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Abstract
Razborov, À.À. The gap between the chromatic number of à graph and the rank of its
adjacency matrix is superlinear. Discrete Mathematics 108 (1992) 393-3%.

We present à sequence of graphs Gn for which X(Gn) ;., Q(rk(A(Gn»4).

1. Introduction

ÒÜå question addressed in this paper is how efficiently the chromatic number
X(G) of à graph G might Üå estimated in terms of the rank of the adjacency
matrix A(G) of this graph. At îîå time it was thought that X(G) ~ rk(A(G)) for
à" nontrivial graphs G. This conjecture was recently disproved Üó Alon and
Seymour [1] who found out à sequence of graphs Gn for which Õ( Gn) =

~rk(A(Gn)). In this note we prove that the gap between X(G) and rk(A(G)) is
superlinear Üó presenting graphs Gn îî ï5 vertices with X(Gn) ~ Q(n4) and
rk(A(Gn)) ~ 0(ï3).

ÒÜå question under discussion is of especial interest in view of à connection
with the communication complexity revealed Üó Lovasz and Saks in [4]. Namely,
they noted that the rank lower bound log2 rk(A) of Mehlhorn and Schmidt [5] for
the ( deterministic ) communication complexity ÎÑÑ(À) of à 0-1 matrix À is tight
up to à polynomial if and °nly if X(G) ~ exp(log(rk(A(G)))O(I)) for arbitrary
graphs G. Àî immediate corollary of our result is àî example of 0-1 matrices Àï
such that ÎÑÑ(Àï) ~ ~ log2 rk(An) -0(1). Actually åóåî the stronger fact
NCC(An) ~ ~ log2 rk(An) -0(1) holds where NCC stands for the nondeterministic
communication complexity.
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2. ÒÜå result

À" graphs in this paper are undirected, without loops and multiple edges.
V(G) is the set of vertices of à graph G, E(G) is the set of its edges. X(G) is the
chromatic number of G, à( G) is the size of the largest set of vertices which are
mutually independent in G. Êï is the complete graph îî ï vertices. ÒÜå adjacency
matrix A(G) of à graph G with V(G) = {V1, ..., Vn} is à 0-1 symmetric ï to ï
matrix where a;j = 1 iff (V;, Vj) Å E(G). ÒÜå spectrum Sp(G) of à graph G is the

spectrum of A(G) (over reals) considered as à multiset (i.e., à" eigenvalues are
taken with their multiplicities).

Define now à special sequence of graphs Gn. Let Ó1, ..., Ó5 Üå five disjoint
sets, of cardinality ï åàñÜ. Set

V(Gn)~n;=l V;.

For X,yEV(Gn) (Õ=(Õ1'...'Õ5);Ó=(Ó1'...'Ó5» define ð(Õ,Ó)Å{0,1}5 as
follows: ð(õ, ó ); = 1 iff õ; * ó;. We connect õ and ó Üó àî edge of the graph Gn if

and only if ð(õ, ó) belongs to the following set !?lJ:

!?lJ~{0, 1}5\{(00000), (11100), (11010), (11001),

(11110), (11101), (11011), (00111)}.

Theorem. (à) rk(A(Gn» ~ O(ï3),
(Ü) X(Gn) ~ Q(n4).

Proof. (à) Note that Gn is the NEP-sum (see e.g. [2, Section 2.5]) of five copies
of Êï with the basis !?lJ. This allows us to evaluate Sp( Gn) in the form

Sp(Gn) = {fOO().l' ..., ).5) I ).; Å Sp(Kn)}, (1)

where

5
fOO(X1' ..., X5)~ L ï xri

ðåOO;=l
5

= ï (1 + õ;) -1- Õ1Õ2(ÕÇ + Õ4 + Õ5 + ÕçÕ4 + ÕçÕ5 + Õ4Õ5) -ÕçÕ4Õ5
;=1

(see e.g. [2, Theorem 2.23]). It is easy to check that

afooIfoo(-l, ..., -1)=0 and -=0 for 1~i~5.
àõ; (-1 1)

Since foo is linear in åàñÜ variable, it follows that fOO(X1' ..., Õ5) = 0 whenever at
most îîå OfX1' ..., Õ5 differs from (-1). But Sp(Kn) = {(-1), ..., (-1), ï -1}

« -1) occurs (ï -1) times). Therefore, the number of points in Sp(Kn)5 which
have at least two coordinates different from ( -1) does not exceed O(ï3). Âó (1)
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we have that Sp(Gn) contains at most 0(ï3) nonzero eigenvalues which exactly
means rk(A(Gn» ~ 0(ï3).

(Ü) It is sufficient to show that à( Gn) ~ Î(ï ). For let S Üå an independent set

of vertices in Gn. Given I ~ {1, ..., 5}, denote Üó PI the natural projection
PI:V~nElv;. Let Sl~PËS). Then it is easy to see that S12 is à matching in
V1 õ V2 and hence IS121 ~ ï. If for åàñÜ .i Å S12 we have IpI21(.i) n SI ~ 3 then the

proof is completed. So, we òàó assume that there exists .i Å S12 such that
IpI21(.i) n SI ~ 4. Let us see that in this case S12 = {Õ}.

Indeed, consider H~pç45(p11(x) n S); í ~ S345. Then í is à 3~matching of
size ~4 in VÇ õ V4 õ V5. If ó Å S were à vertex for which pu(y) * Õ, then Ð345(Ó)

should have à common vertex with åàñÜ member of the 3-matching í (because
otherwise ó would Üå adjacent to the conesponding vertex in pli(.i) n S). That is

impossible since the size of í is ~4.
So, we have S12 = {Õ} and hence ISI = IHI ~ ï because í is à 3-matching. î

ÒÜå notion of the ( deterministic ) communication complexity DCC(A) of à 0-1
matrix À was introduced Üó Óào in his seminal paper [6]. Two efficient lower

bounds for DCC(A) are known: the nondeterministic communication complexity
NCC(A) [3] which equals rlog21 of the smallest number of 1-rectangles one needs
to cover àÏ 1-entries in À and the rank lower bound log2 rk(A) invented Üó
Mehlhorn and Schmidt [5]. Lovasz and Saks [4] asked whether the rank lower

bound is optimal up to à polynomial. We can derive from the theorem above the
following modest separation between NCC and log2 rk (and hence also between

DCC and log2 rk).

Corollary .There are 0-1 matrices Àï for which

NCC(An) ~ 11og2 rk(An) -0(1).

Proof. Take Àï ~] -À( Gn) where J is the matrix with àÏ entries equal1 and Gn
are the graphs from the theorem. Then rk(An) ~ 0(ï3) whereas NCC(An) ~
41og2 ï -0(1) because even to cover the diagonal of Àï one needs X(Gn) ~

Ùï4) 1-rectangles. D
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