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Abstract

A computation or a proof is called feasible if it obeys pre-
scribed bounds on the resources consumed during its exe-
cution. It turns out that when restricted to this world of fea-
sibility, proofs and computations become extremely tightly
interrelated, sometimes even indistinguishable. Moreover,
many of these rich relations, underlying concepts, tech-
niques etc. look very different from their “classical” coun-
terparts, or simply do not have any. This talk is intended
as a very informal and popular (highly biased as well) at-
tempt to illustrate these fascinating connections by several
related developments in the modern complexity theory.

1. Introduction

Proofs and computations are among the most basic con-
cepts pertinent to virtually any intellectual human activity.
Both have been central to the development of mathemat-
ics for several millenniums. The effort to study these con-
cepts themselves in a rigorous, metamathematical way initi-
ated in the 20th century led to flourishing of the mathemat-
ical logic and derived disciplines like those which are the
focus of attention of both conferences gathering here.

The relation between proofs and computation in math-
ematics never was easy. In particular, the debate as to
what makes a worthy mathematical result – a deductive
inference from accepted axioms, possibly shockingly non-
constructive or a practical procedure leading to the desired
results but possibly lacking a rigorous justification – was
sometimes hot (at the time of crises), sometimes lukewarm,
but ever-present it was. And as we all know well, precise
formalizations of both these fundamental concepts given by
great logicians of the last century at least put this debate
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onto a solid ground, even if this did not seem to extinguish
it completely. Since that time we at least more or less uni-
versally agree on what is a proof and what is a computation.
The connections between them are extremely diverse, rich
and mutually beneficial: we study computations with for-
mal proofs, try to write programs for computer-aided theo-
rem proving, use formal proofs for the program verification
etc. Still, it appears (at least to the speaker) that no mat-
ter how we are playing with computations and proofs, they
keep their unique identities, and at every particular moment
it is utterly clear to which of the two realms the object of in-
terest belongs. In our communities this difference is often
articulated as the difference between the syntax and the se-
mantics.

Most of the above are, of course, just common places
for this audience (and we will go over them very quickly
in the actual talk). But this makes a necessary background
for the main point we will try to make. Namely, when we
restrict our attention to feasible proofs and computations
(which are most often defined as polynomially bounded in
terms of length or time), then this clear classical (that is, in
the absence of such restrictions) picture all of a sudden be-
comes rather different, and in general more intricate and
saturated. Some of the relations between classical proofs
and computations gain in importance, whereas some be-
come almost obsolete. New unexpected and beautiful con-
nections emerge on the conceptual level, as well as on the
level of proof techniques. Finally, even the separate iden-
tities of proofs and computations are compromised by the
important discovery of “interactive proofs” that can be (and
are) thought of as both proofs and computations, subjec-
tively and interchangeably1. And, to make the story even
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more interesting, all these trends are interweaving and re-
enforcing each other.

Inherent reasons for these qualitative changes in be-
haviour resulting from a quantitative change in the frame-
work (that is, when we place some numerical bounds on the
resources) are far from being understood, and this talk will
not pretend to offer any such explanation beyond one simple
observation. Our main purpose will simply be to illustrate
the wonderful interplay between feasible proofs and feasi-
ble computations by a few important examples. These will
be borrowed from several rather different sub-areas of the
modern complexity theory. As a result, this talk should not
be considered as a survey in none of them, and it will, out
of necessity, be lacking precise definitions and statements
(Section 3 below contains some suggested literature for fur-
ther study of the subjects we will only superficially touch in
the talk). Moreover, the selection of topics from each area
will be heavily biased by our main goal: illustrate various
intricate connections existing between proofs and computa-
tions when both are restricted to the world of feasible ob-
jects.

2. Plan of the talk

We will try to do as much of the following as time per-
mits (although, it does not seem realistic to cover all these
issues). The arrangement of topics is somewhat arbitrary,
although we will try to stick to this general principle: be-
gin with concepts that still look similar to their “classical”
counterparts, gradually moving to the regions where these
similarities fade away.

It is (or at least should be) already well-known these days
what is a “feasible” computation: this is a computation that
obeys a prescribed bound on computational resources like
time, space etc. It is intuitively less clear what is a feasible
proof. It is natural to assume that a feasible proof should not
involve objects that are unfeasibly (= exponentially) large,
but is this sufficient? We will begin with one canonical ex-
ample (Fermat’s Little Theorem) illustrating that the right
answer should be “no”, and that all objects involved in a
feasible proof must be also feasibly computable.

We then move on to Bounded Arithmetic which is a
generic name for a series of first-order or second-order the-
ories capturing this notion of a feasible proof, and cover a
few (relatively simple) witnessing theorems. The question
whether the hierarchy of these theories is proper is the cen-
tral open problem in this area, which is reminiscent of just
the same situation in the computational world.

From this point on, almost everything in this talk will be
about propositional (as opposed to first-order) logic, and we
will be mostly concerned with two fundamental (and dual
to each other) questions:

� How to prove efficiently that a propositional formula �
is a tautology?

� How to prove efficiently that a propositional formula �
is satisfiable?

We compare these questions with their first-order counter-
parts, and note a drastic difference in their behaviour.

Then we will address the “textbook” approach to proving
that a propositional formula � is a tautology, which consists
in deriving � in a Hilbert-style (or Gentzen-style) propo-
sitional calculus. We will be interested in the complexity
(most often measured by the bit size) of such propositional
proofs, and we will indicate numerous connections existing
between the complexity of propositional proofs and circuit
complexity. We will give a couple of lower bound results il-
lustrating the fruitfulness of these connections for both ar-
eas. In particular, we will spend some time on the so-called
Feasible Interpolation Theorem, as well as on the results
limiting its use for stronger proof systems that are based
upon complexity hardness assumptions.

Next we will move on to the question of feasible prov-
ability of a non-uniform version of � �� ��. In partic-
ular, we will address one approach to this question based
upon an adaptation of the notion of a pseudorandom func-
tion generator to proof complexity. Specifically, we will talk
about the conjecture stating that for the so-called Nisan-
Wigderson generators their computational hardness always
implies hardness for the corresponding proof system, and
survey known results for weak proof systems supporting
this conjecture.

In everything we have encountered so far, proofs and
computations often came very close to each other, but still
they did not blend together. The Pandora’s box was open in
one of the most influential mathematical articles of the last
century, [16] which is even entitled suggestively “The com-
plexity of theorem proving procedures”. Namely, the defi-
nition of the fundamental complexity class NP given in that
paper is inherently dual, and can be viewed both in terms
of non-deterministic computations and proofs of member-
ship. We will reflect a little bit on this duality.

After the news of the marriage between proofs and com-
putations spread around, and this idea soon became one of
the main paradigms of the modern complexity theory, it was
only a matter of time before more offsprings would be con-
ceived, and the most fruitful notion born in this way was that
of interactive proofs. The prover no longer prepares a proof
on a sheet of paper in the silence of her office and then sub-
mits it to a journal for verification, but rather interacts with
the verifier trying to convince him in the validity of her re-
sults in the “good common sense”. Remarkably, both are
making a non-trivial computational effort during this inter-
action. One of the most unexpected results of the complex-
ity theory states, in a weaker form, that one can efficiently



prove in this way that a propositional formula � is a tau-
tology, something we strongly believe no “ordinary” (say,
strictly propositional) proof system will ever achieve! Un-
fortunately, even a sketch of this remarkable result is way
too technical to fit into this lecture, but we will at least try
to illustrate the power of interactive proofs using (more or
less standard) example of GRAPH NON-ISOMORPHISM.

So far we concentrated on our first task itemized above,
and there seems to be a very good reason for this: it is very
easy to prove that � is satisfiable simply be exhibiting a
satisfying assignment (it is an entirely different story, of
course, how to find such an assignment). This trivial proof
is easily checkable, and it is feasible in any sense we have
seen so far. It, however, turns out, that in the realm of in-
teractive proofs we can employ much more severe notion
of feasibility than just “poly-time verifiable” and require a
proof to be presented in such a format that its validity can be
verified by checking a constant number of (randomly cho-
sen) places in the proof. This is the celebrated PCP2 theo-
rem which is in fact extremely tightly connected with inter-
active proof systems.

In another unexpected turn, the PCP theorem and its
many variants became the major tool in analyzing the com-
plexity of finding approximate solutions to combinatorial
optimization problems. This is one of the most practical ar-
eas of Theoretical Computer Science that, prior to the PCP
breakthrough, did not have anything to do with proofs, and
in general was not too successful at solving its major prob-
lems. We will sample several typical applications in this
area.

Next, we we will link this latter topic with propositional
proof complexity by considering the optimization problem
of finding the best proof for a given tautology in a given
propositional proof system. This naturally leads to the im-
portant concept of automatizability of such systems. We
will mention one tight connection between Feasible Inter-
polation and automatizability, and give one example of a
proof system for which they (apparently) differ.

Finally, we will return to the question of feasible prov-
ability of the � �� �� question previously considered
by us in the context of the propositional proof complex-
ity. It was also studied in the framework of so-called Nat-
ural Proofs, where “proofs” are defined this time by a set
of properties (of computational nature) shared by all known
arguments. We will show the main theorem of this mini-
theory, which is exactly the result of a kind we are still miss-
ing in the propositional proof complexity.

2 for Probabilistically Checkable Proofs

3. Historical remarks and literature for fur-
ther reading

Some of the topics above (especially those from the first,
“classical” part) appeared in my ICALP lecture 8 years ago
in much more elaborated and systematic way, and the ex-
tended abstract of that talk [38] contains some additional
literature.

Bounded Arithmetic was apparently considered for the
first time by Parikh in [31], and was studied by Paris and
Wilkie in the 1980s (see e.g. [32]). Systematically this sub-
ject was treated in Buss’s book [15] which still remains
a very good source for a quick introduction to it. Other
choices include the monograph [25] and the last section of
[23].

The first non-trivial lower bound in propositional proof
complexity is due to Tseitin [45] which well preceded the
general theory developed by Cook and Reckhow in [17].
Feasible Interpolation Theorem evolved from a sequence of
papers [24, 37, 13, 26], and its elegant proof sketched in this
talk is due to Pudlák [33]. The limitations of Feasible In-
terpolation for stronger proof systems were established in
[29, 14, 12].

The proper formalization of the non-uniform version of
� �� ��was proposed by Razborov in [36], and it was also
stressed there that the proofs of (apparently) all known par-
tial results toward this goal become feasible in this frame-
work. The approach based upon pseudo-random genera-
tors was proposed by Alekhnovich, Ben-Sasson, Razborov,
Wigderson [1] and Krajı́ček [27]; the first paper also con-
tained specific suggestions as to the use of Nisan-Wigderson
generators. Partial results in that direction were proved in
[1, 3, 35, 40, 28, 39], and the introduction in [39] also con-
tains an extended summary of the whole approach, and of
the speaker’s view of the subject.

There are several good surveys on propositional proof
complexity as a whole, see e.g. [46, 25, 38, 11, 34].

Interactive proofs were introduced by Goldwasser, Mi-
cali, Rackoff [21] and Babai [8], and the protocol for the
GRAPH NON-ISOMORPHISM was given by Goldwasser,
Micali, Wigderson [22]. The result that all of PSPACE has
interactive proofs (which is much stronger than its partial
case mentioned in the talk) is due to Lund, Fortnow, Karloff,
Nisan [30] and Shamir [44].

The original form of the PCP theorem evolved from
[10, 18], and was proved in the papers by Arora, Safra [6]
and Arora, Lund, Motwani, Sudan, Szegedy [5]. The con-
nection to the complexity of approximation was understood
already in those early papers (in fact, it was one of their pri-
mary motivations).

There are many good surveys on interactive
proofs, PCP and hardness of approximation, see e.g.
[9, 19, 4]. We would also like to mention the books



[20, 7], as well as the unique on-line compendium
http://www.nada.kth.se/˜viggo/problemlist
/compendium.html compiling known results on the
complexity of approximation.

The concept of automatizability was introduced by
Bonet, Pitassi, Raz [14], and the remark that automatiz-
ability implies feasible interpolation is due to Impagliazzo
(unpublished). Alekhnovich, Razborov [2] proved (mod-
ulo strong complexity assumptions) that Resolution (which
does allow Feasible Interpolation) is not automatiz-
able.

Natural proofs were introduced by Razborov, Rudich
[41], and [42] gave some unexpected applications in quite a
different area. This theory was further developed by Rudich
[43].
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[27] J. Krajı́ček. On the weak pigeonhole principle. Fundamenta
Mathematicae, 170(1-3):123–140, 2001.
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