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1 Introduction

Let ZN be the set of residue classes mod N , identified with the set [N ] =
{0, 1, . . . , N − 1}. For sets A, S ⊆ [N ] denote the discrepancy of A in S by

DA(S) =

∣∣∣∣∣
|A ∩ S|
|A| − |S|

N

∣∣∣∣∣ .

Similarly we define DA(S) for the case when A is a multiset. Note that this
definition is not symmetric in A and S.

For a family F of subsets of ZN we denote

DA(F) = maxS∈FDA(S).

∗The research was done while this author was visiting Department of Mathematics at
MIT partially supported by the Sloan foundation.
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We shall be interested in the family IN of all intervals of ZN . For ε > 0 we
define A ⊆ ZN to be ε -uniform (mod N) if for all x ∈ Z∗

N , DxA(IN) ≤ ε,
where xA = {xa | a ∈ A} (with arithmetic mod N).1

A simple counting argument shows that for every N and ε = ε(N) there
exist sets Aε,N that are ε-uniform mod N and satisfy

|Aε,N | ≤ (ε−1 logN)O(1).

The main result of this note is an explicit construction of such small
sets. Moreover, the sets Aε,N we construct satisfy the following stronger
property: for every divisor M of N , the reduced multiset Aε,N (mod M)
is ε-uniform mod M . Our construction is a variant of a construction in
[AIKPS]. The main result is stated and proved in Section 3. In Section 2 we
refer, somewhat informally, to related results of similar flavour that partly
motivated this work.

2 Related Work

2.1 Arithmetic Progressions

Let APN = {yI | y ∈ Z∗
N , I ∈ IN } be the set of arithmetic progressions

mod N , with invertible difference. Since for every x ∈ Z∗
N and A, S ⊆ ZN

we have DxA(S) = DA(x
−1S), an equivalent definition of the ε-uniformity of

A is DA(APN) ≤ ε. Thus the small sets Aε,N we construct are uniformly
distributed in all arithmetic progressions in APN (which explains the title).

The classical interest within Number Theory and Discrepancy Theory
regarding arithmetic progressions is in the “dual” problem of how uniformly
can arithmetic progressions A ∈ APN be distributed in sets S ⊆ [N ]. Tight
bounds on min|S|=N/2maxA∈APNDA(S) were given by [Roth, Beck].

2.2 Fourier Transforms

The discrete Fourier transform of (the characteristic function of) a set A ⊆
ZN is the function

fA(t) =
∑

a∈A
e2πiat/N

1The restriction to invertible x ∈ Z∗
N is natural since if e.g. x|N, x > εN , the elements

of xA take on less than 1/ε values, and thus miss intervals of measure ε for any set A.
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defined for every t ∈ ZN . Clearly, fA(0) = |A|. The parameter λ(A) =
maxt $=0|fA(t)|/|A| gives some measure of the randomness of the set A; the
smaller it is, the more “random” A is. This parameter has a variety of appli-
cations in Additive Number Theory (e.g. [Ruzsa, AIKPS]), Graph Theory
(e.g. [Chung]) and Complexity Theory (e.g. [ABK*, GKS]).

The connection of this parameter with our problem stems from the fact
that there are many cancelations in the sum of unit vectors that are almost
uniformly distributed on the unit cycle. An easy calculation (which for com-
pleteness is given in the appendix) yields

∣∣∣∣∣
∑

a∈A
e2πia/N

∣∣∣∣∣ ≤ O(|A|DA(IN)).

From it we conclude that if A (mod M) is ε-uniform mod M for every divisor
M of N , then λ(A) ≤ ε.

A simple use of the pigeonhole principle (which for completeness is also
given in the appendix) shows that every family of sets AN satisfying λ(AN) <
1/2 must have size |AN | ≥ Ω(logN). On the other hand, simple probabilistic
arguments achieve λ(Aε,N) ≤ ε(N) with |Aε,N | = (logN/ε(N))O(1), where
ε = ε(N) is any function tending to zero as N grows to infinity (the best
current bounds on |A| in terms of N, ε appear in [AR]).

There are two known explicit constructions which for

ε(N) =
1

(logN)O(1)

achieve
|Aε,N | = (logN)O(1).

One is in [Katz], and is based on deep results in number theory. The second
is in [AIKPS] and is completely elementary. Our construction is a variant of
the second. Note that, due to the remark above, the sets Aε,N we construct
in this paper also satisfy λ(Aε,N) ≤ ε.

2.3 Higher dimensional discrepancy

A central problem in Discrepancy Theory (see [BC] and the references within)
is to determine the smallest size of sets in [0, 1)d that have small discrepancy
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with the family B of all aligned boxes (i.e. cartesian product of d intervals
in [0,1)). Defining the discrepancy DA(B) of a set A in the natural way, the
question is how many points A should have as a function of ε and d so as to
achieve DA(B) ≤ ε.

The classical results focus on constant d and obtain bounds which depend
well on ε−1 but are exponential in d. The recent paper [EGLNV] motivates
studying the case where ε−1 and d are polynomially related. It is not hard to
prove that almost all sets A of size (dε−1)O(1) would satisfy this discrepancy
bound. However, an explicit construction of such sets A will have strong
applications to derandomizing certain probabilistic algorithms. [EGLNV]
obtain somewhat weaker explicit bounds, and leave open the problem of
explicitly constructing a set whose size is polynomial in both parameters.

A possible connection to our construction is the following. As observed
in [EGLNV], it will suffice to replace the universe [0, 1)d with (Zm)

d, where
m = 2/ε. Using the natural mapping from Zmd onto (Zm)

d (writing a number
in base m) we ask (but are not ready to conjecture) if the image of the sets
we construct (taking N = md) have small discrepancy with all boxes.

3 The Construction

Fix N and t ≤ N . Set the parameters

m1 = (t4(log t)5 logN)1/9

m2 = (t5(log t)4/ logN)1/9

ε = m1/m2 = (log t(logN)2/t)1/9

and the sets S = [m1], P = {p ∈ [m2, 2m2] | p prime, (p,N) = 1}. Using
(x)N for x mod N we define multisets At,N by

At,N = {s(p−1)N | s ∈ S, p ∈ P}.

Our main result gives the discrepancy bound

Theorem 3.1 The multiset At,N is O(ε)-uniform mod N . Moreover, for
every divisor M of N , At,N mod M is O(ε)-uniform mod M .
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Before we start proving this, note that in the “interesting” range

3 log logN(logN)2 < t <
N

3 logN

we have s1(p
−1
1 )N (= s2(p

−1
2 )N mod N unless (s1, p1) = (s2, p2) that is our

multisets At,N are actually sets. Also, in this range they clearly have size
|At,N | ≤ O(t) and are easy to compute in time (t logN)O(1) by any reasonable
model of computation. Hence, taking Aε,N = At(ε,N),N for ε = ε(N) ≥
ω
(
((logN)4/N)

1/9
)
, where

t(ε, N) = Cε−9(logN)2
(
log

1

ε
+ log logN

)

(C > 0 is a sufficiently large constant), we will get the sets Aε,N promised in
the introduction.

Proof of Theorem 3.1: We prove only the first statement of unifor-
mity mod N . The second statement follows exactly the same proof with M
replacing N in appropriate places, and is therefore omitted.

Let s be a random member of S and p be a random member of P . Fix
an element x ∈ Z∗

N and interval I ∈ IN . In probabilistic terms we need to
prove ∣∣∣P

[
xs(p−1)N ∈ I

]
− |I|/|N |

∣∣∣ ≤ O(ε). (1)

We use the Chinese remainder theorem in the following form (assuming
p does not divide N)

p(p−1)N +N(N−1)p = pN + 1.

Dividing by pN , using (α)1 to denote the fractional part (in [0, 1)) of any
real number α, and noting that x < N we obtain

(
xs(p−1)N

N
+

xs(N−1)p
p

)

1

≤ m1

m2

= ε.

This implies

P

[(
xs(N−1)p

p

)

1

∈ J−

]

≤ P
[
xs(p−1)N ∈ I

]
≤ P

[(
xs(N−1)p

p

)

1

∈ J+

]
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where J− ⊆ J+ ⊆ [0, 1) and |J+|− |J−| ≤ 2ε.
Hence, in order to prove (1) it suffices to prove

∣∣∣∣∣P

[(
xs(N−1)p

p

)

1

∈ J

]

− |J |
∣∣∣∣∣ ≤ O(ε) (2)

for any interval J ⊆ [0, 1) (which will apply to J−, J+).
Fix J . To prove (2) we may clearly assume without loss of generality

(by enlarging J if necessary) that |J | ≥ ε. Let

|α|1 =
{

(α)1 if 0 ≤ (α)1 < 1/2,
1− (α)1 if 1/2 ≤ (α)1 < 1.

Say that p ∈ P is bad if there exists a positive integer s ≤ 1/ε such that

∣∣∣∣∣
xs(N−1)p

p

∣∣∣∣∣
1

≤ 2

m1ε2
.

Then it suffices to show that

P[p is bad] ≤ O(ε) (3)

and that for each fixed good p,

∣∣∣∣∣P

[(
xs(N−1)p

p

)

1

∈ J

]

− |J |
∣∣∣∣∣ ≤ O(ε). (4)

We first prove (3). If p is bad, then for some s ≤ 1/ε and some b with
|b| ≤ O( m2

m1ε2
) we have xs(N−1)p ≡ b (mod p), or equivalently p|(xs − bN).

But observe that as (x,N) = 1 and s+|b| ≤ O( m2

m1ε2
) < N we have xs−bN (= 0

and |xs − bN | ≤ N2, so for each fixed choices of s and b we have at most
O(logN) bad p’s. Using the bounds on s and b we calculate that there are
at most O(m2 logN

m1ε3
) bad p’s, which implies (3).

Now consider a good p and prove (4). By the pigeonhole principle, there
is a positive integer s0 ≤ 1/ε for which

∣∣∣∣∣
xs0(N

−1)p
p

∣∣∣∣∣
1

≤ ε. (5)
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For this choice of s0 denote the left hand side of (5) by γ. Since p is
good, we also have a lower bound of 2

m1ε2
on γ. Define m3 = m1/s0, and

observe that m3 ≥ m1ε. We shall prove (4) separately for each residue class
i < s0 of s, i.e. taking r at random from [m3] we prove for each i

∣∣∣∣∣P

[(
x(rs0 + i)(N−1)p

p

)

1

∈ J

]

− |J |
∣∣∣∣∣ ≤ O(ε). (6)

But the lower bound on γ guarantees that as we go through all possible
values of r we will go around the interval [0, 1) at least 1/ε times, and the
upper bound on γ guarantees that in each such cycle we will visit J the
correct number of times (as |J | ≥ ε), which completes the proof. !

4 Appendix

Here we give, for completeness, the proofs of two statements made in Section
2.2. The propositions below imply these statements. We remark that both
propositions are folklore. We provide simple proofs, rather than try to obtain
the best constants.

Proposition 4.1
∣∣∣
∑

a∈A e2πia/N
∣∣∣ ≤ 2π|A|DA(IN).

Proof: (Suggested by Alon and Sudakov). Set D = DA(IN), and let A =
{a1, a2, . . . , am}, with the ai’s sorted in increasing order. Note that for every
j ∈ [m], |aj/N − j/m| ≤ D, by considering the discrepancy of A on the

interval [0, aj]. Since |eix − eiy| ≤ |x − y|, this implies
∣∣∣e2πiaj/N − e2πij/m

∣∣∣ ≤
2πD and thus

∣∣∣
∑

a∈A e2πia/N −∑m
j=1 e

2πij/m
∣∣∣ ≤ 2πmD. We are only left to

note that
∑m

j=1 e
2πij/m = 0. !

Proposition 4.2 If λ(A) < 1/2 then |A| > (logN)/3.

Proof: For contradiction assume |A| = m ≤ (logN)/3. Define the map
χ : ZN → {0, 1, 2, 3, 4, 5}A by letting, for every t ∈ ZN and a ∈ A, χ(t)a = j
iff at mod N ∈ [jN/6, (j + 1)N/6). As 6m < N , by the pigeonhole principle
there must be t1, t2 ∈ ZN with χ(t1) = χ(t2). Set t = t1 − t2. Then for every
a ∈ A, at mod N ∈ (−N/6, N/6). We get
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|A|λ(A) ≥ fA(t) = |
∑

a∈A
e2πiat/N | ≥ |A|cos(π/3) = |A|/2.

!
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k-page graphs, and simulations by nondeterministic one-tape Tur-
ing machines, Proc. 18th STOC, pp. 39–49, 1986.

8



[Katz] N. M. Katz, An estimate for character sums, J. AMS 2, pp.
197–200, 1989.

[Roth] K. F. Roth, Remark concerning integer sequences, Acta Arith. 9,
pp. 257–260, 1964.

[Ruzsa] I. Ruzsa, Essential components, Proc. London Math. Soc. 54, pp.
38–56, 1987.

9


