Gn ∈ Ha for all n. Equivalently, Φ can be defined as

follows. Recall that the join G1 ∨ . . . ∨ Gk of graphs G1, . . . , Gk is obtained by taking

their disjoint union and adding all edges in between. We define a similar operation on

homomorphisms ϕ1, . . . , ϕk ∈ Hom+(A0,R). We need a more general construction where

one specifies how much relative weight each ϕi has, by giving non-negative reals α1, . . . , αk

with sum 1. Let n → ∞ and, for i ∈ [k], let Gi,n be a graph with ⌊αin⌋ vertices such

that the sequence {Gi,n} converges to ϕi; as we have already remarked, it exists. Let

Fn = G1,n ∨ · · · ∨ Gk,n. Let the join ϕ = ∨(ϕ1, . . . , ϕk;α1, . . . , αk) be the limit of {Fn}
(it is easy to see that the limit exists).

Alternatively, we can define the join ϕ without appealing to convergence. To this end,

it is enough to define the density of each graph F ∈ F0, and we do it as follows. Let

aut(F ) denote the number of automorphisms of F . Let

ϕ(F )
def
=

|V (F )|!
aut(F )

∑
(V1,...,Vk)

k∏
i=1

(
α
|Vi|
i ϕi(F [Vi])

aut(Fi)

|Vi|!

)
, (2.5)

where the summation runs over all possible ways (up to isomorphism) to partition V (F ) =

V1 ∪ · · · ∪ Vk into k labeled parts (allowing empty parts) so that the induced bipartite

subgraph F [Vi, Vj ] is complete for all 1 ≤ i < j ≤ k. The reader is welcome to formally

check that the join is well-defined (with respect to the factorization by K0) and belongs

to Hom+(A0,R). (These facts are obvious from the first definition.)

Now, Φ is exactly the set of all possible joins

∨( 0, . . . , 0︸ ︷︷ ︸
t−1 times

, ψ; c, . . . , c︸ ︷︷ ︸
t−1 times

, 1− (t− 1)c),

where 0 denotes the (unique) non-negative homomorphism in Hom+(A0,R) of zero edge-

density, ψ ∈ Hom+(A0,R) is arbitrary with ψ(K3) = 0 and ψ(K2) = 2c(1− tc)/(1− (t−
1)c)2, and c is a real from the interval [1/(t+ 1), 1/t).

Our main result states that the set of g3-extremal homomorphisms is exactly Φ.

Theorem 2.1.

Φ =
{
ϕ ∈ Hom+(A0,R) : ϕ(K3) = g3(ϕ(K2))

}
.
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Let us show that Theorem 2.1 implies Theorem 1.1. The shortest way is to refer to

some known results about the so-called cut-distance δ2 that goes back to Frieze and Kan-

nan [FK99]. We omit the definition of δ2 but refer the reader to [BCL+08, Definition 2.2]

(see also [Lov12, Chapter 8]).

Suppose for the sake of contradiction that Theorem 1.1 is false, which is witnessed by

some ε > 0. Then we can find an increasing sequence {Gn} of graphs with p(K3, Gn) ≤
g3(p(K2, Gn)) + o(1) that violates the conclusion of Theorem 1.1. By passing to a sub-

sequence, we can assume that {Gn} is convergent. Let ϕ0 ∈ Hom+(A0,R) be its limit.

Let a = ϕ0(K2). Clearly, ϕ0(K3) = g3(a). By Theorem 2.1, ϕ0 ∈ Φ and we can choose a

sequence {Hn} in H which converges to ϕ0 with V (Hn) = V (Gn).

This convergence means that asymptotically Gn and Hn have the same statistics of

fixed subgraphs. This does not necessarily implies that Gn and Hn are close in the edit

distance. (For example, two typical random graphs of edge density 1/2 have similar

subgraph statistics but are far in the edit distance.) However, the presence of a spanning

complete partite graph in Hn implies a similar conclusion about Gn as follows.

Theorem 2.7 in Borgs et al [BCL+08] gives that δ2(Gn,Hn) = o(1), that is, the cut-

distance between Gn and Hn tends to 0. (An important property of the cut-distance is

that an increasing sequence {Gn} is convergent if and only if it is Cauchy with respect

to δ2.)

By [BCL+08, Theorem 2.3], we can relabel V (Hn) so that for every disjoint S, T ⊆
V (Gn) we have

|e(Gn[S, T ])− e(Hn[S, T ])| = o(v2), (2.6)

where v = v(n) is the number of vertices in Gn. Informally, this means that the graphs Gn

and Hn have almost the same edge distribution with respect to cuts. Take the partition

V (Hn) = V1 ∪ · · · ∪ Vt−1 ∪U that was used to define Hn. Let i ∈ [t− 1]. If we set S = Vi
and T = V (Gn) \ Vi in (2.6), then we conclude that the number of S − T edges that

are missing from Gn is o(v2). Also, the number of edges in G[Vi] is o(v
2) for otherwise a

random partition Vi = S∪T would contradict (2.6). Thus, by changing o(v2) adjacencies

in Gn, we can assume that the graphs Gn and Hn coincide except for the subgraph

induced by U . Suppose that |U | = Ω(n) for otherwise we are done. We have

|e(Gn[U ])− e(Hn[U ])| = |e(Gn)− e(Hn)| = o(v2).

Of course, when we modify o(v2) adjacencies in Gn, then the number of triangles changes

by o(v3). Each edge of Gn[U ] (and of Hn[U ]) is in the same number of triangles with the

third vertex belonging to V (Gn) \ U . Since Hn[U ] is triangle-free and Gn is asymptot-

ically extremal, we conclude that Gn[U ] spans o(v3) triangles. By the triangle removal

lemma [RS78, EFR86] (see e.g. [KS96, Theorem 2.9]), we can make Gn[U ] triangle-free

by deleting o(v2) edges.

If e(Gn[U ]) ≥ e(Hn[U ]), then we just remove some edges from Gn[U ] until exactly

e(Hn[U ]) edges are left, in which case the obtained graph Gn belongs to Ha,n and The-

orem 1.1 is proved. Otherwise we obtain the same conclusion for all large n by applying

the following lemma to Gn[U ] and s = e(Hn[U ]).
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Lemma 2.2. For every ε > 0 there are δ > 0 and n0 such that for every K3-free graph

G on n ≥ n0 vertices and every integer s with

e(G) < s ≤ min
(
e(G) + δn2, ⌊n2/4⌋

)
(2.7)

one can change at most εn2 adjacencies in G so that the new graph is still K3-free and

has exactly s edges.

Proof. Clearly, it is enough to show how to ensure at least s edges in the final K3-free

graph. Given ε > 0, choose small positive constants c ≫ δ. Let n be large and let s

satisfy (2.7). Let m = e(G).

We can assume that, for example, m ≥ εn2/3. Also, assume that m ≤ ⌊n2/4⌋− cn2 for

otherwise we are done by the Stability Theorem of Erdős [Erd67] and Simonovits [Sim68]

which implies that G can be transformed into the Turán graph T2(n) by changing at most

εn2 adjacencies.

The number p of paths of length 2 in G is
∑

x∈V (G)

(
d(x)
2

)
which is at least n

(
2m/n

2

)
by

the convexity of the function
(
x
2

)
. By averaging, there is an edge xy ∈ E(G) that belongs

to at least

2p

m
≥

2n
(
2m/n

2

)
m

≥ 4m

n
− δn

such paths (which is just the number of edges between the set {x, y} and its complement).

Let G′ be obtained from G by adding cn clones of x and cn clones of y. Thus G′ has

n′ = (1 + 2c)n vertices and m′ ≥ m + cn( 4mn − δn) + (cn)2 edges. If we take a random

n-subset U of V (G′), then each edge of G′ is included with probability
(
n
2

)
/
(
n′

2

)
. Thus

there is a choice of an n-set U such that the number of edges in H = G′[U ] is at least

the average, which in turn is at least(
m+ cn( 4mn − δn) + (cn)2

) (
n
2

)(
(1+2c)n

2

) ≥ m+
c2(n2 − 4m)− 2cδn2

(1 + 2c)2
.

This is at least m+ δn2 ≥ s by our assumption on m. Since G and H coincide on the set

V (G) ∩ V (H) of least n− 2cn vertices, G can be transformed into the K3-free graph H

by changing at most 2cn2 ≤ εn2 adjacencies, as required.

3. Sketch of Proof of ϕ(K3) ≥ h(ϕ(K2))

Let us sketch the proof of (2.4) from [Raz07, Raz08], being consistent with the no-

tation defined there. Let ρ
def
= K2 ∈ F0

2 . Consider the “defect” functional f(ϕ) =

ϕ(K3) − h(ϕ(ρ)), where h is defined by (1.4). We can identify each homomorphism

ϕ ∈ Hom(A0,R) with the sequence

(ϕ(F ))F∈F0 ∈ RF0

of its values on graphs. Let us equip all products with the pointwise convergence (or

product) topology. The set Hom(A0,R) is a closed subset of RF0

as the intersection

of closed subsets corresponding to the relations that an algebra homomorphism has to
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satisfy. Thus the set

Hom+(A0,R) =
∩

F∈F0

{
ϕ ∈ Hom(A0,R) : ϕ(F ) ≥ 0

}
is closed too. Moreover, it lies inside the compact space [0, 1]F

0

, so it is compact as well.

Since h(x) is a continuous function (including the special point x = 1), our functional f

is also continuous and achieves its smallest value on Hom+(A0,R) at some non-negative

homomorphism ϕ0. Fix one such ϕ0 for the rest of the proof. Let a = ϕ0(ρ). Let t = t(a)

and c = c(a) be defined as in the Introduction. Let b = ϕ0(K3). We have to show that

b ≥ h(a).

If a = ϕ(ρ) ≤ 1/2, then h(a) = 0 and there is nothing to do.

Let us write an explicit formula for the function h(x) defined in (1.4) when 1 − 1
t ≤

x ≤ 1− 1
t+1 :

ht(x)
def
=

(t− 1)
(
t− 2

√
t(t− x(t+ 1))

)(
t+

√
t(t− x(t+ 1))

)2

t2(t+ 1)2
. (3.1)

If a = 1 − 1
t+1 , then we are done by the well-known bound proved independently by

Moon and Moser [MM62] and Nordhaus and Stewart [NS63] that for every 0 ≤ m ≤
(
n
2

)
g3(m,n) ≥

x(x− 1)(x− 2)

6

(n
x

)3

, x
def
= (1− 2m/n2)−1. (3.2)

So let us assume that a lies in the open interval (1 − 1
t , 1 − 1

t+1 ). Here the function

ht(x) is differentiable and it is routine to see that h′t(a) = 3(t − 1)c. A calculation-free

intuition is that if we add one edge to H ∈ Ha then the number of triangles increases by

((t− 1)c+ o(1))n (while the effect of the change in the part sizes is relatively negligible);

so we expect that h′t(a)
(
n
2

)−1 ≈ (t− 1)cn
(
n
3

)−1
.

Let us see which properties ϕ0 has. Let {Gn} converge to ϕ0 with |V (Gn)| = n. Let

ε > 0 be a small constant.

It is impossible that at least εn2 edges of Gn are each in more than ((t − 1)c + ε)n

triangles: by removing a uniformly spread subset of these edges we get a change that is

noticeable in the limit and strictly decreases the defect functional f . Thus, if we pick a

random edge from E(Gn), then with probability 1−o(1) there are at most ((t−1)c+o(1))n

triangles containing this edge. (Note that Gn has Ω(n2) edges by our assumption a ≥
1/2.) The corresponding flag algebra statement [Raz08, (3.3)] reads

ϕE
0 (KE

3 ) ≤ 1

3
h′t(a) a.e. (=almost everywhere). (3.3)

Let us informally explain (3.3). It involves counting triangles that contain a specified

edge. Let FE consist of E-flags, by which we mean graphs with some two adjacent vertices

being labeled as 1 and 2. Any isomorphism has to preserve the labels. We may represent

elements of FE as (G;x1, x2), where G ∈ F0 is a graph and xi ∈ V (G) is the vertex that

gets label i. Suppose that we wish to keep track of various subgraph densities and their

finite linear combinations for E-flags. We can view (F ; y1, y2) ∈ FE as an evaluation

on FE that on input (G;x1, x2) returns p((F ; y1, y2), (G;x1, x2)), the probability that
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the E-subflag of G induced by a random |V (F )|-set X with {x1, x2} ⊆ X ⊆ V (G) is

isomorphic to (F ; y1, y2).

Again, if we know the densities of all E-flags with ℓ ≥ |V (F )| vertices, then we can

determine the density of (F ; y1, y2) by the analog of (2.1). So we can define the cor-

responding linear subspace KE and let AE def
= RFE/KE . The obvious analog of (2.2)

holds, and the corresponding coefficients define a multiplication on RFE that turns AE

into a commutative algebra. The multiplicative identity is E ∈ FE , the unique E-flag

onK2. As in the unlabeled case, the limits of convergent sequences of E-flags are precisely

non-negative algebra homomorphisms from AE to the reals ([Raz07, Theorem 3.3]).

Now, we can turn Gn into an E-flag by taking a random edge uniformly from E(Gn)

and randomly labeling its endpoints by 1 and 2. Thus for each n we have a probability

distribution on E-flags which weakly converges to the distribution on Hom+(AE ,R), and
it is very important that this distribution can be uniquely retrieved from ϕ0 only (see

[Raz08, Section 3.2]). In particular, it will not depend on the choice of the representing

convergent sequence {Gn}. In (3.3), ϕE
0 denotes the extension of ϕ0 (that is, a random

homomorphism from Hom+(AE ,R) drawn according to this distribution) while KE
3 is

the unique E-flag with the underlying graph being K3.

Let us consider the effect of removing a vertex x from Gn. When we first remove d(x)

edges at x, the edge density goes down by d(x)/
(
n
2

)
. Next, when we remove the (now

isolated) vertex x, the edge density is multiplied by
(
n
2

)
/
(
n−1
2

)
= 1 + 2

n +O(n−2). Thus

the edge density changes by −d(x)/
(
n
2

)
+ 2a/n+O(n−2). Likewise, the triangle density

changes by −K1
3 (x)/

(
n
3

)
+3b/n+O(n−2), where K1

3 (x) is the number of triangles per x.

Thus for all but at most εn vertices x we have (−2d(x)/n+ 2a)h′t(a) < −3K1
3 (x)/

(
n
2

)
+

3b+ ε, for otherwise by removing εn such vertices (and taking the limit of a convergent

subsequence of the resulting graphs) we can strictly decrease the defect functional f . In

the flag algebra language this reads as

−2h′t(a)ϕ
1
0(K

1
2 ) + 2h′t(a)a ≤ −3ϕ1

0(K
1
3 ) + 3b, a.e., (3.4)

where F1 consists of all graphs with one vertex labeled 1, K1
2 ,K

1
3 ∈ F1 “evaluate” the

edge and triangle density at the labeled vertex, and ϕ1
0 ∈ Hom+(A1,R) is the random

extension of ϕ0 constructed similarly2 to ϕE
0 .

Note that if we take the expectation of each side of (3.4) with respect to the random

ϕ1
0 ∈ Hom+(A1,R), then we get 0. (A calculation-free intuition is that the edge/triangle

density of a graph G is equal to the average density of edges/triangles sitting on a random

vertex of G.) Thus we conclude that (3.4) is in fact equality a.e. ([Raz08, (3.2)]).

How can (3.3) and (3.4) be converted into statements about ϕ0? If, for example, one

applies the averaging operator J...K1 ([Raz07, Section 2.2]) to (3.4), that is, taking the

expected value of (3.4) over ϕ1
0, then one obtains the identity 0 = 0, as we have just

mentioned. However, one can multiply both sides of (3.4) by some 1-flag F and then

average. (In terms of graphs this corresponds to weighting vertices of Gn proportionally

to the density of F -subgraphs rooted at them.) What sufficed in [Raz07, Raz08] was to

2 Now it is an appropriate place to observe that the superscript in F0 refers to the empty type 0.
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take F = K1
2 . Denoting e = K1

2 for convenience and rearranging terms, we get ([Raz08,

(3.4)]):

ϕ0(3JeK1
3 K1 − 2h′t(a)Je2K1) = a(3b− 2ah′t(a)). (3.5)

Applying the operator J. . .KE (averaging over ϕE
0 ) directly to (3.3) is not useful.

Namely, if we take a graph G ∈ Ha, then the graph analog of (3.3) may have slack

for edges that connect two larger parts; thus the obtained inequality will not be best

possible. The trick in [Raz07] was first to multiply (3.3) by the E-flag P̄E
3 whose graph

is the complement of the 3-vertex path. (Thus each edge of Ha with slack gets weight 0.)

We obtain ([Raz08, (3.5)]):

ϕ0(JP̄E
3 K

E
3 KE) ≤ 1

3
h′t(a)ϕ0(JP̄E

3 KE) = 1

9
h′t(a)ϕ0(P̄3). (3.6)

We will also need the following identity which may be routinely checked (compare with

[Raz08, Lemma 3.2]):

3JeK1
3 K1 + 3JP̄E

3 K
E
3 KE = 2K3 +K4 +

1

4
K̄1,3, (3.7)

whereKs,t is the complete bipartite graph with part sizes s and t. (Thus K̄1,3 is a triangle

plus an isolated vertex.) Also, we have

1

3
P̄3 + 2Je2K1 = ρ+K3. (3.8)

Now, if we apply ϕ0 to (3.7) and (3.8) and combine with (3.5) and (3.6), then we obtain

the following inequality (see [Raz08, (3.6)] where it is also proved that h′t(a)+3a−2 > 0):

b ≥
a(2a− 1)h′t(a) + ϕ0(K4) +

1
4 ϕ0(K̄1,3)

h′t(a) + 3a− 2
. (3.9)

If ϕ0(K̄1,3) = 0 and ϕ0(K4) is equal to the limiting K4-density in Ha, then the right-hand

side of (3.9) is exactly h(a). Thus it remains to bound ϕ0(K4) from below. In particular,

we are already done if a ≤ 2/3 since every graph in Ha has no (or very few) copies

of K4; this is what was done in [Raz07]. Of course, the result of Nikiforov [Nik11] who

determined g4(a) for all a would suffice here but in order to prove our new Theorem 2.1

we need to analyze the argument of [Raz08] further.

Following [Raz08, page 612] define

A
def
=

2

3
h′t(a) = 2(t− 1)c,

B
def
= Aa− b =

2

3
ah′t(a)− b. (3.10)

Then, for example, (3.4), which is an equality a.e., can be rewritten as

ϕ1
0(K

1
3 ) = Aϕ1

0(e)−B a.e. (3.11)

Also, let us apply the averaging operator J. . .KE,1 to (3.3). Informally speaking, given

the labeled vertex x1 ∈ V (Gn), we pick the second labeled vertex x2 uniformly at random

and take the expectation of (3.3) multiplied by the indicator function of x1 and x2 being
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adjacent. Since JKE
3 KE,1 = K1

3 and J1KE,1 = JEKE,1 = e, we get ([Raz08, (3.8)])

ϕ1
0(K

1
3 ) ≤

1

3
h′t(a)ϕ

1
0(e) =

A

2
ϕ1

0(e) a.e. (3.12)

The combinatorial meaning of the last step is very simple: if each edge is in at most

(t−1)cn triangles, then a given vertex x1 can belong to at most 1
2d(x1)(t−1)cn triangles.

From (3.11) and (3.12) we obtain

0 <
B

A
≤ ϕ1

0(e) ≤
2B

A
a.e. (3.13)

Now let us take any individual ϕ1 ∈ Hom+(A1,R) for which (3.11)–(3.13) hold. Let

ψ
def
= ϕ1πe ∈ Hom+(A0,R), (3.14)

see [Raz08, page 612]. Informally, we take an arbitrary vertex x of Gn and assume that

the density of edges/triangles containing x satisfies (3.11)–(3.13). Then ψ corresponds to

taking the subgraph Hn of Gn induced by the neighborhood of x. For example, the edge

density of Hn can be calculated by taking the triangle density at x and multiplying it

by
(
n−1
2

)
/
(
d(x)
2

)
≈ (n−1

d(x) )
2. In the flag algebra formalism this reads ([Raz08, (3.13)])

ψ(ρ) =
ϕ1(K1

3 )

(ϕ1(e))2
=
Aϕ1(e)−B

(ϕ1(e))2
=
z − µ

z2
, (3.15)

where following [Raz08, page 612] we define

z
def
= ϕ1(e)/A and µ

def
= B/A2. (3.16)

Some calculations based on (3.2) show that ([Raz08, (3.15)])

ψ(ρ) ≤ 1− 1

t
. (3.17)

Summarizing (in the graph theory language): the degree of a typical x ∈ V (Gn) deter-

mines the edge density of Gn[N(x)], the subgraph induced by the neighborhood N(x) of

x. Moreover, this density is at most 1 − 1
t + o(1). This give us a strategy for bounding

the number of K4’s in Gn from below: use induction on t to bound the number of K3’s in

N(x) and then sum this over all x ∈ V (Gn) (and divide by 4). Unfortunately, this bound

on ψ(K3) involves radicals and it is not clear how to average it, since t(ψ(ρ)) may assume

different values for different choices of ϕ1. These difficulties are overcome by proving the

following lower bound on ϕ1(K1
4 ) = ψ(K3)(ϕ

1(e))3 which is a linear function of ϕ1(e)

that does not depend on t(ψ(ρ)) ([Raz08, (3.24)]):

ϕ1(K1
4 ) ≥ A3

(
3

2
(1− 2µ)

(
ϕ1(e)

A
− ηt−1

)
+ η3t−1

(t− 2)(t− 3)

(t− 1)2

)
, (3.18)

where, for 1 ≤ s ≤ t− 1, ηs is the unique root of the equation

ηs − µ

η2s
= 1− 1

s
(3.19)

that lies in the interval [µ, 2µ], see [Raz08, (3.17)]. Thus the random extension ϕ1
0 satis-

fies (3.18) a.e. and we can average it, obtaining a lower bound on ϕ0(K4), which is [Raz08,
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(3.25)]. (Note that the expectation of ϕ1
0(K

1
4 ) is ϕ0(K4).) It turns out that this lower

bound, when substituted into (3.9) suffices for proving the desired conclusion b ≥ h(a).

The derivations (also those of (3.18)) are rather messy, do not involve any genuine flag

algebras calculations and are not needed for our proof. So we omit them and refer the

reader to [Raz08] for all details.

4. Proof of Theorem 2.1

All notation here is compatible with that of [Raz07, Raz08]. As before, let 0, 1, and E

denote the (unique) types with respectively 0, 1 and 2 (adjacent) vertices. Also, ρ
def
=

K2 ∈ F0
2 and e

def
= K1

2 ∈ F1
2 are the (unique) 0- and 1-flags having two adjacent vertices.

In the arXiv version of our paper (arXiv.org:1204.2846) we offer a Mathematica code

that verifies some laborious flag algebra (in)equalities that are needed here.

Let Φ ⊆ Hom+(A0,R) be the set of the conjectured extremal homomorphisms defined

in Section 2. Let ϕ0 ∈ Hom+(A0,R) be arbitrary such that ϕ0(K3) = h(ϕ0(ρ)). We have

to show that ϕ0 ∈ Φ. Let a
def
= ϕ0(ρ) and b

def
= ϕ0(K3).

We prove Theorem 2.1 (that is, the claim that ϕ0 ∈ Φ) by induction on the parameter

t = t(a) that was defined by (1.1). If t = 1, then a ≤ 1/2, b = 0, and there is nothing

to do: every non-negative homomorphism of triangle density 0 is in Φ by definition. Let

t ≥ 2 and assume that we have proved the theorem for all smaller t.

Suppose first that a = 1 − 1
s for some integer s. Apply Theorem 1.2 to any sequence

{Gn} convergent to ϕ0, say with |V (Gn)| = n, to conclude that Gn is o(n2)-close to the

Turán graph Ts(n) in the edit distance. Clearly, when we change o(n2) edges in Gn, then

the density of any fixed graph F changes by o(1) so ϕ0 is still the limit of {Gn}. Since
the limit of {Ts(n)} is in Φ, we are done in this case.

So let a lie in the open interval (1− 1
t , 1−

1
t+1 ). Let c be defined by (1.2). We assume

that the reader is familiar with the proof in [Raz08]; part of it was sketched in Section 3,

and we utilize the notation and facts established there.

Since ϕ0 is extremal, we know that b = h(a). This gives some noticeable simplifications

to (3.10), (3.16) and (3.19):

B = t(t− 1)c2,

µ =
B

A2
=

t

4(t− 1)
, (4.1)

ηt−1 = 1/2.

The support of the random extension ϕσ
0 discussed in the previous section is the

smallest closed subset of Hom+(Aσ,R) of measure 1; it will be denoted by Sσ(ϕ0). A

useful property of the support is that if some closed property has measure 1, then every

element of Sσ(ϕ0) has this property. We fix an arbitrary ϕ1 ∈ S1(ϕ0). Inequalities (3.11)–

(3.13) hold a.e. and define a closed subset, thus ϕ1 satisfies them. In particular, (3.13)

simplifies to

0 <
tc

2
≤ ϕ1(e) ≤ tc < 1. (4.2)
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So, we can define ψ by (3.14).

Let us prove that ψ is extremal (that is, has the smallest possible triangle density

given its edge density). It is this part of our proof that most heavily relies upon [Raz08];

it basically amounts to checking that the extremality assumption b = h(a) makes tight

sufficiently many useful inequalities proven there.

Claim 4.1. ψ ∈ Φ and ψ(ρ) ∈
[
1− 1

t−1 , 1−
1
t

]
.

Proof. Let s be such that ψ(ρ) ∈ (1− 1
s , 1−

1
s+1 ].

We know that the result of averaging (3.18) (which is [Raz08, (3.25)]) is an equal-

ity. Hence (3.18) is equality a.e., and by the same token as before, it holds for every

ϕ1 ∈ S1(ϕ0). The analysis of the calculations in [Raz08] shows that [Raz08, (3.16)]

(which is equivalent to ψ(K3) ≥ hs(ψ(ρ))) is also equality. Thus the homomorphism

ψ ∈ Hom+(A0,R) is extremal. By (3.17) we have that s ≤ t− 1. The (global) induction

assumption implies that ψ ∈ Φ.

We still have to show the second part of the claim when t ≥ 3. Recall that ψ(ρ) = z−µ
z2

by (3.15). In view of (4.1), the quadratic equation z−µ
z2 = 1 − 1

t−1 has two roots: z = 1
2

and z = t
2(t−2) . By (4.2), it is impossible that z ≥ t

2(t−2) (which is equivalent to ϕ1(e) ≥
t(t−1)
t−2 c). Thus, if we assume that s ≤ t− 2, then ψ(ρ) ≤ 1− 1

t−1 and z ≤ 1/2 = ηt−1.

Thus, when we apply the proof of [Raz08, Claim 3.3], the case z ≤ ηt−1 takes place.

This implies that [Raz08, (3.21)] is tight. Then [Raz08, (3.23)] is also tight. Its proof on

page 615 of [Raz08] shows that this is possible only if µ = s+1
4s is the largest element of

[ z2 ,
s+1
4s ], the admissible interval for µ. By (4.1) we have that s = t− 1, as required.

Claim 4.1 alone suffices to verify Theorem 2.1 in the toy-like case ϕ0(P̄3) = 0, where

P̄3 denotes the complement of the 3-vertex path; combinatorially this means that ϕ0
is the limit of complete multipartite graphs. Indeed, ϕ0(P̄3) = 0 obviously implies that

the homomorphism ψ defined by (3.14) also satisfies ψ(P̄3) = 0 and, moreover, ϕ0 is

equal to the join ∨(0, ψ; 1−ϕ1(e), ϕ1(e)). The latter fact readily follows from definitions;

combinatorially it means that every vertex x in a complete multipartite graph Gn defines

its decomposition as the join Gn = In ∨ Hn, where Hn is the subgraph induced by

all neighbors of x and In is the independent set induced by all non-neighbors of x.

Thus, applying Claim 4.1 inductively, we conclude that every ϕ0 ∈ Φ with ϕ0(P̄3) = 0

necessarily has the form ∨(0, . . . , 0︸ ︷︷ ︸
k times

; c1, . . . , ck), where, say, 0 < c1 ≤ . . . ≤ ck, for some

fixed finite k. We are only left to prove that c2 = . . . = ck, and the simplest way of doing

this is to invoke [Nik11, Claim 2.13] used by Nikiforov for essentially identical purpose:

Claim 4.2. Let γ3 ≥ γ2 ≥ γ1 > 0 be real numbers satisfying

γ1 + γ2 + γ3 = α,

γ1γ2 + γ2γ3 + γ3γ1 = β,

and let γ1γ2γ3 be minimized subject to these two constraints. Then γ2 = γ3.
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The case ϕ0(P̄3) > 0 is way more elaborate, and this is where the main novelty of our

contribution lies. We begin with the following claim. The intuition behind it is as follows.

Identity (3.11) gives a linear relation between triangle and edge densities via a vertex. By

Claim 4.1 we know that (3.11) also holds for the subgraph induced by the neighborhood

of almost every vertex x ∈ V (G). If we average this for all choices of x, then we get some

linear relation between the densities of K4, K3, and K2 that has to hold for all extremal

homomorphisms. Repeating we get a linear relation for K5, K4, and K3, and so on.

Claim 4.3. For every r ≥ 3, we have

ϕ0(Kr) = 2(t− r + 2)cϕ0(Kr−1)− (t− r + 3)(t− r + 2)c2ϕ0(Kr−2). (4.3)

Proof. We use induction on r. If r = 3, then the identity relates b = ϕ0(K3) and

a = ϕ0(ρ). Both of these parameters have been explicitly expressed in terms of c and t

and the desired identity (4.3) can be routinely checked.

Suppose that (4.3) is true (for all extremal ϕ0). Let us prove it for r+1. Let ϕ1 ∈ S1(ϕ0)

be arbitrary and let ψ = ϕ1πe. By Claim 4.1 we know that ψ(ρ) ∈ [1 − 1
t−1 , 1 −

1
t ]. Let

γ = c(ψ(ρ)), where c(x) is defined by (1.3), that is, γ is the unique root of

2

((
t− 1

2

)
γ2 + (t− 1)γ(1− (t− 1)γ)

)
= ψ(ρ) (4.4)

with γ ≥ 1/t. We have that γ = c/ϕ1(e). Indeed, this value satisfies (4.4) by (3.15) and

is at least 1/t by (4.2). (An informal reason is that all derived inequalities are sharp for

Φ and, if we pass to a neighborhood of a vertex in some H ∈ Ha, then its t − 2 largest

parts have the same (absolute) sizes as the t− 1 largest parts of H.)

By Claim 4.1, we have that t(ψ(ρ)) = t− 1. Thus, by the induction assumption,

ψ(Kr) = 2(t− r + 1)γψ(Kr−1)− (t− r + 2)(t− r + 1)γ2ψ(Kr−2).

If we now substitute γ = c/ϕ1(e) and ψ(Ks) = ϕ1(K1
s+1)/(ϕ

1(e))s, cancel all occurrences

of (ϕ1(e))−r, and average the result, we obtain exactly what we need.

Let us define h(r)(1) = 1 and, for 0 ≤ x < 1,

h(r)(x)
def
= r!

((
t

r

)
cr +

(
t

r − 1

)
cr−1(1− tc)

)
,

where c = c(x) is again defined by (1.3). In other words, h(r)(x) is the limiting density

of Kr in the graphs from Hx,n as n→ ∞. (In particular, h(3) is equal to our function h.)

It is an upper bound on gr(x) and, as it was recently shown by Reiher [Rei12], they are

in fact equal: gr(x) = h(r)(x).

Claim 4.3 has the following useful corollary.

Claim 4.4. Let r ≥ 3. Then ϕ0(Kr) = h(r)(a), that is, each clique has the “right”

density. In particular, ϕ0(Ks) = 0 for s ≥ t+ 2.
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G1 G2

Figure 1. Exceptional graphs

Proof. This is true for r = 3 as ϕ0(K3) = g3(a). The general case follows from Claim 4.3

by induction on r.

Recall that we assume ϕ0(P̄3) > 0 (as the case ϕ0(P̄3) = 0 was already tackled before).

We need a few auxiliary results. For a graph F ∈ F0
ℓ , let F

(1) ∈ F1
ℓ+1 be the 1-flag

obtained by adding a new vertex x that is connected to all vertices of F (i.e., taking the

join F ∨K1) and labeling x as 1.

Claim 4.5. ϕ0(JP̄ (1)
3 K1) > 0.

Proof. By Claim 4.4 we have that ϕ0(K4) = h(4)(a). When we substitute this value

into (3.9) we obtain a tight inequality except for the extra term involving K̄1,3 (a triangle

plus an isolated vertex). We conclude that

ϕ0(K̄1,3) = 0. (4.5)

Inequality (3.6) is also used in the proof, so it has to be tight. Since we assumed that

ϕ0(P̄3) > 0, we have that ϕ0(JP̄E
3 K

E
3 KE) > 0, where P̄E

3 is the unique E-flag on P̄3. But

JP̄E
3 K

E
3 KE =

1

4
K̄1,3 +

1

3
JP̄ (1)

3 K1,
and the claim follows.

The two graphs in Figure 1, called G1 and G2, will play a special role.

Claim 4.6. ϕ0(G1) = ϕ0(G2) = 0.

Proof. We apply the same strategy (although with much more involved calculations)

as the one used to prove (4.5). Namely, we make up an analog of (3.9) that is tight on

extremal homomorphisms and such that the “overall slackness” involved will cover G1

and G2.

Form the element fE ∈ FE
4 as follows:

fE
def
=

1

2
PE,c
4 − 1

2
PE,b
4 − FE ,

where PE,c
4 , PE,b

4 , FE ∈ FE
4 are shown on Figure 2. Since (3.6) is tight,

ϕE
0 (KE

3 ) <
1

3
h′t(a) =⇒ ϕE

0 (P̄E
3 ) = 0 a.e.
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1 2

PE,b
4

1 2

FE

1 2

PE,c
4

Figure 2. Some E-flags

Since both PE,b
4 and FE contain P̄E

3 , this implies that

ϕE
0 (KE

3 ) <
1

3
h′t(a) =⇒ ϕE

0 (fE) ≥ 0 a.e. (4.6)

(Recall that ht is just the restriction of h to the interval [1 − 1
t , 1 − 1

t+1 ] as defined

by (3.1).) Thus, by (3.3), we can multiply the left-hand side of (4.6) by fE , obtaining a

true inequality. If we apply the averaging operator J. . .KE to this new inequality, we get

that

ϕ0(JfEKE
3 KE) ≤ 1

3
h′t(a)ϕ0(JfEKE). (4.7)

Next, similarly to [Raz08, (3.4)] but multiplying [Raz08, (3.2)] (i.e. our formula (3.4)

which is equality a.e.) by K1
3 rather than by e, we obtain

ϕ0(3J(K1
3 )

2K1 − 2h′t(a)JeK1
3 K1) = b(3b− 2ah′t(a)). (4.8)

Subtracting (4.8) from (4.7) multiplied by 3, and re-grouping terms, we obtain

3ϕ0(JfEKE
3 KE − J(K1

3 )
2K1) + h′t(a)ϕ0(2JeK1

3 K1 − JfEKE) ≤ b(2ah′t(a)− 3b). (4.9)

But we also have

2JeK1
3 K1 − JfEKE =

4

3
K3 +

2

3
K4 −

1

3
K̄1,3 (4.10)

and

JfEKE
3 KE − J(K1

3 )
2K1 ≥ 1

60
(G1 +G2)−

(
1

2
K4 +

1

3
ρK3 +

1

6
K5

)
. (4.11)

Substituting these relations into (4.9), and using Claim 4.4, we conclude by (4.5) that

1

20
ϕ0(G1 +G2) ≤ b(2ah′t(a)− 3b)− h′t(a)

(
4

3
b+

2

3
h(4)(a)

)
+

(
3

2
h(4)(a) + ab+

1

2
h(5)(a)

)
= 0.

Claim 4.6 is proved.

Lemma 4.7. Let G be a graph on V = {x1, x2, x3, y, z} with the following properties.

The vertices x1, x2, x3 induce P̄3 with x1x2 ∈ E(G), y is adjacent to each xi and z is

non-adjacent to at least one xi.

If yz ̸∈ E(G), then G contains K̄1,3 as an induced subgraph or G is isomorphic to G1

or G2.
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Proof. If zx1, zx2 ∈ E(G), then zx3 ̸∈ E(G) and G − y ∼= K̄1,3. If zx1, zx2 ̸∈ E(G),

then G − x3 ∼= K̄1,3. So we can assume without loss of generality that zx1 ∈ E(G) and

zx2 ̸∈ E(G). Now, if zx3 ̸∈ E(G), then G is isomorphic to G1; otherwise G ∼= G2.

Now we are ready to put everything together. The next argument would look par-

ticularly simple and elegant in genuinely flag-algebraic notation, but it would require

introducing some more notions and techniques, notably upward operators ([Raz07, Sec-

tion 2.3.1]) and relating extensions for different types ([Raz07, Theorem 3.17]). We prefer

not to indulge into this endeavor in the concluding part of our paper, so we replace this

with (admittedly, crude) translation to the finite world.

Let σ be the 3-vertex type whose graph is P̄3 with labels 1 and 2 being adjacent. Let

{Gn} converge to ϕ0 with |V (Gn)| = n. By Claim 4.5, Gn has Ω(n4) copies of F0 ∈ F0
4 ,

which denotes a triangle with a pendant edge. Let F1 ∈ F1
4 be obtained from F0 by

putting label 1 on a vertex of degree 2. Let F3 ∈ Fσ
4 be the (unique) σ-flag that can be

obtained from F1 by adding labels 2 and 3.

Fix small positive constants ε ≫ δ. Let X = {x1 ∈ V (Gn) : p(F1, (Gn;x1)) > ε}. By
counting copies of F0 in Gn, we conclude that

2(ϕ(F0) + o(1))

(
n

4

)
≤ |X|

(
n− 1

3

)
+ (n− |X|)ε

(
n− 1

3

)
,

implying that e.g. |X| ≥ ϕ(F0)n/3 ≥ 2εn. An easy counting shows that for every x1 ∈ X

there are at least δn2 pairs (x2, x3) of vertices with p(F3, (Gn;x1, x2, x3)) ≥ δ. Likewise,

by (4.2), the set Y = {x1 ∈ V (Gn) : p(e, (Gn;x1)) < 1−ε} has size at least (1−ε)n. Thus
|X ∩ Y | ≥ εn and there are at least εn · δn2 choices of (x1, x2, x3) such that x1 ∈ X ∩ Y
and p(F3, (Gn;x1, x2, x3)) ≥ δ. Given such a triple, let V1 consist of all vertices of Gn

adjacent to all of x1, x2, x3 and let V2 = V (Gn) \ V1. We have |V1| ≥ δ(n − 3). Since

x1 ∈ Y , we have |V2| ≥ ε(n − 1) (note that all non-neighbors of x1 are in V2). For each

non-adjacent y ∈ V1 and z ∈ V2, the 5-set {x1, x2, x3, y, z} contains G1, G2 or K̄1,3 by

Lemma 4.7. By (4.5) and Claim 4.6, each of these graphs has density o(1) in Gn. Thus

there is a triple (x1, x2, x3) with e(Ḡ[V1, V2]) = o(n2).

Fix one such choice. By taking a subsequence, we can assume that |Vi|/n tends to

a limit αi and that Gn[Vi] converges to some homomorphism ϕi, for i = 1, 2. Now,

ϕ0 = ∨(ϕ1, ϕ2, α1, α2), where α1 ≥ δ and α2 ≥ ε are bounded away from 0.

Let i = 1 or 2. Each ϕi is an extremal homomorphism: for example, if there is ϕ′1 with

ϕ′1(ρ) = ϕ1(ρ) and ϕ
′
1(K3) < ϕ1(K3), then ∨(ϕ′1, ϕ2, α1, α2) contradicts the extremality of

ϕ0. Since ϕ0(Kt+2) = 0 and α3−i > 0, we have ϕi(Kt+1) = 0 for i = 1, 2. Turán’s theorem

implies that ϕi(ρ) ≤ 1− 1
t . Thus we can apply the (global) induction and conclude that

ϕi ∈ Φ.

We have proved so far that ϕ0 is a join of two elements from Φ; in particular, it has

the form

ϕ0 = ∨(0, . . . , 0︸ ︷︷ ︸
k times

, ψ1, ψ2; c1, . . . , ck, d1, d2), with c1, . . . , ck > 0, (4.12)

where ψ1(K3) = ψ2(K3) = 0. Let ψ′
i

def
= ∨(0, 0; pi, 1 − pi), where pi ≤ 1/2 satisfies
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2pi(1 − pi) = ψi(ρ). Since ψ
′
i(ρ) = ψi(ρ) and ψ′(K3) = ψ(K3) (= 0), after plugging ψ′

i

for ψi into ϕ0, we will get another extremal homomorphism

ϕ′0
def
= ∨( 0, . . . , 0︸ ︷︷ ︸

k+4 times

; c1, . . . , ck, d1p1, d1(1− p1), d2p2, d2(1− p2)). (4.13)

The equality ϕ′0(P̄3) = 0, as we already proved before, implies ϕ′0 ∈ Φ, that is, all non-

zero weights in (4.12) are equal except for possibly one that is allowed to be smaller than

others. But ϕ0(P̄3) > 0 which implies that for at least one ψi, say, ψ1, we have d1 > 0

and 0 < p1 < 1/2. This already creates the exceptional weight d1p1 in (4.13); all others

weights must lie in {0, d1(1 − p1)}. In particular, either d2 = 0 or p2 ∈ {0, 1/2}; in the

first case ψ2 can be crossed out from (4.12), and in the second case ψ2 = ψ′
2 and it can

be merged with the first k terms. Thus, ϕ0 ∈ Φ.

This finishes the proof of Theorem 2.1.
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vol. 2, Bolyai Math. Soc., 1996, pp. 295–352.

[Lov12]L. Lovász, Large networks and graph limits, Colloquium Publications, Amer. Math. Soc.,
2012.

[LS76]L. Lovász and M. Simonovits, On the number of complete subgraphs of a graph, Proceedings
of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975) (Win-
nipeg, Man.), Utilitas Math., 1976, pp. 431–441. Congressus Numerantium, No. XV.

[LS83] , On the number of complete subgraphs of a graph. II, Studies in pure mathematics,
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