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The framework underlying propositional proof complexity was developed in the
seminal paper [Cook and Reckhow 1979].

Definition 1. Let TAUT be the set of all propositional tautologies. A proposi-
tional proof system is any poly-time computable function

P:{0,1}* 2% TAUT.

The proof complexity Sp(¢) of a tautology ¢ € TAUT is naturally defined as
Sp(¢) & minp (g [w]. P is p-bounded if Sp(¢) is polynomial in |4|.

The basic task of propositional proof complexity is to learn as much as possible
about the behaviour of Sp(¢) for “interesting” proof systems P and “interesting”
tautologies ¢. In particular, central problems in this area ask whether certain
concrete and natural proof systems are p-bounded.

The main question of the classical (non-uniform) computational complexity is
which objects (like functions or languages) ezist in a world where our computa-
tional abilities are limited. Likewise, for almost all proof systems of significance
the basic task formulated above can be seen as studying what is provable in such
worlds. In this sense proof complexity makes a nice and important complement
to computational complexity. Besides this, it is also tightly connected in many
ways to classical proof theory, automated theorem proving and cryptography. Un-
fortunately, due to lack of space we can not elaborate here on these connections.
The interested reader may consult for a general overview of the area the sources
[Urquhart 1995; Krajicek 1995; Razborov 1996; Beame and Pitassi 1998; Pudlik
1998] (serving various tastes).

Two most prominent proof systems that are in the focus of attention today are
Frege and Extended Frege. A Frege proof system is just an ordinary textbook
propositional calculus (having finitely many axiom schemes and inference rules);
this definition is very robust in the sense that all possible versions of this system
are polynomially equivalent in terms of the function Sp(¢). Extended Frege extends
Frege by allowing (possibly iterated) abbreviations of the form py = A, where A
is a propositional formula and p4 is a new propositional variable (this definition is
also robust). In the sense discussed in the previous paragraph, Frege is the proof
system for the world of NC!-computability, and Extended Frege corresponds to
poly-time computability. Whence stems their extreme importance.

A less pleasant thing stemming from the same source, however, is the wide (al-
though not universal) belief that the question whether Frege or Extended Frege
is p-bounded must be even harder to answer than NC! # P and P # NP, re-
spectively. Indeed, the existing evidence strongly suggests that proof complexity
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lower bounds are even harder to attain than computational lower bounds for the
respective complexity classes.

Quite fortunately, there is a weaker version of this question which is almost as in-
teresting but at the same time looks by far more feasible. For these reasons it is this
version that is formulated here as the main (in the author’s opinion, of course) prob-
lem of propositional proof complexity. Show that proof complexity lower bounds
are at most as hard as computational lower bounds or, more specifically,

PROVE THAT FREGE OR EXTENDED FREGE ARE NOT p-BOUNDED MOD-
ULO ANY REASONABLE HARDNESS ASSUMPTION IN THE PURELY COMPU-
TATIONAL WORLD

Remark 1. REASONABLE here is roughly understood as “arbitrarily strong but
still natural, acceptable and believable”. The most prominent candidate (at the
moment) is the existence of pseudo-random generators (or one-way functions). On
the other hand, NP # co — NP is equivalent to the much more general fact of non-
existence of any p-bounded proof system whatsoever. Therefore, PURELY COMPU-
TATIONAL refers to the demand that the assumption itself should speak only about
computations and should not attempt to restrict the power of proofs even in a
disguised form.

Remark 2. The introduction to [Razborov 2002] contains a more or less complete
and updated (up today) account of the author’s views on importance and feasibility
of this conjecture, various approaches to it, as well as of its connections to the
provability of central open problems in computational complexity itself.

I would like to use this opportunity and briefly emphasis another interesting
direction in proof complexity, even if it is apparently lacking well-defined open
problems comparable in importance with the one above. Namely, in more practical
activities (like automated theorem or program verification) the question of existence
of efficient proofs is only half the story. What is at least as important is how to
search efficiently for such proofs.

As above, the “absolute” versions of this question which simply ask for as good
performance of any proof search algorithm as possible have (in the author’s opinion)
little to do with proof complexity. A proof system with polynomial search time
exists if and only if P #2 NP. A proof system optimal in this sense exists if and
only if there exists an optimal deterministic algorithm for NP-complete problems
etc. Be these problems as important as they obviously are, they do not fall into
the scope of our brief article.

What does belong to its scope is the relative question of whether search for ef-
ficient proofs substantially adds to the inherent complexity of the statement in a
specific proof system. Mathematically this is captured by the notion of automatiz-
ability [Bonet et al. 2000]: a proof system P is called automatizable if there exists
a deterministic algorithm that outputs a P-proof of any tautology ¢ in time which
is polynomial in Sp(¢) (i.e., in the size of the optimal P-proof).

By their nature, automatizable proof systems make a perfect base for automated
theorem provers of any sort. Unfortunately, they in general seem to be few and rare
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(and for many existing proof systems it is known that they are not automatizable
modulo various hardness assumptions). It would be very interesting to study this
issue deeper, both in terms of classifying existing proof systems (with respect to
their automatizability) as well as in terms of building automatizable proof systems
with prescribed properties. For example', does there exist a proof system P for
refuting CNFs such that:

— if a CNF 1) is obtained from a CNF ¢ by renaming variables or clauses or by
adding new clauses then Sp(¢) < Sp(¢)°W);

— P is automatizable;

— P has a polynomial size proof of the pigeonhole principle?

Its existence would capture some known computational algorithms and would most
likely lead to other interesting algorithmic consequences.
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