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Abstract

In this talk we will consider various classes defined by small depth polynomial
size circuits which contain threshold gates and parity gates. We will describe various
inclusions between many classes defined in this way and also classes whose definitions
rely upon spectral properties of Boolean functions.

1. Introduction

The main goal of the computational complexity theory is to be able to
classify computational problems accordingly to their inherent complexity.
At the first stage the problems are combined into large collections called
complexity classes, each class consisting of problems which can be effi-
ciently solved by an algorithm from a certain family. This allows one to
unify many heterogeneous questions into only a few major problems about
possible inclusions of one complexity class into another. Unfortunately, we
are not even nearly close to solving the most important problems of this
kind like the P vs. NP question or the NC vs. P question.

This talk will be devoted to a fragment of the complexity hierarchy
(lying well below the class NC1) where the existing machinery does allow
us to answer questions on possible inclusions between complexity classes
and in fact the result known at the moment give more or less complete
picture of the fine structure within that fragment.

More precisely, we will be mostly interested in small depth circuits which
contain threshold gates. There are two reasons for studying them.
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The first reason is that threshold circuits are very closely connected to
neural nets which is one of the most active areas in computer science. The
basic element of a neural net is close to a threshold gate.

Another reason is that the complexity classes defined by small depth
threshold circuits contain many interesting Boolean functions and are closely
related to other complexity classes defined both in terms of small depth
circuits and the spectral behavior of the function in question.

The paper is organized as follows. In Section 2 we introduce the neces-
sary notation. Section 3 is devoted to (linear) threshold circuits of bounded
depth. In Section 4 we consider complexity classes defined both in terms
of the spectral representation and also in terms of polynomial thresholds.
In Section 5 we merge together the two hierarchies of complexity classes
considered in previous sections. The concluding section 6 contains some
applications of the general theory to computing very concrete Boolean
functions.

2. Notation

We will consider Boolean functions but for notational simplicity we will
be working over {−1, 1} rather than {0, 1} where we let −1 correspond to
1 and 1 to 0. Thus variables will take the values {−1, 1} and a typical
function will be from {−1, 1}n to {−1, 1}. In this notation the parity of a
set of variables will be equal to their product and thus we will speak of a
monomial rather than of the parity of a set of variables. If we have a vector
x of variables (indexed like xi or xij) then a monomial will be written in
the form xα where α is a 0, 1-vector of the same type.

A threshold gate with n inputs is determined by n integer weights (w1, w2, . . . , wn)
and a threshold T . On an input x = (x1, . . . , xn) ∈ {−1, 1}n it takes the
value sign(x1w1 + · · ·+ xnwn +T ) (we will always assume w.l.o.g. that the
linear form x1w1 + · · · + xnwn + T never evaluates to 0). The parameter∑n
i=1 |wi|+ |T | is called the total weight of the corresponding threshold gate.
Circuits considered in this paper will be mostly assembled from thresh-

old gates and gates which compute monomials (= parity gates in the {0, 1}-
terminology). We define the size of a circuit to be the number of gates.



3. Linear Threshold Circuits

In this section we will consider (linear) threshold circuits that is circuits
consisting entirely of threshold gates. Let LTd denote the class of functions
computable by polynomial size depth d threshold circuits. Note that it is
not quite clear a priori that functions computable even by, say, a single
threshold gate have polynomial size circuits (of an arbitrary depth). The
following well-known result (see e.g. [Mur71]) takes care of this.

Theorem 3.1. For each threshold gate with n inputs there exists a thresh-
old gate which computes the same function and has the total weight at most
exp(O(n log n)).

A model which is more natural from the “polynomial” point of view is
to have the restriction that absolute values of all (integer!) weights are
bounded by a polynomial in the length of the input. We will refer to this
restriction as the small weights restriction and let L̂T d denote the class of
Boolean functions computable by polynomial size depth d small weights
threshold circuits. It can be easily seen that L̂T d-circuits can be further
simplified to consist of MAJORITY gates and of negations which appear
on input variables only.

Now we review lower bounds known for linear threshold circuits.
It is easy to see that LT1 does not contain all Boolean functions in n

variables for any n ≥ 2. In fact, even such a simple function in just two
variables as x1x2 is outside of LT1.

An example of a function in LT1 \ L̂T 1 was first presented in [MK61]:

Theorem 3.2 (Myhill, Kautz). Any linear threshold gate computing the
LT1-function

sign

q+1∑
i=1

2i−1xi +
q∑
j=1

(
2q − 2j−1

)
yj − 2q


must have a coefficient which is at least as large as 2q.

In fact, Myhill and Kautz gave also an example for which the better
bound Ω (2n/n) holds but the proof of this latter result is much harder. The
separation between L̂T 1 and LT1 also follows from more general Theorem
5.4 below.

In depth 2 the first lower bounds were proven in the seminal paper
[HMP+87]. Namely, they established the following.



Theorem 3.3 (Hajnal, Maass, Pudlák, Szegedy, Turán).
Any depth 2 small weights threshold circuit computing the function INNER
PRODUCT MOD 2 (which is defined as IP2n(x1, . . . , xn, y1, . . . , yn) ⇀↽

(x1 ∧ y1)⊕ · · · ⊕ (xn ∧ yn) in {0, 1} − notation) must have size exp(Ω(n)).

Krause [Kra91] and Krause, Waack [KW91] slightly generalized and ex-
tended this result.

Note that IP2n ∈ L̂T 3. Hence Theorem 3.3 gives the separation L̂T 2 6=
L̂T 3 (which, given Theorems 5.1 and 3.7, can be also deduced from Theo-
rem 5.3 below).

No superpolynomial lower bounds are known for L̂T 3-circuits or even for

LT2-circuits. Maass, Schnitger and Sontag [MSS91] proved an Ω
(

log log n
log log log n

)
bound on the size of depth 2 threshold circuits computing an explicitly
given Boolean function. The following result was proved in [GHR92]:

Theorem 3.4 (Goldmann, H̊astad, Razborov). Any depth 2 thresh-
old circuit computing INNER PRODUCT MOD 2 has size at least
Ω(n/ log n).

In fact, this is a direct consequence of Theorem 3.3 and the technique used
for proving Theorem 3.7 below.

It seems that the only lower bound known for depth three comes from
[HG90]. The generalized inner product mod 2, GIP2n,s is the Boolean
function in ns variables defined (in {0, 1}-notation) as follows:

GIP2n,s(xij) ⇀↽
n⊕
i=1

s∧
j=1

xij.

In particular, IP2n ≡ GIP2n,2.

Theorem 3.5 (H̊astad, Goldmann). Any depth 3 small weights thresh-
old circuit which computes GIP2n,s and has fan-in at most (s − 1) at the
bottom level, must have size exp

(
Ω
(
n
s4s

))
.

This result gives an exponential lower bound but only for circuits with fan-
in at most ε log n at the bottom level. It would be extremely interesting
to strengthen Theorem 3.5 because of the following simulation discovered
in [Yao90]. Let ACC be the class of functions computable by polynomial
size bounded depth circuits over {¬,∧,∨,MODm1

, . . . ,MODmk
} where

m1, . . . ,mk are fixed integers and MODm(x1, . . . , xn) = 1 iff
∑n
i=1 xi is

divisible by m.



Theorem 3.6 (Yao). If fn ∈ ACC then fn is also computable by depth 3
small weights threshold circuits of size exp

(
(log n)O(1)

)
and with fan-in at

most (log n)O(1) at the bottom level.

So far superpolynomial lower bounds for ACC-circuits are known only
for the bases {¬,∧,∨,MODq} where q is a power of a prime (Razborov
[Raz87], Smolensky [Smo87], Barrington [Bar86]).

Let’s now see how efficiently general threshold circuits can be simulated
by threshold circuits with small weights. The results of Chandra, Stock-
meyer, Vishkin [CSV84] and Pippenger [Pip87] imply that the function
ITERATED ADDITION (that is addition of n n-bit numbers) is com-
putable by constant depth polynomial size small weights circuits. A direct
consequence of this is that LT1 ⊆ L̂T d for some constant d which was es-
timated as d = 13 in [SB91]. A better construction (based in fact on the
spectral technique to be discussed in the next section) was given by Siu
and Bruck [SB91]. Namely, they showed that the ITERATED ADDITION
is in L̂T 3 which implies LT1 ⊆ L̂T 3 and, moreover, LTd ⊆ L̂T 2d+1 for any
d which in general may depend upon the number of variables. For fixed d
this was further improved in [GHR92]:

Theorem 3.7 (Goldmann, H̊astad, Razborov). LTd ⊆ L̂T d+1 for
any fixed d > 0.

This implies that the classes defined by general threshold circuits and by
small weights threshold circuits form the following alternating hierarchy:

L̂T 1 ⊆ LT1 ⊆ L̂T 2 ⊆ LT2 ⊆ L̂T 3 ⊆ . . . (1)

Let me recall that the inclusion L̂T 1 ⊆ LT1 is proper by Theorem 3.2
(or by Theorem 5.4), whereas LT1 and L̂T 2 are trivially separated by the
PARITY function. The inclusion L̂T 2 ⊆ LT2 was shown to be proper by
Goldmann, H̊astad and Razborov [GHR92] (it is a consequence of Theorem
5.3 below). The question whether LT2 is different from higher levels of the
hierarchy (1) (or whether it contains NP ) is open.



4. Spectral Representation and Polynomial Thresh-

olds

Any Boolean function f : {−1, 1}n −→ {−1, 1} can be uniquely repre-
sented as a multilinear polynomial over reals:

f(x1, . . . , xn) =
∑

α∈{0,1}n
aα(f)xα. (2)

This representation is called the spectral representation of f and its coeffi-
cients {aα(f) | α ∈ {0, 1}n} are spectral coefficients of f . We define

L1(f) ⇀↽
∑

α∈{0,1}n
|aα(f)|

and
L∞(f) ⇀↽ max

α∈{0,1}n
|aα(f)|.

Similarly we might define the Euclidean norm L2(f) but it turns out that
L2(f) equals 1 for any f . In fact, it implies that

L1(f) ≥ 1 ≥ L∞(f), L1(f) · L∞(f) ≥ 1. (3)

In general, the spectral approach is a very useful tool in the study of
Boolean functions (see e.g. [KKN88, LMN89, BOH90, KM91]). But in
this survey we are exclusively interested in its applications to threshold
circuits.

Along these lines Bruck and Smolensky [BS92] explicitly defined the
class PL1 which consists of all functions fn with L1(f) ≤ nO(1) and the
class PL∞ ⇀↽

{
fn

∣∣∣ L∞(f)−1 ≤ nO(1)
}
. Note that by (3), PL1 ⊆ PL∞.

The classes which provide a strong link between threshold circuits and
spectral properties of Boolean functions were defined by Bruck in [Bru90].
Namely, the class PT1 consists of all functions fn which allow a represen-
tation of the form

fn(x1, . . . , xn) = sign

∑
α∈A

wαx
α

 (4)

where A ⊆ {0, 1}n, |A| ≤ nO(1). Note that in the {0, 1}-notation PT1 equals
the class of all functions computable by polynomial size depth 2 circuits
with a (general) threshold gate at the top and parity gates at the bottom.



On the other hand, the definition of PT1 bears the obvious similarity with
(2).

The class P̂ T 1 is defined in the same way, only now we additionally
require the weights wα in (4) to be small ([Bru90]).

Bruck [Bru90] showed a general lower bound for PT1-circuits which in
our notation basically amounts to the following:

Theorem 4.1 (Bruck). PT1 ⊆ PL∞.

Bruck and Smolensky [BS92] established the dual result:

Theorem 4.2 (Bruck, Smolensky). PL1 ⊆ P̂ T 1.

So we have the hierarchy

PL1 ⊆ P̂ T 1 ⊆ PT1 ⊆ PL∞. (5)

The inclusion PL1 ⊆ P̂ T 1 was shown to be proper in [BS92]:

Theorem 4.3 (Bruck, Smolensky). The function

EXACTn(x1, . . . , xn) = 1 ⇀↽
n∑
i=1

xi = n/2

is in P̂ T 1 \ PL1.

P̂ T 1 ⊆ PT1 was shown to be proper by Goldmann, H̊astad and Razbo-
rov [GHR92] (see more general Theorem 5.4 below). The inclusion PT1 ⊆
PL∞ is proper just because the class PL∞ contains almost all functions;
an explicit function separating those two classes was presented in [BS92].

5. The Fine Structure

In this section we combine the two hierarchies (1) and (5) into one powerful
picture.

It is clear that L̂T 1 ⊆ P̂ T 1 and LT1 ⊆ PT1. Less obvious inclusions
were established in [Bru90]:

Theorem 5.1 (Bruck). P̂ T 1 ⊆ L̂T 2 and PT 1 ⊆ LT 2.

At the moment we have the following picture.
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It turns out that this picture reflects all possible inclusions between the
eight classes shown there. Let’s review the reasons.

The following result was proved in [Bru90]:

Theorem 5.2 (Bruck). The Complete Quadratic Function CQn which in
the {0, 1}-notation is given by CQn(x1, . . . , xn) ⇀↽

⊕
1≤i<j≤n(xi ∧ xj), is in

L̂T 2 \ PL∞.

The next three easy separations were noticed by Goldmann, H̊astad and
Razborov in [GHR92].

1. Although we do not know any explicit superlinear lower bounds for
LT2-circuits, we still can claim that PL∞ 6⊆ LT2 just because PL∞
contains almost all functions.

2. If we consider MAJn instead of EXACTn in Theorem 4.3, then it can
be improved to give L̂T 1 6⊆ PL1.

3. The PARITY function is in PL1 \ LT1.

The two separations which are still needed to claim that our picture is
complete, are LT1 6⊆ P̂ T 1 and PT1 6⊆ L̂T 2. In other words, we need lower
bounds analogous to those given by Theorem 3.3 but for simpler functions.
Such bounds were proven in [GHR92].

Let

pn(x, y) ⇀↽ sign

1 + 2
n−1∑
i=0

2n−1∑
j=0

2iyj(xi,2j + xi,2j+1)





and

Un(x) ⇀↽ sign

1 + 2
n−1∑
i=0

4n−1∑
j=0

2ixi,j

 .
Obviously, pn(x, y) and Un(x) are in PT1 and LT1 respectively.

Theorem 5.3 (Goldmann, H̊astad, Razborov). Any depth 2 small weights
threshold circuit computing pn(x, y) must have size exp(Ω(n)). Hence PT1 6⊆
L̂T 2.

Theorem 5.4 (Goldmann, H̊astad, Razborov). For any representa-
tion

Un(x) = sign

∑
α∈A

wαx
α


of Un(x) in the form (4) we have

∑
α∈A |wα| ≥ exp(Ω(n)). Hence LT1 6⊆

P̂ T 1.

As we noted before, Theorems 5.3 and 5.4 generalize and strengthen many
of previous results.

A few words should be said about the method of proof of Theorems 3.3,
5.3, 5.4. Assume that fn(x1, . . . , xn, y1, . . . , yn) is a Boolean functions with
its variables divided into two groups, x-variables and y-variables. Denote
by C1/2−ε(g; 1→ 2) the probabilistic one-way communication complexity of
g with error 1/2−ε i.e. with advantage ε ([Yao79]). We consider the model
in which the probability of being correct is at least 1/2 + ε for every pair
of inputs, the random string is shared by both parties and the complexity
is measured as the number of bits sent in the worst case (not the average).
Let C(g; 1→ 2) be the corresponding deterministic measure.

The following lemma which was implicit in [HMP+87] is the key stone
to proving Theorems 3.3, 5.3, 5.4:

Lemma 5.5. Let w, d ≥ 0 and fn(x1, . . . , xn, y1, . . . , yn) be computed by a
depth 2 threshold circuit with a threshold gate of the total weight w at the
top and arbitrary gates g satisfying C(g; 1→ 2) ≤ d at the bottom. Then

C1/2−1/(2w)(fn; 1→ 2) ≤ d.

In fact, the paper [HMP+87] dealt with the two-way communication com-
plexity and also Krause [Kra91] and Krause, Waack [KW91] used similar
arguments. It is not clear however whether the proof of Theorems 5.3, 5.4
can be carried over in the context of two-way complexity.



6. Applications to Concrete Functions

In this concluding section we will see that inclusions summarized in our
main picture have been extremely useful for designing threshold circuits
for very concrete Boolean functions.

We will be interested in such important functions as the ADDITION,
MULTIPLICATION, DIVISION, COMPARISON (of two n-bit numbers),
POWERING (computing xn where x is an n-bit number), ITERATED
ADDITION, ITERATED MULTIPLICATION, MAXIMUM and SORT-
ING (of n n-bit numbers). In fact, some of these functions allow a naive
implementation by constant depth polynomial size small weights circuits
and the remaining functions can be implemented so using the reductions
of Chandra, Stockmeyer and Vishkin [CSV84] and the results of Beame,
Cook and Hoover [BCH86] and of Pippenger [Pip87]. This was observed
in [HMP+87] (see also [SB91]). However the depth of resulting circuits is
far from optimal. We already noted in Section 3 that the circuits for the
ITERATED ADDITION obtained in this way have depth 13; the MUL-
TIPLICATION seems to require depth 10. We will present below more
recent results many of which are based on the general theory from previ-
ous sections. They lead to much better (and in many cases tight) upper
bounds in terms of depth.

Siu and Bruck [SB91] showed that the ADDITION and COMPARISON
of two n-bit numbers are both in PL1 and hence are doable in L̂T 2. A
constructive version of Siu and Bruck’s result was presented by Alon and
Bruck [AB91]. Quite recently Siu and Roychowdhury [SR92] have used
Theorem 3.7 to show that even the ITERATED ADDITION is in L̂T 2.
All these results are optimal in depth since none of the three functions is
in L̂T 1 (this is obvious for the ADDITION and ITERATED ADDITION;
for the case of the COMPARISON see [SB91]).

Siu and Bruck [SB91] also showed that the MULTIPLICATION (of two
n-bit numbers) is in L̂T 4 (this was later rediscovered in [HHK91] with a
better bound on the circuit size). Siu and Roychowdhury [SR92] showed
that in fact the MULTIPLICATION is doable in depth 3. This latter result
is depth-optimal since [HMP+87] proved before that the MULTIPLICA-
TION is not in L̂T 2.

DIVISION and POWERING were shown to be in L̂T 4 by Siu, Bruck,
Kailath and Hofmeister [SBKH91] and in L̂T 3 by Siu and Roychowdhury



[SR92]. To the best of my knowledge, it is open whether they are in L̂T 2

or not.
ITERATED MULTIPLICATION was shown to be in L̂T 5 by Siu, Bruck,

Kailath and Hofmeister [SBKH91] and in L̂T 4 by Siu and Roychowdhury
[SR92]. It is open whether it is doable in depth 3 or not.

Siu and Bruck [SB91] also considered the MAXIMUM and SORTING
of n n-bit numbers and, using their method, placed them into L̂T 3 and
L̂T 4 respectively. Siu, Bruck, Kailath and Hofmeister [SBKH91] improved
on the second result showing that in fact the SORTING is also in L̂T 3.
Whether these functions can be done in depth 2 seems to be open.

We summarize in the following table our knowledge on the depth-optimal
constructions for the functions we’ve been discussing in this section.

Function upper bound lower bound

ADDITION 2 [SB91] 2

ITERATED ADDITION 2 [SR92] 2

MULTIPLICATION 3 [SR92] 3 [HMP+87]

ITERATED MULTIPLICATION 4 [SR92] 3 [HMP+87]

DIVISION 3 [SR92] 2

POWERING 3 [SR92] 2

COMPARISON 2 [SB91] 2 [SB91]

MAXIMUM 3 [SB91] 2

SORTING 3 [SBKH91] 2
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threshold circuits and multiplication in depth 4. Information
Processing Letters, 39:219–225, 1991.

[HKP91] J. Hertz, R. Krogh, and A. Palmer. An Introduction to the
Theory of Neural Computation. Addison-Wesley, 1991.

[HMP+87] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turán.
Threshold circuits of bounded depth. In Proceedings of 28th
IEEE FOCS, pages 99–110, 1987.



[KKN88] J. Kahn, G. Kalai, and Linial N. The influence of variables on
Boolean functions. In Proceedings of the 29th IEEE Symposium
on Foundations of Computer Science, pages 68–80, 1988.

[KM91] E. Kushilevitz and Y. Mansour. Learning decision trees using
the Fourier spectrum. In Proceedings of the 23rd ACM STOC,
pages 455–464, 1991.

[Kra91] M. Krause. Geometric arguments yield better bounds for
threshold circuits and distributed computing. In 6-th Structure
in Complexity Theory Conference, pages 314–322, 1991.

[KW91] M. Krause and S. Waack. Variation ranks of communication
matrices and lower bounds for depth two circuits having sym-
metric gates with unbounded fan-in. In Proceedings of the 32th
IEEE Symposium on Foundations of Computer Science, pages
777–782, 1991.

[LMN89] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits,
Fourier transforms and learnability. In Proceedings of the 30th
IEEE Symposium on Foundations of Computer Science, pages
574–579, 1989.

[Mur71] S. Muroga. Threshold logic and its applications, Wiley-
Interscience, 1971.

[MK61] J. Myhill and W.H. Kautz. On the size of weights required
for linear-input switching functions. IRE Trans. on Electronic
Computers, EC10(2):288–290, June 1961.

[MSS91] W. Maass, G. Schnitger, and E. Sontag. On the computational
power of sigmoid versus boolean threshold circuits. In Proceed-
ings of the 32nd IEEE Symposium on Foundations of Computer
Science, pages 767–776, 1991.

[Pip87] N. Pippenger. The complexity of computations by networks.
IBM J. Res. Develop., 31:235–243, 1987.

[Raz87] A. Razborov. Lower bounds on the size of bounded-depth net-
works over a complete basis with logical addition. Mathematical
Notes of the Academy of Sciences of the USSR, 41(4):598–607,
1987. English translation in 41:4, pages 333-338.



[SB91] K.-I. Siu and J. Bruck. On the power of threshold circuits
with small weights. SIAM Journal on Discrete Mathematics,
4(3):423–435, 1991.

[SBKH91] K.-I. Siu, J. Bruck, T. Kailath, and T. Hofmeister. Depth-
efficient neural networks for division and related problems.
Technical Report RJ 7946, IBM Research, January 1991. To
appear in IEEE Trans. Information Theory.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds
for Boolean circuit complexity. In Proceedings of the 19th ACM
Symposium on Theory of Computing, pages 77–82, 1987.

[SR92] K.-Y. Siu and V. Roychowdhury. On optimal depth threshold
circuits for multiplication and related problems. Manuscript,
1992.

[Yao79] A. Yao. Some complexity questions related to distributive com-
puting. In Proceedings of the 11th ACM STOC, pages 209–213,
1979.

[Yao90] A. Yao. On ACC and threshold circuits. In Proceedings of the
31th IEEE FOCS, pages 619–627, 1990.


