The gap between the chromatic number of a graph and the rank of its adjacency matrix is superlinear

A.A. Razborov

Steklov Mathematical Institute, Vavilova, 42, GSP-1, 117966 Moscow, USSR

Received 4 January 1991

Abstract

Razborov, A.A. The gap between the chromatic number of a graph and the rank of its adjacency matrix is superlinear. Discrete Mathematics 108 (1992) 393-396.

We present a sequence of graphs G_n for which $\chi(G_n) \ge \Omega(\operatorname{rk}(A(G_n))^{\frac{4}{3}})$.

1. Introduction

The question addressed in this paper is how efficiently the chromatic number $\chi(G)$ of a graph G might be estimated in terms of the rank of the adjacency matrix A(G) of this graph. At one time it was thought that $\chi(G) \leq \operatorname{rk}(A(G))$ for all nontrivial graphs G. This conjecture was recently disproved by Alon and Seymour [1] who found out a sequence of graphs G_n for which $\chi(G_n) = \frac{32}{29}\operatorname{rk}(A(G_n))$. In this note we prove that the gap between $\chi(G)$ and $\operatorname{rk}(A(G))$ is superlinear by presenting graphs G_n on n^5 vertices with $\chi(G_n) \geq \Omega(n^4)$ and $\operatorname{rk}(A(G_n)) \leq O(n^3)$.

The question under discussion is of especial interest in view of a connection with the communication complexity revealed by Lovász and Saks in [4]. Namely, they noted that the rank lower bound $\log_2 \operatorname{rk}(A)$ of Mehlhorn and Schmidt [5] for the (deterministic) communication complexity $\operatorname{DCC}(A)$ of a 0-1 matrix A is tight up to a polynomial if and only if $\chi(G) \leq \exp(\log(\operatorname{rk}(A(G)))^{O(1)})$ for arbitrary graphs G. An immediate corollary of our result is an example of 0-1 matrices A_n such that $\operatorname{DCC}(A_n) \geq \frac{4}{3} \log_2 \operatorname{rk}(A_n) - \operatorname{O}(1)$. Actually even the stronger fact $\operatorname{NCC}(A_n) \geq \frac{4}{3} \log_2 \operatorname{rk}(A_n) - \operatorname{O}(1)$ holds where NCC stands for the nondeterministic communication complexity.

394 A.A. Razborov

2. The result

All graphs in this paper are undirected, without loops and multiple edges. V(G) is the set of vertices of a graph G, E(G) is the set of its edges. $\chi(G)$ is the chromatic number of G, $\alpha(G)$ is the size of the largest set of vertices which are mutually independent in G. K_n is the complete graph on n vertices. The adjacency matrix A(G) of a graph G with $V(G) = \{v_1, \ldots, v_n\}$ is a 0-1 symmetric n to n matrix where $a_{ij} = 1$ iff $(v_i, v_j) \in E(G)$. The spectrum Sp(G) of a graph G is the spectrum of A(G) (over reals) considered as a multiset (i.e., all eigenvalues are taken with their multiplicities).

Define now a special sequence of graphs G_n . Let V_1, \ldots, V_5 be five disjoint sets, of cardinality n each. Set

$$V(G_n) \rightleftharpoons \prod_{i=1}^5 V_i$$

For $x, y \in V(G_n)$ $(x = (x_1, \dots, x_5); y = (y_1, \dots, y_5))$ define $\beta(x, y) \in \{0, 1\}^5$ as follows: $\beta(x, y)_i = 1$ iff $x_i \neq y_i$. We connect x and y by an edge of the graph G_n if and only if $\beta(x, y)$ belongs to the following set \mathcal{B} :

$$\mathcal{B} \rightleftharpoons \{0, 1\}^5 \setminus \{(00000), (11100), (11010), (11001), (11110), (11110), (11101), (11011), (00111)\}.$$

Theorem. (a)
$$\operatorname{rk}(A(G_n)) \leq \operatorname{O}(n^3)$$
,
 (b) $\chi(G_n) \geq \Omega(n^4)$.

Proof. (a) Note that G_n is the NEP-sum (see e.g. [2, Section 2.5]) of five copies of K_n with the basis \mathcal{B} . This allows us to evaluate $Sp(G_n)$ in the form

$$\mathbf{Sp}(G_n) = \{ f_{\mathfrak{B}}(\lambda_1, \ldots, \lambda_5) \mid \lambda_i \in \mathbf{Sp}(K_n) \}, \tag{1}$$

where

$$f_{\Re}(x_1,\ldots,x_5) \rightleftharpoons \sum_{\beta \in \Re} \prod_{i=1}^{5} x_i^{\beta_i}$$

$$= \prod_{i=1}^{5} (1+x_i) - 1 - x_1 x_2 (x_3 + x_4 + x_5 + x_3 x_4 + x_3 x_5 + x_4 x_5) - x_3 x_4 x_5$$

(see e.g. [2, Theorem 2.23]). It is easy to check that

$$f_{\mathfrak{B}}(-1,\ldots,-1)=0$$
 and $\frac{\partial f_{\mathfrak{B}}}{\partial x_i}\Big|_{(-1,\ldots,-1)}=0$ for $1 \le i \le 5$.

Since $f_{\mathfrak{B}}$ is linear in each variable, it follows that $f_{\mathfrak{B}}(x_1, \ldots, x_5) = 0$ whenever at most one of x_1, \ldots, x_5 differs from (-1). But $\mathbf{Sp}(K_n) = \{(-1), \ldots, (-1), n-1\}$ ((-1) occurs (n-1) times). Therefore, the number of points in $\mathbf{Sp}(K_n)^5$ which have at least two coordinates different from (-1) does not exceed $O(n^3)$. By (1)

we have that $\operatorname{Sp}(G_n)$ contains at most $\operatorname{O}(n^3)$ nonzero eigenvalues which exactly means $\operatorname{rk}(A(G_n)) \leq \operatorname{O}(n^3)$.

(b) It is sufficient to show that $\alpha(G_n) \leq O(n)$. For let S be an independent set of vertices in G_n . Given $I \subseteq \{1, \ldots, 5\}$, denote by p_I the natural projection $p_I: V \to \prod_{i \in I} V_i$. Let $S_I \rightleftharpoons p_I(S)$. Then it is easy to see that S_{12} is a matching in $V_1 \times V_2$ and hence $|S_{12}| \leq n$. If for each $\tilde{x} \in S_{12}$ we have $|p_{12}^{-1}(\tilde{x}) \cap S| \leq 3$ then the proof is completed. So, we may assume that there exists $\tilde{x} \in S_{12}$ such that $|p_{12}^{-1}(\tilde{x}) \cap S| \geq 4$. Let us see that in this case $S_{12} = \{\tilde{x}\}$.

Indeed, consider $H \rightleftharpoons p_{345}(p_{12}^{-1}(\tilde{x}) \cap S)$; $H \subseteq S_{345}$. Then H is a 3-matching of size ≥ 4 in $V_3 \times V_4 \times V_5$. If $y \in S$ were a vertex for which $p_{12}(y) \ne \tilde{x}$, then $p_{345}(y)$ should have a common vertex with each member of the 3-matching H (because otherwise y would be adjacent to the corresponding vertex in $p_{12}^{-1}(\tilde{x}) \cap S$). That is impossible since the size of H is ≥ 4 .

So, we have $S_{12} = {\tilde{x}}$ and hence $|S| = |H| \le n$ because H is a 3-matching. \square

The notion of the (deterministic) communication complexity DCC(A) of a 0-1 matrix A was introduced by Yao in his seminal paper [6]. Two efficient lower bounds for DCC(A) are known: the nondeterministic communication complexity NCC(A) [3] which equals $\lceil \log_2 \rceil$ of the smallest number of 1-rectangles one needs to cover all 1-entries in A and the rank lower bound $\log_2 \operatorname{rk}(A)$ invented by Mehlhorn and Schmidt [5]. Lovász and Saks [4] asked whether the rank lower bound is optimal up to a polynomial. We can derive from the theorem above the following modest separation between NCC and $\log_2 \operatorname{rk}$ (and hence also between DCC and $\log_2 \operatorname{rk}$).

Corollary. There are 0-1 matrices A_n for which

$$NCC(A_n) \ge \frac{4}{3} \log_2 \operatorname{rk}(A_n) - O(1).$$

Proof. Take $A_n \rightleftharpoons J - A(G_n)$ where J is the matrix with all entries equal 1 and G_n are the graphs from the theorem. Then $\operatorname{rk}(A_n) \le \operatorname{O}(n^3)$ whereas $\operatorname{NCC}(A_n) \ge 4\log_2 n - \operatorname{O}(1)$ because even to cover the diagonal of A_n one needs $\chi(G_n) \ge \Omega(n^4)$ 1-rectangles. \square

References

^[1] N. Alon and P.D. Seymour, A counterexample to the rank-coloring conjecture, J. Graph Theory, to appear.

^[2] D.M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, Theory and Application (VEB Deutcher Verlag der Wissenschaften, Berlin, 1980) (Russian translation is available).

^[3] R.J. Lipton and R. Sedgewick, Lower bounds for VLSI, proc. 13th ACM STOC (1981) 300-307.

396 A.A. Razborov

- [4] S. Lovász and M. Saks, Lattices, Möbius functions and communication complexity, Proc. 29th IEEE FOCS (1988) 81-90.
- [5] K. Mehlhorn and E.M. Schmidt, Las Vegas is better than determinism in VLSI and distributive computing, Proc. 14th ACM STOC (1982) 330-337.
- [6] A.C. Yao, Some complexity questions related to distributed computing, Proc. 11th ACM STOC (1979) 209-213.