An Equivalence between Second Order
Bounded Domain Bounded Arithmetic and
First Order Bounded Arithmetic

Alexander A. Razborov

Abstract

We introduce a bounded domain version V3 (BD) of Buss’s sec-
ond order theory Vi of bounded arithmetic and show that this ver-
sion is equivalent to the first order theory S3. More precisely, we con-
struct two natural interpretations Vs (BD) ~» Si and S3 ~» Vi (BD)
which are inverse to each other and preserve the syntactic structure
of bounded formulae. As a corollary, for the bounded domain case we
obtain Buss’s result concerning E}‘b-expressibility in V3 as a direct
consequence of his main result for first order theories. Using only
plain corollaries of the cut elimination theorem, we show that V5" and
V3 (BD) prove the same X'®-formulae and the same closed ¥°3°%1b-
formulae where V°,3° stand for first order quantifiers. Combined
with the above mentioned result this gives an alternative proof of
Buss’s characterization of ¥}"’-definable in V3" functions. All this
readily extends to the case V;/(BD) vs. Si, (i,k > 1).

1. Introduction

The study of weak fragments of Peano Arithmetic has received much at-
tention in last years partly because of close connection with important
questions studied in the Computational Complexity. Originally the main
target of this research was the theory IAg and its subtheories. However,
one considerable disadvantage of IAg is that we can code in this theory
finite sequences only of a fixed length prescribed in advance by the cod-
ing scheme. The smallest extension of IAg where we can code sequences

246

Second Order vs. First Order Bounded Arithmetic 247

of length comparable with lengths of their elements (which is e.g. nec-
essary for formalizing methamatematics in a natural way) is the theory
IAo + “Vz (2'°87 exists)”. This last theory (under the name S») and its
fragments S5, T obtained by further restricting the induction scheme were
systematically studied in the seminal work of S.R.Buss [Bus86]. The main
result of that work was a characterization of levels of the Meyer-Stockmeyer
hierarchy in the Complexity theory (see e.g. [GJ79]) in terms of express-
ibility in certain fragments of S [Bus86, theorems 3.1 and 5.1].

To capture higher levels of the complexity hierarchy such as PSPACE
or EXPTIME, Buss also introduced in [Bus86] second order theories U3
and V3! respectively. Clote and Takeuti [CT86] extended Buss’s result
concerning definability of EXPTIME in V! to n-fold exponential time
computable functions by utilizing some many-sorted theories of Bounded
Arithmetic.

Theories U, and V,' are included into hierarchies U} and V;' which
relate to first order hierarchies S and 7} more or less like the analytical
hierarchy relates to the arithmetic hierarchy in the classical case. Hence it
is not surprising that many definitions and proofs in second order theories
are straightforward analogues of the corresponding definitions and proofs
for first order theories.

But Bounded Arithmetic also gives an opportunity to directly interpret
second order objects in a first order language. The antagonism “second
order vs. first order” translates via this interpretation to “arbitrary integers
vs. those “small” integers x for which f(z) exists” where f is a rapidly
growing function whose existence is not provable in Bounded Arithmetic.

This idea was first explored by Buss at the end of his book [Bus86]
where he, based upon techniques of Solovay, Nelson and of Wilkie (see
[Pud83]), sketched a proof that a bounded domain version of the second
order bounded arithmetic can be interpreted in S, and hence (by a result
of Wilkie and Nelson) is predicative in the sense of Nelson.

The main (informal) goal of this paper is to develop logical formalism
which would reveal that second order theories of Bounded Arithmetic (at
least those from the hierarchy V}¥) not only look similar to their first order
counterparts but basically are the same. Formally we do the following.

First we define! bounded domain versions V(BD) of theories V. We

IThe first attempt to do this was undertaken by Buss in [Bus86, §10.8]. This at-
tempt however is not quite satisfactory since the theory V,!(BD), as defined in [Bus86],
strictly speaking is not a second order theory at all. For example, it contains the axiom
VaVe® (z > a D —¢*(x)) where ¢® is a second order variable of the sort associated with
the term a. However, the instance of this axiom obtained by, say, substituting 0 for a is
not intended to be a theorem of V;} (BD).

248 Arithmetic, Proof Theory and Computational Complexity

will shortly discuss underlying principles of these theories in section 3.
Here we only note that with the suggested version of the definition Buss’s
interpretation of Vo(BD) in Sy works out smoothly.

Then we step by step establish the main result of this paper. It says
that there are two natural interpretations b : V' (BD) ~ Si and § : S} ~
V3 (BD) such that b maps closed E}’b—formulae into closed X!-formulae, §
maps closed Y¢-formulae into closed E}’b—formulae and b, are inverse to
each other in the sense that Vi(BD) - A = A" and Si FB= B for
any closed A, B in the appropriate language.

I would like to comment on the somewhat surprising fact that removing
second order variables from, say, Vi costs us exactly introducing the new
symbol #3 from a computer scientist’s point of view. It is well recognized
in Theoretical Computer Science that when we change the representation of
integers from binary to unary, the class EX PTIM E becomes not the class

P but the class TIME (2(1°g ”)0(1)) . So the theory V4 must correspond to

a first order theory which captures this latter class. Si is exactly such a
theory.

A straightforward application of this equivalence is a proof of the fact
that functions which are E?b—deﬁnable in V}(BD) are exactly the functions
from the i-th level of the exponential hierarchy. Aside from this equivalence,
the proof uses only the corresponding result for Si.

Lastly we compare the power of different bounded and unbounded do-
main versions of the theories V4 and show that all they prove the same
Y1t formulae and the same closed V3L -formulae (V°, 3% stand for first
order quantifiers). Combined with the above mentioned result this gives
an alternative proof of Buss’s characterization of 31 *-definable in V3" func-
tions which uses only a plain consequence of the cut elimination theorem
for Second Order Bounded Arithmetic.

The paper is organized as follows. In Section 2 we briefly remind the
reader the necessary definitions and facts from [Bus86]. In Section 3 we
define and discuss bounded domain counterparts of Buss’s theories Vki. In
two following sections we construct interpretations b : Vit (BD) ~» Si and
t: S3 ~ V3 (BD) respectively and establish their main properties (Lemmas
4.2, 5.4). In Section 6 we prove that these interpretations are inverse to each
other (Lemmas 6.1, 6.2). In Section 7 we summarize in the Main Theorem
(Theorem 7.1) facts established in previous sections and show that this
theorem fairly easy allows us to translate results on ¥¢-definability in S; 41

to corresponding results on E?b—deﬁnability in V}/(BD) (Theorem 7.2). In
the next section 8 we show that all (bounded and unbounded domain)

Second Order vs. First Order Bounded Arithmetic 249

variants of V! considered in [Bus86] and this paper prove the same X'
formulae and the same closed Y°3°X!-?-formulae. We conclude the paper
with a couple of remarks in Section 9.

Remark 1 After the original version of this paper was disseminated, I
learned that very similar results had been earlier proven by Takeuti [Tak90,
Tak91]. The latter paper also contains a generalization to the case U} (BD)
vS. R};_H where RfC is the theory introduced in wvarious forms by Allen
[All89], Clote [Clo89] and Takeuti [Tak91].

2. Preliminaries

This section consists of primary definitions and facts concerning Bounded
Arithmetic mostly borrowed from [Bus86]. We do not intend to give a
self-contained account so some familiarity with [Bus86] is desirable.

Let the first order language L, (k > 1) with equality consist of the
function symbols 0, S, +,-, |3z], 2], 2#2y, ..., z#ry and of the predicate
symbol <. Sometimes we will denote #- by # and #i, for uniformity of
notation, will always mean ”-”. For a vector & = (z1, ..., z,) we will write
Ay z; < yand A\, 2; < y in the simplified form # < y and 7 < y
respectively (where of course z < y = ¢ < y Az # y). The intended
meaning of symbols z#;y (2 < j < k) is given recursively by

afty =2l (2 < j < k). (1)

The meaning of all other symbols is obvious.

Quantifiers of the form (V2 < t) and (3 < t) are called bounded, quanti-
fiers of the form (Vz < |t|) and (3z < [t]) are called sharply bounded (here t
is any term not involving z). A formula is bounded if all quantifiers in it are
bounded. The hierarchy %% of bounded formulae is defined by counting al-
ternations of bounded quantifiers, ignoring the sharply bounded quantifiers.
Also X stands for the set of all bounded formulae that is £* & ;5 0.

Definition 2.1 The theory S} is the first order theory in the language Ly
with the following axioms:

1. 33 open axioms BASIC},. This list coincides with Buss’s list [Bus86,
§2.2] with the difference that we generalize his axiom (13) |z#y| =

250 Arithmetic, Proof Theory and Computational Complexity

S(|z] - |y]) to
[t jyl = S(lzl#j-1lyl) (2 <7 <F) 2)
and add the new axiom
e <aftyy = 2| < oyl <<). (3)

2. ¢ — PIND that is the scheme

A(0) AVar <A <L%m J) 5 A(m)) S Vo A(z) (@)

where A € X!

Note that axioms (2) and (3) uniquely describe #s3, ..., #. Since these
symbols are not used in bootstrapping S}, (see [Bus86, §2.4-2.5]), we do not
care about including more their properties into BASICY.

Any new function symbol defined in S}, by a ¥¢-formula and any pred-
icate symbol defined by a A’-formula can be freely used in the formula A
from (4). Among these are, for example, the following symbols:

e for each fixed r > 0 a function symbol (z1,...,z,) which implements
a one-to-one mapping N” — N and r unary symbols II7,... II
representing the inverse mapping N — N". W.l.o.g. we may assume
that

St {xy,...,z,) <y D F<y. (5)

Also there exists a term B"(y) such that

StF#E<y D (x1,...,2,.) < B"(y), (6)

e predicate symbol Power2(z) and function symbol maz(z1,...,z,)
with obvious meaning,

e function symbol BIT(i,z) which means “the bit of z in the 2¢ posi-
tion” and
LSP(z,y) which means “the integer presented by y last bits of x”.

All symbols above are already defined in S1.

The main result proved by Buss concerns X.0-definability in the theory
Si. We state it here only for the case i = 1.

Second Order vs. First Order Bounded Arithmetic 251

Proposition 2.2 ([Bus86, theorem 3.1 + theorem 5.1]) Let k > 2.

1. for each function f(ni,...,n,;) : N° — N computable in time
[t(n1,...,n,)| where t is a term of Ly (interpreted on N using (1))
there exists a Y8 -formula A(zy,...,x,) in Ly such that:

(a) S F 3y <t A,y),
(b) Si b (A(Fy) NA(F,2) D y=2),
(¢) N = A(i, £(i7)).

2. conversely, suppose S} FVi3y A(F,y) where A(Z,y) is a $¢-formula
with all free variables displayed. Then there exists a term t(Z) in the
language Ly, a ¥5-formula B(Z,y) and a function f(ii) computable
in time |t(7)| such that:

(a) S+ B(&,y) D A(Z,y),

(b) S; - B(Z,y) A B(%,2z) D y=-z,

(c) Sp F3y <t B(Zy
(

(d) for allii, N ﬁi,f(fi))

Let Ly be the second order language corresponding to L. It is well
known that second order variables for functions can be easily simulated by
second order variables for predicates (see e.g. [Bus86, Lemma 9.6]). So
we define £, to be the language obtained from Lj; by augmenting it with
second order variables {af | 4,7 € N; r > 1} where r denotes the arity of
the variable. The superscript r will be dropped whenever it can not create
confusion.

Remark 2 Since we are going to talk of interpretations, it is important
that we treat £; as a many-sorted language (see e.g. [Tak75, §1.8]). For-
mally, this language has sorts 0,1,2,... where 0 is reserved for the sort of
first order variables and r > 0 is the sort of r-ary second order variables.
It contains special predicate symbols Value, of type

(r+1;r,0,...,0)
——
r times

such that o"(z1,...,2,) = Value,(a”,x1,...,z,). In particular, we are
going to freely introduce function and predicate symbols containing second
order variables as their arguments.

252 Arithmetic, Proof Theory and Computational Complexity

A term in the language Ly, is called a first order term. A second order
formula is bounded if all first order quantifiers in it are bounded. The hier-
archy Ei’b of bounded second order formulae is defined by counting second
order quantifiers ignoring bounded first order quantifiers; £1-0 = Uiso Ez’b.
Note that, like in the first order case, function symbols introduced by E}’b—
formulae and predicate symbols introduced by A}’b—formulae can be freely
used in second order formulae since such usage does not bring bounded
formulae out of the classes from the hierarchy Ei’b they originally belonged
to.

Definition 2.3 For a class ® of formulae, ® comprehension axioms (or
® — C'A) is the following scheme:

'Y zy, ...,z {a" (z1,...,2.) = A(z1,...,2,.)}

where A is in ® and does not contain a.

Definition 2.4 The second order theory 17,3 in the language £ has the
following axioms:

1. BASICy,
2. o —IND,
3. 595" — CA.

O . ~ .
The theory V7, differs from V}! in allowing a slightly stronger comprehension
axiom.

0.
Definition 2.5 V7 is the second order theory in £; with the following
axioms:

1. BASICy,
2. 21" —IND,

3. AP —CA.

Second Order vs. First Order Bounded Arithmetic 253

3. Bounded Domain Variants

In this section we define two bounded domain versions of the theories ‘7,5

and {}2 and prove their primary properties. Given our general goal, the
idea is to describe in the second order language L, exactly those properties
which SI@—H can prove about sequences Bit(0, z), Bit(1,z), ..., Bit(y,), ...
where © € N. And the first thing we discover is that the general CA-
scheme becomes unsound and we should replace it by the following re-
stricted scheme.

Definition 3.1 & — BC A, ® bounded comprehension axioms is the follow-
ing scheme:

'Y 1, ...,z {a" (z1,...,2.) = (A(z1,...,2.) AT < 1)}

where A is in ® and does not contain « and t is a first order term which
does not contain variables from Z.

Definition 3.2 V}/(bd) is the theory in the language £, with the following
set of axioms:

1. BASICy,
2. o —IND,
3. L) — BCA.

Vki(bd) is a “neutral” theory which can neither prove nor disprove the exis-
tence of sequences with infinitely many ones. However we know that Sj 41
can disprove this. So we must add a new axiom forbidding such sequences.
This leads to the following

Definition 3.3 V/(BD) has the following axioms:
1. BASIC,
2. 21" —IND,

3. 3" — BCA,

254 Arithmetic, Proof Theory and Computational Complexity

4. YVE (a(Z) DT < y).

Now we are going to establish some simple properties of V;!(BD). First
we introduce the second order equality by

o =" = Vi (a"(Z) = B7(F)) (7)
and bounded second order equality by
o L BT 2VE<y (o (%) = B7(F)). (8)

Note that whereas the unbounded second order equality is not allowed
in axiom schemes 2, 3 of Definition 3.3, the bounded second order equality
is given by the Eé’b—formula (8) and hence can be freely used there.

Now apply induction on y to the E(l)’b—formula Ala,y,2z) = 3% <
2z (=% <y Aa(®)). V?(BD)F —A(a, z + 1,z) and hence we have

Let z be such that VZ (a(%) D ¥ < z); the existence of such z is assured by
Definition 3.3 4. We obtain from (9):

VP(BD) + VZ (~a(Z)) V
Jy > 0 {37 (a(Z) A maz(zy,...,2,) =y=1) A (10)
VZ(a(F) DT <y)}.

If we define now
B(a,y) = VE(a(F) DT <y) A
{y > 0D 3% (a(F) Amazx(zy,...,z,) =y=1)}
then (10) implies V>(BD) F Va3yB(a,y) and an easy logical analysis
gives us V?(BD) B(a,y) A B(a,y') D y=1y'. Hence we may introduce
function symbols £"(a”) (r > 1) of type (1;7,0)? with defining axioms
VZ(a(Z) D T < l(a)), (11)
l(a) > 0D 37 (@) Amazx(zy,...,zr) = l(a)=1). (12)

2the notation (1;7,0) reads as “l-ary function symbol with the argument of type r
taking values in type 0” (see [Tak75, §1.8])

Second Order vs. First Order Bounded Arithmetic 255

These symbols will be of crucial importance for the following; their intended
meaning in the case r = 1 is “the length of a”.

The next thing to do is to note that w.l.o.g. we may consider only
unary second order variables which will highly simplify the notation. For
this we implement one-to-one correspondence between N” and N using
% *-definable function symbols

(X1, ey, T, .. I00
from previous section. Using E(I)’b — BC A we prove that for each o there
exists a! such that a”(zy,...,2,) = a*((x1,...,7,.)) and vice versa (the
bounding term ¢ in Definition 3.1 is changed accordingly to (5), (6)). More
formally, this leads to the following:

Theorem 3.4 For a second order formula A define the formula A* by
replacing all its atomic subformulae of the form o (t1,...,t,) by

O‘zl,r(<t17 v 7t7‘>)

(variables a; » of sort 1 are assumed pairwise distinct). Then:

1. for each i >0, if A is E?b then so is A*,

2. x defines an interpretation of V;}(BD) in the theory obtained from
VE(BD) by restricting the language Ly, to variables of sorts 0 and 1
only,

3. x is inverse to the identical interpretation in the sense that for each
formula A without free second order variables, V?(BD) - A = A*.

In view of Theorem 3.4, we will often restrict our considerations to the
language which contains variables of types 0 and 1 only. Theorem 3.4
always allows us to extend corresponding results to the general case.

The reader may have observed that, unlike Section 2, in this section we
have not used any special notation to indicate the strength of comprehen-

~. o .
sion axioms involved in our theories. Note that it is open whether V! = V7,
[Bus86, §10.8]. The next result shows that in bounded domain the answer
to the analogous question is positive.

256 Arithmetic, Proof Theory and Computational Complexity

Theorem 3.5 V/i(bd) proves A}’ — BCA.

Proof. Let A(z) be a A}’b—formula. We prove by induction on y that
da{a(z) = (A(x) Az <y)} (13)

(note that this is a Ez’b—formula). The base y = 0 is obvious.

If we already have a, such that ay(x) = (A(z) Az < y) then in the
case —A(y) a, also satisfies (13) with y + 1 instead of y. If A(y) then the
required a1 is obtained from ay, by applying E(l)’b — BCA to the formula
(a(z) Vo =y) Az <y. This completes the inductive step.

Substituting ¢ + 1 for y in (13) completes the proof of the theorem.m

Now, by S¢" — BCA, V2(bd) + 3V {B(z) = (a(z) Az <y)}. Tt is
easy to see that such a 4 is unique and hence we have

VO(bd) - 38Vz {B(z) = (a(z) Az < y)}.

So we may introduce in V;?(bd) the function symbol al, of type (2;1,0,1)
with the defining axiom a|,(z) = (a(z) Az < y). The following properties
of a, are easy to check:

VE2(bd) - al, £ a, (14)
V2(BD) F €(al,) <y+1, (15)
VP(BD)Fl(a) <y+1Dal,=a, (16)
z = (l(al,) and z < €(a],) are $y* — formulae (in V?(BD)). (17)

Part 1 of the following theorem is a bounded version of [Tak75, Propo-
sition 15.13] (see also [Bus86, Lemma 10.9]).

Theorem 3.6 For any bounded formula A(a) there exists a first order
term t such that:

1. Vobd) oL 8D Al) = A(B),
2. VY(BD) + JaA(a) = Fa{l(a) <t+1AA(a)}.

Proof. 1 Induction on complexity of A. If A = a(t) then clearly a =
B D a(t) = B(t). If A = BoC where o is a Boolean connective, we let

Second Order vs. First Order Bounded Arithmetic 257

ta = tp+tc. Inthe case A = 3z < sB(z) we set t4 = tp[s/x] (note that
SpFx <s>Dt< t[s/x] since first order terms are provably monotone).
All other cases are trivial.

2 We assume that ¢ is such that 1 holds. By (15), (14) and 1, A(«)
implies ¢(als) <t + 1A A(als). This gives us part 2 of the theorem.m

To conclude this section we mention the possibility to define in V}! (BD)
new function symbols (which may in general depend on second order vari-
ables) using “bounded” A}’b—abstracts.

Lemma 3.7 Let A(zy,...,2,.,¥,d) be a Ai’b-formula and t(y, Z) be a first
order term such that

V(BD) F A(Z,7,d) D # < t(i], £(d)). (18)

Then, provided i > 1, we can introduce in V,j(BD) the function symbol
f (g, @) taking values of sort r with the defining axiom

f(?ja #)(1'1,---,1})EA(.Tl,---,-Tr,]j,C_i)- (19)

Moreover, for each j <1, any E;’b—formula possibly containing f is equiv-
alent in V/(BD) to a E}’b—formula without f. Hence f can be freely used
mn E%’b —IND, A}’b — BCA and repeating applications of this lemma.

Proof. By Theorem 3.5, we may apply Ai’b — BC'A to show
Vi (BD) F 3BVT {B(7) = (A(Z,7,d) AT < (7, 2))} .
Substituting here £(&) for 2 and applying (18), we get

Vi(BD) \ 3pVZ {B(&)

A(Z, 5, d)} -

The uniqueness is obvious hence we may introduce the desired symbol f
with the defining axiom (19). The second part of the lemma follows by
standard argument (see e.g. [Bus86, theorem 2.4]).m

258 Arithmetic, Proof Theory and Computational Complexity

4. Interpretation b

In this section we construct an interpretation® b : V/(BD) ~ Si. | and
show that it preserves the syntactic structure of bounded formulae. The
idea resembles the idea used by Buss in [Bus86, §10.8]. But instead of
“pushing” first order variables down to the level defined by existence of the
double exponent, we stay on the “logarithmic” level and insert instead the
next smash function #g41. It is the novelty which will allow us to show in
subsequent sections that our interpretation is exact.

We define b as follows. Both first and second order variables are inter-
preted by first order variables of the language Ly 1. First order quantifiers
are relativized to the formula 3y (|y| =). Second order quantifiers are not
relativized. Symbols from the language Lj, are interpreted by themselves.
a(z) is interpreted as Bit(z,a) = 1.

Before proving that so defined b is really an interpretation with desired
properties, let us establish the following useful auxiliary fact.

Lemma 4.1 For each term t(Z) in the language Ly there exists a X}-
definable in S | function symbol t*(Z) such that Si | + |t*(xy,...,z,)| =
t (|l‘1|, R |x7‘|)

Proof. First we show that there exists a term ¢ such that
Si ¢ (12]) < [EF(@)]. (20)
This is easily done by induction on complexity of ¢; for the case of smash
functions #; (1 < j < k) use (2). Now the desired symbol ¢* is defined by
the following ¥¢-formula:
t7(@) =y = |yl =t(Z]) A (y =0V Power2(y)).

The existence condition follows from (20) and the fact

SIFO0<z<|z| D23y (yl =z A Power2(y)) ;

3In this paper we use the standard notion of interpretability (see e.g. [Sho67, Section
4.7]) extended in an obvious way to the many-sorted case. Bounded quantifiers Iz <
t A(z) and Vo <t A(z) are simply treated as shorthand terms for 3z(z < t A A(x)) and
Vz(z <t D A(z)) respectively and do not require special care.

Second Order vs. First Order Bounded Arithmetic 259

uniqueness easily follows from general properties of Power2 provable in
Sim

Now we are ready to establish the main result of this section.

Lemma 4.2 Let A(x1,...,zy) be a formula in Ly with all free first order
variables displayed. Then:

1. if A is S9° then A(|z1|,.. ., |zn|) is Ab with respect to Shit1s

2. if Ais Ez’b (i > 1) then A°(|z1],...,|z.|) is equivalent in Siy1 toa
¥t -formula,

3. if i > 1 then b is an interpretation of Vi(BD) in S} .

Proof. 1. Induction on complexity of A. The only nontrivial case to be
considered is A(7) = Jy < t(&)B(Z,y). By definition of b, S} - A"(&) =
3z (J2] < t(%) A B°(#,]2])) - By Lemma 4.1,

Stor F A7) =32 (121 < 1£5@)| A B(171,121)) =

3 <2 (@) (J2] < 1 (@) A B(121,]2)) -

By inductive assumption, this gives us a X{-representation of A” (|]). To
get a IIS-representation, we merely note that

ShoF3z<uC(el) = Jy<fuVz<u(zl=y>C(=). (1)
1 is proved.

As an intermediate step, we prove now the following weak form of 3:

Statement 4.3 b is an interpretation of V)(BD) in S} ;.

Proof of Statement 4.3. BASIC), axioms are interpreted by themselves.
E(l)’b — IND translates to

A(0) Az {4(J20) D A (S(12)} D V= A(|2)

260 Arithmetic, Proof Theory and Computational Complexity

which is equivalent in S} ., to

A(0) AV (Ab (‘L%ZJ

)) Ab(|z|)> > Vz A°(|2)).

By part 1 of Theorem 4.2, this is equivalent to an instance of £} — PIND.
%" — BCA translates to

30¥z (Bit(ela) =1 = (42 Ale| < (@))

which is easily seen to be equivalent in S} 41 to

Ja < 4tT(F) + 1 V2 <t7(2) + 1 Bit(|z],a) =1 =
CEENEE G E

Now, it is easy to prove by ¥? — PIND on u that

3a§4u+1‘v’z§u+1(Bit(|z|,a):1 = (Ab(|z|)/\|z| §|u|))

(note this is ¥¢ by (21)). (22) follows.

Lastly, Definition 3.3 4 translates to JyVz (Bit(|z],a) =1 D |z| < |y|)
which follows in S} from Bit(z,a) =1 D = < |a|. This completes the proof
of Statement 4.3.m

Now we continue the proof of Lemma 4.2.

2 By Statement 4.3, £” is properly defined in Siﬂ and it follows from
(ll)b,(12)b that S, F 2’ (a) = |a|. We apply again induction on complex-
ity of A. The case A = Jy < tB is considered as in the proof of part 1. Let
A(Z) = JaB(a, #). By Theorem 3.6 2 and Statement 4.3,

St F A7) =30 (Jo] < t(7) +1AB (o)) . (23)

for some first order term ¢. Since, by Lemma 4.1, S}, F |a] <¢(]Z])+1D
a < 4t1(£) + 1, the quantifier Ja in (23) is bounded and 2 is proved.

3 The »-image of the last remaining axiom scheme Ei’b — IND is prov-
able in S} 41 by 2 and the same argument which was used in the proof of

Statement 4.3 to deal with X" — IND.m

Second Order vs. First Order Bounded Arithmetic 261

5. Interpretation f

In this section we construct an interpretation f : St | ~ V(BD) (i, k > 1)
which interprets first order variables of the language L1 by second order
variables of £;. The universe of § consists of all « that is first order quan-
tifiers become second order unrelativized quantifiers. Recall from Section
4 that bounded quantifiers are simply treated as shorthand terms. In or-
der to complete the definiton of 4, we are only left to interpret nonlogical
symbols of the language Lj.1.
We divide them into two groups. The first group consists of

{o, L%xJ,S,+}.

These symbols will be called local and will be A}’b—deﬁned using standard
bit-operating computational algorithms. The remaining symbols

{|'T|7 l‘#gy, ey 'T#kya S}
are global; their definitions will be based on the symbol /.

We start with local symbols.
Let us apply Lemma 3.7 to A(z) = 0= 1, t = 0. We will get a second
order constant 0 with the defining axiom
0(z) = 0=1.

Let now A(z,a) = a(x + 1) and #(z) = z. Clearly, (11) implies
V2(BD) + a(x +1) D x < ¢(a) hence we may introduce by Lemma 3.7 the
symbol |1a] of type (1;1,1) with the defining axiom

L%a] (z) = alz+1).

It is easy to see that V°(BD) F (a(z) =3y < z —a(y)) D = < {(a).
Hence we may define Sa such that

Sa(z) ={a(z) =Ty < z -ay)}.

Addition is defined by the “school” algorithm. Namely, what we would
like to have is

(a1 + az)(z) =38
=43(0) A
Vg(<)y <z > (24)
{B(y) =T (e (y=1), a2(y=1), By=1))} A
a1 (z) @ as(x) ® B(x).

262 Arithmetic, Proof Theory and Computational Complexity

Here Ts(z,y,2) = (x Ay) V (z A z) V (y A z) is the threshold function and
r®y = ¢ £y is addition mod 2. The idea is that 5(y) represents the carry
bit to the y’s position.

To justify this definition denote

—B(0) AV0 <y < z{B(y) = Ta (au(y=1),2(y=1), B(y=1))}
by Carry(a;,as,,z). Then E}’b — IND proves
38 Carry(ar, as, 8, z)

and
VB, (Carry(alaa27ﬁax) A Carry(ar,a,v,z) D B = ’Y)

which implies that the right-hand side of (24) actually belongs to Aj".
Moreover, —aq (y) A =z (y) implies =8(y + 1) hence if in addition —aq (y +
1) A —as(y + 1), then =(aq + az)(z + 1). All this shows that Lemma 3.7 is
applicable (with #(z1,22) = 21 + 22) and the definition (24) of oy + s is
justified.

Before defining the multiplication it is convenient to introduce two aux-
iliary symbols. The projection ¥%|, is the function symbol of the type
(2;2,0,1) defined by

Vly(x) =7 (z,y).
Define also “the easy case of multiplication” 2¥ * § of type (2;0,1,1) by

2V % B(z) =x >y A B(x=y).

Now we define the multiplication by

)
(o B)(x) = Ty*
V=0 AVo<y<z+1
(maly) > 71y £421,-, A (25)
aly) D9y £42,, +27 5 B) A
V2 (z,x + 1). J

The intuitive idea behind (25) is that the last (z + 1) bits of v?|, represent
the last (x + 1) bits of the product LSP(«,y) - .

Second Order vs. First Order Bounded Arithmetic 263

To justify this definition we, similarly to the case of addition, define
Table(a, 3,7, 2) =120 =0 A VO<y<z+1
—a(y) D 7’ly =7, A
{ a(y) D7y =77, +2V %5

and prove that
Vl1 (BD) Jy? Table(a,5,72,a:)

and
VX (BD) F Table(w, 3,7, x)ATable(a, 3,6%,x) D Yy < z+1 (ﬂy z 52|y))
This gives us that the right-hand side of (25) belongs to A", Put ¢(zy, z5) =
z1 + 2z2. By 2(1)7b — IND on y we prove the following;:

Table(a, 3,7, x) AVu <z +1(B(u) Du< 2) Ay (z,y) D x<y+2
and then

Table(a, B,v*,2) AVu <z +1(B(u) Du< z2) A
Vu<z+1(a(u) Du< z1) Ay (z,y) D <2+ 2.
This clearly implies (18) for multiplication.

Let us A}7b—deﬁne two more symbols id(y) and exp(y), of type (1;0,1)
each:

id(y)(z) = Bit(z,y) =1, (26)
exp(y)(z) = z=y. (27)

Now we are in position to interpret remaining (global) symbols of the lan-
guage Li+1. We do this as follows:

lal = id({(a)),
aftif = exp(l(@)#;1L(B), 2<j<k+1)
a<f = a=pVIr(-al@)AB(x)AVy>z{aly) =51y)}). (28)

This completes the definition of a translation from the set of all (first
order) formulae in the language Li+1 to the set of (second order) formulae
in the language £;,. We denote this translation by §. The rest of the section
is devoted to proving that f is actually an interpretation.

First we indicate several easy properties of §.

264 Arithmetic, Proof Theory and Computational Complexity

Lemma 5.1 (soundness of id) For each first order term t(Z) in Ly, (!)

we have
VH(BD) F id(t(£)) = t*(id(&)).

Proof. It suffices to check this for function symbols. This is done straight-
forwardly. For example, for the case of multiplication we prove by induction
on y that

Table (id(zy),id(x2),v>,j) Ay < j+1 D id(LSP(x1,y) - 72) £ 42,
(2),(3) imply Si F Bit (z,z#,y) = 1 = z = |z|#;_1|y| which, along with
(26),(27) gives us

id(z#;y) = exp(lz]j-1lyl) = exp (L(id(x))#;-1L(id(y))) = id(x)#;id(y)
etc.m

The following lemma is in a sense dual to Lemma 4.1.

Lemma 5.2 For each term t(Z) in the language Lyy1 there exists a term
t=(Z) in the language Ly such that V' (BD) & £ (t(a@)) < t=(¢(a)).

Proof. Straightforward (note that for local function symbols f the desired
upper bound on ¢ (f#(d)) was established in the process of justifying their
definitions).m

Lemma 5.3 For each term t(xy,...,x,) in the language L4, there exists
a A}’b—formula Ar(an,...,ap, 21, ., 2r,Yy) such that

VIBD) F t'(ar,...,0.)(y) = As(ay, ..., o, L(ar), ..., L), y).

Proof. First check this for function symbols.

The claim of our lemma is obvious for local symbols; we merely take
their defining axioms as corresponding A;’s (z-variables are dummy). Also
let A, (a,z,y) = Bit(y,z) = 1 and Ay, p0.(1,0,21,22,y) = y =
21 #j—lZQ-

Second Order vs. First Order Bounded Arithmetic 265

Now if #(#) = f(5(2)) then

A (54@) (y) = (
3 < 7 (@) (As (34(@), @y) AT = £ () |5 0y) -

This is A} in &, (@), y by (17) and inductive assumption.m

Now we are in position to establish the main result of this section.

Lemma 5.4 1. Let A(x1,...,x,) be a formula in the language Lyyq
with all its free variables displayed. Then there erists a formula
Af(ay, ..y, 21,00, 2,) such that VH(BD) F AY(@) = AH@, ()
and:

(a) if A is S then A* is A" with respect to VH(BD),
(b) if Ais £ (i > 1) then A? is "

2. 4 is an interpretation of S b1 VY '(BD) provided i > 1.

Proof. 1 We construct A* by induction on complexity of A. First we
set T=s = (@) = s(d@) where z = t((@&)) + s~ (¢(&)). We have
t=s = (t* = s*) by Lemma 5.2, (16), (14) and it is in A’ by Lemma
5.3. tg—sli is defined similarly. If A = BoC where o is a Boolean connective
then A* & Bfo OF.

Consider the case A = 3z < |t(§)| B(z,y). We have

-

AF = 3a<id (e(tﬁ(*))) Bia,3) = Ja<id (z(tﬂ(*))) Bt (a, B, 0(a), 4(3)).

Let A% & 3y < ¢(¢4(B)) Bt(id(y), B, |y|, €(F)). Like in the proof of Lemma
5.3 note that this is equivalent to

<t @) (v<e (BB |

iy) A BH(), Bl)

which has the same complexity as B*. The equivalence A* = A* follows
from the fact

VH(BD) F a <id(z) = 3y < z(id(y) =). (29)

266 Arithmetic, Proof Theory and Computational Complexity

To prove (29), we show by induction on z that Jy(|y| < |z|+1) (zd(y) 2 a)

and note that V?(BD) F a <id(z)Aly| < |z|+1Aid(y) 2o 5 id(y) = a.

Consider the last remaining case A = dz < t(¥) B(z,7). We have
Af = 3a < t4(f) B¥(a, B,4(a),(3)). The problem is to eliminate £(c).
Since £ is monotone, we can use the same trick as before and let

=, -,

A =332 <t ((F)) (a <t(B)Az=t (a ‘t,(l@)) A B (a, 2, 6))) .

The first conjunctive term is in A}"” and the second is in 4" by (17).

The definition of the formula A* is completed. The syntactic analysis
of its structure presented in the course of construction proves part 1 of
Lemma 5.4.

2 First we will show that V' (BD) is strong enough to prove primary
properties (BASIC},)* of function symbols and relations introduced in this
section. This is straightforward for most axioms so we give only proof
sketches for a few illustrating examples. We refer to the f-image of the i-th
axiom in the BASIC list [Bus86, §2.2] as to (Bi)*.

(B1)! (3 < a D B < Sa). Applying Etl)’b — IND on z to the formula
a(x), define the function symbol £*(a) with the defining axiom —a (£*(a)) A
Vz < £*(«) a(z). Then S« is alternatively described as

0=1, z</*(a)
Safz) =< 0=0, z=/0"(a)
alz), x>0 (a).

Now (B1)# easily follows from the definition (28) using case analysis.
(B5)* (a #0 D 2 a # 0). First we prove

Vi (BD) F 2V = exp(y) - . (30)
This is done by applying Ei’b — IND on u to the formula

0, u<y
2% 3, y<u<z+l1

T

Table (exp(y), B,7*,2)N0 < u < z+1 D 7?|, = {

Now (B5)* is implied by (30) with y = 1.

(B6)! (a < BV <). Al’-define the function symbol a & 8 such
that

(a & B)(z) = (a(r) & B(x)).

Second Order vs. First Order Bounded Arithmetic 267

a # B implies a @ 8 # 0 and £(a &) > 0. Now, a(z) and S(z) coincide
for z > ¢(a @ B) and differ at x = ¢(a @ B)=1. (B6)* follows.

(B10)* (o # 0 D |2-a| = S(|a])). By (30), V}'(BD) - a # 0 D
((2-a) = S({(a)). Applying id and using Lemma 5.1, we get V{'(BD) +
a# 0D [2-a| =id(S(l(a))) = S@id(f(e))) = S(|al).

(B12)! (a < B D |a| < |B]). Vi{(BD) proves that both ¢ and id are
monotonic.

(2)F ViH(BD) - |a# ;8] = id (¢ (exp (L()#;-1£(B)))) =
id (S (L(e)#;-1€(8))) = (by Lemma 5.1) S (id(¢(a))#;-1id(¢(B))) =
S(|Oé|j—1|6|)'

(B17)% (Ja| = |B] D a#ty = B#y). Va readily proves id(z) = id(y) D
x = y and hence |a] = |8] D f(a) = £(B). But the definition of a#~y
depends only on £(a), £(y).

(B19)* (ay < a; + az). Prove by induction on y that
Carry(ar,anB,2) A0 <y <z A8() > @l ., <(a+an)l .,
and substitute x =y = {(a1) + £(a2).

(B21)* (a+ 3 = B+). The definition of addition is symmetric.

(B24)* ((a + B) +v = a+ (B +17)). Define the ternary symmetric
function symbol (« + 8 + 7y) in the obvious way. Then prove separately
(a+pB)+v=(a+p+7v) and a+ (8 +7) = (a+ B ++) by joint induction
on all natural relations between a(z), 3(x), v(z), (a + B)(x), (o + B+) (z)
etc. and all carry bits involved in the computations.

(B29)! (- (B+7) = (a-B) + (a-7)). First we prove 2¥ x (3 +7) =
(2¥ % B) + (2¥ % v). Then we get (B29)* from this and (B21)%,(B24)* by
applying induction on y to the formula

Table(a, B+ 7,6%, x) A Table(a, 3,67,) A
Table(a,,05,2) NO<y<z+1 D
021y = 0Fly + 031y

(B30)! (a>1 D a-B<ay=p<7). Inview of (B6)",(B7)* we
only have to check V;'(BD) Fa #0AB <~y D a-fB < a-v. This is done
by induction like in (B5)%, (B29)*.

Now we check Vii(BD) F (£t — PIND)*. By already proven part 1, it

268 Arithmetic, Proof Theory and Computational Complexity

suffices to show that

V{(BD) +

[3(0,0) AVa <B <L%a],£ (L%a])) 5 B(a,e(a)))] 5 ¢ (31
Va B(a, ((a)

where B(a, 2) is in E%’b. Let us introduce the function symbol 2= Ya by
27%(x) = alz +v).
Now induction on y applied to the Ei’b—formula
Cla,z,y) = B (2_(z._y)a,y)

implies (31) after substituting z = y = £(«).
The proof of Lemma, 5.4 is completed.m

6. D and f are inverse to each other

The primary purpose of this section is to justify its title by proving the
following two statements:

Lemma 6.1 Let A(Z) be any formula in Ly with all free first order vari-
ables displayed. Then V'(BD) F A’ (id(%)) = A(Z). In particular, if A
does not contain free first order variables, V;! (BD) + At = A

Lemma 6.2 Let A be any formula in Lyy,. Then S,i_H FAY = A,

Proof of Lemma 6.1. Induction on complexity of A. If A = ¢(Z) o s(&)
where o is = or < then A" = t#(@) o s*(@). By Lemma 5.1, V}}(BD) F
APt (id(2)) = id(t(2)) 0id(s(Z)) = A(Z) since V]' (BD) readily proves zoy =
id(z) o id(y).

Assume now that A = a(t(%)). Then A = Bit* (t*(%),a) = 1 and
A"t (id(%)) = Bit* (id(t(¥)),a) = 1. So we only have to understand that

VY(BD) F Bit(id(y),) = 1 = a(y). (32)

Second Order vs. First Order Bounded Arithmetic 269

The easiest way of doing this is to translate via f identities Bit(0,2x) = 0,
Bit(0,2z + 1) = 1, Bit(y + 1,2) = Bit(y,|%]) provable in S} to identi-
ties in Vi}(BD). Having these we easily establish by induction on z that
V(BD) + Bit* (id(z),2_(y'_z)a) =1 = a(y) which (with z = y) gives us
(32).

Suppose A = 3z B(z). Then A’ = 3z B°(|2|) and 4°% = Ja B*(|al).
To apply the inductive hypothesis we only have to show that V;!(BD) +
Ja C(|a|) = Jz C(id(z)). Tt is clear in one direction since |a| = id(¢(a)). In
another direction this follows from the identity Vit (BD) + id(z) = |exp(z)].

All remaining cases are trivial.m

The following immediate corollary is interesting in its own right.

Corollary 6.3 For eachi > 1 the interpretation b is exact. In other words,
for each closed formula A in Ly, Vi}(BD) - A iff S}, = A’

Proof of Lemma 6.2. Induction on complexity of A. The only nontrivial
case is when A is atomic and it suffices to show for that case that

Sy 12(&) = 1(2) (33)

for any term ¢ in Lj4q and S,%H Fa <®y =gz <y. Itis sufficient to estab-
lish (33) only for the case when ¢ is a function symbol of the language Ly 1.
The easiest way to do this is to note that the system {fﬁb, <P | f€Lp }
satisfies all BASIC), axioms. Moreover, f¥ are %%-defined and <* is
Ab-defined so we may freely apply X% — PIND to formulas containing
those symbols. But Siﬂ readily proves that axioms from the list BASIC),
uniquely determine symbols from the language L ;.m

7. Summary

We summarize results established in the previous sections in the following
theorem:

Theorem 7.1 (Main) For each i,k > 1 there exist interpretations b :
ViH(BD)~ Si., and §: Si,, ~ V(BD) such that:

270 Arithmetic, Proof Theory and Computational Complexity

1. for any E;’b—formula A(z1,...,xyn) in Ly, (where j > 1 and all free
first order variables in A are displayed), A’(|zy|,...,|zn|) is equiva-
lent in Sy, | to a Eg’-—formula,

2. for any Eg’- ~formula A in Liy1, A* is equivalent in V,! (BD) to a E}’b—
formula (again, provided j > 1),

3. for any formula A(x1,...,x,) in Ly (all free first order variables are
displayed),

VY(BD) F A% (id(x1), ... id(x,)) = A(z1, ..., 2,),

4. for any formula A in Ly,

S AP =4

Proof. This is the content of Lemmas 4.2, 5.4, 6.1, 6.2.m

As an application we obtain the analog of Buss’s main result for the
theory V' (BD) as a direct consequence of Proposition 2.2:

Theorem 7.2 1. For each function f(¥) € EXPTIME of polynomial
growth rate there exist a E}’b—formula A(Z,y) and a first order term
t(£), both in Loy such that:

(b) Vi (BD) = A(Z,y) NA(F,2) D y=z,

(¢c) for all i, N =pp A(, f(7)) where |=pp corresponds to the
model where second order variables range over all o with finitely
many ones.

2. Conversely, suppose Vit (BD) - V#3y A(Z,y) where A(Z,y) is a Ei’b-
formula with oll free variables displayed. Then there exist a A%’b—
formula B(Z,y), a first order term t(£) (in L) and an EXPTIME
function f(Z) of polynomial growth rate such that:

(a) V3 (BD) - B(Z,y) D A(Z,y),
(b) V5 (BD) - 3y < t(Z) B(&,y),
(c) VX (BD)F B(Z,y) AB(Z,2) D y=z,

Second Order vs. First Order Bounded Arithmetic 271

(d) for all i, N =pp B(f, (7).

Proof. We start with the part 2.

By Theorem 7.1 1, A”(|#|,|y|) is equivalent in S} to a X¢-formula.
Apply Proposition 2.2 2 with k& = 3 to the formula A° (|7, |y|) and find
corresponding triple (B, t, f) which we redenote as (B'(Z,y),t'(Z), f'(Z)).
We define (B, t, f) by

t(z) = () (@),
B(Z,y) = 3B(B" (exp(@),Bliz) A (Blua) =),
@ = @9

Let us check that these B, t, f possess all required properties.
Since f'(77) is computable in time exp (logo(l) |ﬁ|), f"(2%) and hence

f() are computable in time exp (|77]°™M)). Now | f'(i)| < exp (logo(l) |ﬁ|)
implies f(i7) = |f' (27)] < exp (|71]°M)) that is |£(i7)| < [7]°(). Which
means f has polynomial growth rate.

Proposition 2.2 2a says that Si - B'(Z,y) D A’ (|#|,|y|). Applying f
gives us

V,(BD) - B*(a,8) > A% (|dl,|8])

Substituting here exp(Z) for @ and Bz for 8, we will have V;'(BD) +
B(#,y) D A% (id(%),id(y)). Which, along with Theorem 7.1 3, gives us 2a.

Similarly, applying # to Proposition 2.2 2¢, we have

Vi (BD) - 3§ < t*(&) B*(d,).
If 3 is such that 8 < t'*(exp(%)) and B'* (exp(F), 5) then
(B) < € (1 (exp(E)) < (by Lemma 5.2) ()™ (%) = ()

hence 3|yz = 8 and B(Z,£(8)). This proves 2b.
2c is proved similarly.
B is equivalent to a E}’b—formula by Theorem 7.1 2. Already proven 2b
and 2c imply its II}"*-representation V! (BD) + B(Z,y) = Vz < t(&) (B(&,2) D z = y).
Hence B is in A}’
Lastly, N & B'(i, f(i7)) implies N [=pp B'*(id(i),id(f'(7))) since
is sound with respect to E=Epp. Substitute here 27 for i and let n =
id (f' (2")). Then, as in the proof of 2b, N [=gp 7|y = n and hence
N Epp B (i, {(n)). We only have to note now that £(n) = |f' (27)| = f (7).

272 Arithmetic, Proof Theory and Computational Complexity

The proof of part 2 is completed.

1 Let f'(7) = 2/U7I=D =1, f(]i]) is computable in time
exp (logo(l) |ﬁ|)
and f(|7]) < exp (logo(l) |ﬁ|) . Hence f'(7) is computable in time
exp (1og?) |l < |#/()

for some term #' of the language L3. Apply Proposition 2.2 1 with & = 3 to
find corresponding A’. Now the same proof allows us to lift f',#', A’ to some
f,t, A such that la, 1b and N =pp A(, f(7)). But f(#) = | (27)] =
f (|27 =1) = f(77). The proof of part 1 is completed.m

Remark 3 The same argument can be applied to the case i = 1 i.e.
Vi{(BD) vs. S. This will imply that V!(BD) can Y}’-define exactly
those functions f (i) which are computable in time 2°(7) and have linear
growth rate. Similarly, V1 (BD) (which can be viewed as a weak monadic
extension of TA) L1:*-defines exactly those functions which belong to the
linear exponential time hierarchy EU ENF u ENF " U... and have linear
growth rate (here E+=DTIME [20(”)]) etc.

8. Conservativity results

In this section we will show that the theories Vi, I(}i, Vi(bd) and Vi (BD)
prove the same X’-formulae and the same closed V°3°%1-formulae (the
superscript ”0” indicates that the quantifiers are first order). This implies
that in the part concerning such formulae, the equivalence between V,j(BD)

, ~. o
and S}, established in previous sections is extended to Vi, Vi, V) (bd).

. .
Lemma 8.1 Vi is X1 -conservative over Vii(bd).

Second Order vs. First Order Bounded Arithmetic 273

Proof. In the course of this proof it will be convenient for us to change

O . .
the framework and consider V', and V}!(bd) as Gentzen style second order
theories rather than merely many sorted theories.

o8 O .
Assume V', - A where A is bounded. Consider the theory V7, (6) which

0.
is obtained from V', by adding to the language new predicate symbols § for
all A}’b predicates and replacing the scheme A}7b — CA by E(l)’b(é) - CA
(see [Bus86, §9.7]). By [Bus86, Corollary 9.21] there exists a Gentzen style

O .
V% (8)-proof of the sequent — A such that all formulae in this proof are

bounded. We can eliminate now in this proof symbols § to get a proof in

o.
Vi with the same property (compare [Bus86, Proposition 9.18]). So we
only have to check that the comprehension rules

- AF(V) FWV),I - A
I'— A, JoF (o) VoF(¢), I = A

where V is a Ai’b—abstract and F is bounded are admissible in V}(bd).

To see this, note that the proofs of theorem 3.6 1 and (14) generalize to
showing that for F,V as above there exists a first order term ¢ such that
V2(bd) = F(V) = F(V];) where V|; is defined in the obvious way. But the
rules

I'—> A F(V]y) F(V[), T - A
T = A,36F(9) VoF(9),T = A
are equivalent to A" — BC'A which is provable in V;! (bd) by Theorem 3.5.m

Define the translation * from the set of formulae in the language Ly
to itself by relativizing all second order quantifiers Ja, Va to the domain
FaVy (ay) Dy <).

Lemma 8.2 For each bounded formula A, V2(bd) - A* = A.

Proof. Induction on complexity of A. The only nontrivial case A =
Ja B(a) is taken care of by Theorem 3.6 1 and (14) like in the proof of
previous lemma.m

Corollary 8.3 x is an interpretation of V;}(BD) in V}i(bd).

274 Arithmetic, Proof Theory and Computational Complexity

Proof. Obviously follows from Lemma 8.2.m
Corollary 8.4 V}(BD) is b t-conservative over Vi (bd).

~ . O, . .
Theorem 8.5 V!, Vi,V (bd) and V}(BD) prove the same bounded formu-
lae.

Proof. Immediate from Lemma 8.1 and Corollary 8.4.m

~ . O, . .
Theorem 8.6 All four theories Vi, V%, Vi (bd) and Vi}(BD) prove the same
closed YV°3°X1b -formulae.

Proof. Let V) be one of the two theories ﬁz,VIf(BD) which proves
VZ3y1, ...,y A(Z,7) where A is a bounded formula with all free variables
displayed. Decoding the vector i by {(y1,...,yr), we may assume that
r = 1. As before, it suffices to check that

Vi(bd) - Iy A(Z,y). (34)

By the extension of Parikh’s theorem [Par71] to second order Bounded

. o)
Arithmetic in the case Vj; = V7 and by Theorem 7.2 2 in the case Vi =
V2 (BD), we have a first order term ¢(#) such that V! F 3y < (%) A(Z,y).
Applying Theorem 8.5 gives us Vi (bd) + Jy < t(¥) A(F,y) which implies
(34).m

9. Concluding remarks

In this paper we considered bounded domain versions V;/(BD) of Buss’s
theories V!, developed a logical formalism allowing one to understand their
power and showed that these versions talk of essentially the same domain
and have exactly the same power as their first order counterparts S,i 41
(Theorem 7.1). The bounded domain versions do not differ much from

Second Order vs. First Order Bounded Arithmetic 275

original Buss’s (unbounded domain) theories while we are concerned with
bounded (or “almost bounded”) formulae (Theorems 8.5, 8.6). Also they
are robust with respect to the choice of the bounded comprehension axiom
scheme (Theorem 3.5). The analogue of the latter property is not expected
in the case of unbounded domain.

Probably this equivalence can be without difficulties extended to higher
order theories. A typical result might say that the “bounded domain”
theory obtained from S} by allowing functionals of type < [is equivalent
to St 41- The equivalence should interpret functionals of type j <[by those
integers x for which the j-th fold exponent exists (compare with [CT86]).
However I did not try to develop this systematically.

10. Acknowledgment

I am grateful to Lev Beklemishev and anonymous referee for extensive
comments made on an earlier version of this paper. I also wish to express
my sincere gratitude to Samuel Buss and Gaisi Takeuti for pointing the
sources [AllI89, Clo89, Tak90, Tak91] out to me.

References

[AlI89] B. Allen. Arithmetizing uniform NC. PhD thesis, University of
Hawaii, 1989.

[Bus86] S. R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[Clo89] P. Clote. A first-order theory for the parallel complexity class
NC. Technical Report BCCS-89-01, Boston College, January
1989. Published in expanded form jointly with G. Takeuti in
“Arithmetics for NC, ALOGTIME, L and NL”, to appear in
Annals of Pure and Applied Logic.

[CT86] P. Clote and G. Takeuti. Exponential time and bounded arith-
metic. In Proceedings of the 1st Structure in Complexity Theory
Annual Conference, pages 125-143, 1986.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability. A
guide to the theory of N P-completeness. W. H. Freeman, 1979.
Pyc. mep.: M. I'spu, 1. I:xouCOH, Buinucaumensbrbie MauluHbl
u mpyoropewaemuie 3adauu, M., Mup, 1982.

276 Arithmetic, Proof Theory and Computational Complexity

[Par71] R. J. Parikh. Existence and feasibility in arithmetic. Journal of
Symbolic Logic, 36:494-508, 1971.

[Pud83] P. Pudlék. Some prime elements in the lattice of interpretability
types. Transactions of the AMS, 280:255-275, 1983.

[Sho67] J. Shoenfield. Mathematical logic. Reading, Mass., Addison-
Wesley Pub. Co., 1967. Pyc. nep.: k. [leadpunn, Mamema-
muveckas aoeuxa, M., Hayka, 1975.

[Tak75] G. Takeuti. Proof Theory. North-Holland, 1975. Pyc. mep.: I
Taxkeytu, Teopus dokazameavcme, M., Mup, 1978.

, 0.
[Tak90] G. Takeuti. S} and V4(BD). Archive for Math. Logic, 29:149-169,
1990.

[Tak91] G. Takeuti. RSUV isomorphisms. This volume, 1991.

Alexander A. Razborov
Steklov Mathematical Institute
Vavilova 42

117966, GSP-1,

Moscow, RUSSTA

email: razb@log.mian.su

