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1. Introduction

In recent years several methods have been developed for obtaining superpoly-

nomiallower bounds on the monotone formula and circuit size of explicitly
given Boolean functions. Among these àãå the method of approximations [3,

4, 1, 7, 15, 2], the combinatorial analysis of à communication problem related
to monotone depth [9, 12] and the use of matrices with very particular rank

properties [13]. Now it can Üå said almost surely that each of these methods
would need considerable strengthening to yield nontriviallower bounds for
the size of circuits or formulae over à complete basis. So, it seems interesting
to try to understand from the formal point of view what kind of machinery

we lack.

The first step in that direction was undertaken Üó the author in [14]. In
that paper two possible formalizations of the method of approximations were

considered. The restrictive version forbids the method to use extra variables.
This version was proven to Üå practically useless for circuits over à complete
basis. If extra variables àãå allowed (the second formalization) then the
method becomes universal, i.e. for àïó Boolean function f there exists an

approximating model giving à lower bound for the circuit size of f which is
tight up to à polynomial. Then the burden of proving lower bounds for the
circuit size shifts to estimating from below the minimal number of covering
sets in à particular instance of "MINIMUM COVER". One application of
an analogous model appears in [5] where the first nonlinear lower bound
was proven for the complexity of MAJORITY with respect to switching-and-

rectifiers networks.

R. Raz and À. Wigderson in [11, 12] gave an indication that the communi-
cation problem of Karchmer and Wigderson [9] over the standard basis with

negations also behaves very differently from its monotone analogue. Namely,
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they showed that the probabilistic complexity of this problem for àïó spe-
cific Boolean function is O(log ï) whereas the probabilistic complexity of the
problem related to the monotone depth of "PERFECT MATCHING" is n( ï ).

In the present paper we study in this fashion the third method among those
listed in the first paragraph, i.e. the method which relies upon constructing à
matrix whose rank is much bigger than the ranks of certain submatrices of this
matrix. We show that this method cannot even give nonlinear lower bounds
over the standard basis with negations. This answers an open question from
[lÇ]. On the other hand we observe that if the matrix is allowed to Üå partial,

then the method becomes very powerful.

Actually, we can treat à natural class of methods which contains the one
from [lÇ]. Òî say exactly what this class is, we recall (see e.g. [16, §8.8]) the
notion of à formal complexity measure. Namely, à nonnegative real-valued
function JL defined on the set of all Boolean functions in ï variables is à formal

complexity òåìèòå1 if

JL(Xi) $ 1, JL(-'Xi) $ 1 (1 $ i $ ï); (1)

JL(f v g) $ JL(f) + JL(g) for each f, g; (2)

and
JL(f ë g) $ JL(f) + JL(g) for each f,g. (Ç)

Restricting the domain of JL and arguments in (1-3') to the set of monotone
functions, we obtain the definition of à formal complexity òåìèòå îï

monotone functions. Obvious induction shows that for any formal complexity
measure JL we have JL(f) $ L(f) (L(f) is the formula size of f) and similarly
for the monotone case. Actually, proofs of many known lower bounds on
L(f) can Üå viewed as inventing clever formal complexity measures which
can Üå nontrivially bounded from below at some explicitly given Boolean
functions (see e.g. the re-formulation of the Khrapchenko bound [6] given Üó

Ì. Paterson [16, §8.8]).

We will see that the matrix method from [lÇ] can also Üå easily reformulated
in terms of formal complexity measures. Moreover, it turns out (Theorem 1

below) that the resulti~g measures JL satisfy the submodularity condition

JL(f ë g) + JL(f v g) $ JL(f) + JL(g) for each f,g (4)

which is stronger than both (2) and (Ç). We call à formal complexity measure
JL submodular if ( 4) holds and similarly for the monotone case. The results

lIn this definition we have removed several unnecessary conditions from [16].
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from [13] imply the existence of submodular formal complexity measures on
monotone functions which take on values of size nn(log ").

The main result of this paper (Theorem 2) says that all values î! àïó
submodular !ormal complexity òåàâèòå ( on the set of all Boolean functions in
ï variables) àòå bounded !òîò above Üó Î(ï) .

It is worth noting that the proof of Theorem 2 makes use of the same random
circuit ñ which was previously used in the proof of Lemma 3.1 from [14]
for breaking down the restrictive version of the method of approximations.
It seems that this circuit can act as à hard test for different ideas aimed at

proving lower bounds on the size of circuits or formulas over à complete basis.

2. Definitions and example of submodular complexity

measures

Throughout the paper â" denotes an n-dimensional Boolean ñèÜå and Ð"
[Ð:Î4 the set of all Boolean functions [the set of all monotone Boolean
functions respectively] in ï variables. For è Å â", 1 ~ i <.:; ï, è; means
the ith bit in è. Let Õ! ~ {è Å B"lui ::= Å} for 1 ~ i ~ ï, Å Å {0,1}.
Given à variable Xi, set Õ! ~ Xi; X?~ (-'Xi). Given ! Å Ð", è ~ â",
Å Å {0,1}, the statement Vu Å è è(è) ::= Å) will Üå written in the simplified
form !(è) ::= Å. Âó à !ormula (over the standard basis) we mean an

expression of the propositional calculus constructed (following the usual rules
and conventions) from variables Õl, Õ2, ..., Õ" with connectives V, Ë, -,; every
formula Ô(Õl, Õ2, ..., Õ") computes in à natural way some function from Ð".
The size s(ô) of à formula ô is the total number of occurrences of variables
in ô. Using de Morgan's laws we can transform every formula into à !ormula
with tight negations (i.e., à formula in which negations occur only in the form

( -'Xi) ) without increasing its size. Given ! Å Ð", the !ormula size L(J) is
min {s(Ô)IÔ computesfl. À formula is monotone ifit contains no negations
at all; the monotone !ormula size Lmon(J) of an ! Å F:on is defined Üó
analogy with L(J).

We say that à function ð, : Ð" --+ R+ is à submodular !ormal complexity
òåàâèòå (or submodular complexity òåàâèòå for short) if it satisfies (1) and

(4) (and hence also satisfies (2) and (3)). À function ð, : F:on --+ ï+ is à
submodular complexity òåàâèòå îï F:on if it satisfies the first condition in (1 )
and satisfies ( 4) whenever ! , 9 Å F:on. In the rest of the section we consider
an example of submodular complexity measures.

Let è, v ~ â", è n V::= 0. À rectangle ( over è, V) is an arbitrary subset
of the Cartesian product è õ v which has the form èo õ vo where èo ~ è ,
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vo ~ V. Every set 'R. of rectangles such that U'R. = è õ v will Üå called à

covering ( over è, V). The canonical covering 'R.can(U, V) is defined as follows:

'R.can(U, V) ~ {ßî1, ßî2, ..., ßî", R11, R12, ..., R1"}

where R.; ~ (è n Õ;Å) õ (v n Õ;1-Å) (1::; i::; ï, f Å {0,1} ).

Âóà matrix over è, v we mean à matrix over à field k whose rows ûå indexed
Üó elements of the set è and columns Üó elements of the set V. Given à
rectangle R, we denote Üó AR the corresponding submatrix of à matrix À.
The following result was proved in [13].

Proposition 1 [13] For àïó è, v ~ Â" and ! Å Ð" such that !(è) = 0,
!(V) = 1 and àïó non-zero matrix À over è, V (over àï arbitrary field k),

the inequality
LU) ~ rk(A) (5)

òàõ rk(AR)
RE'R.c&n(U,V)

holds.

Let us understand that this lower bound is essentially the bound provided
Üó à submodular complexity measure ,è. For arbitrary ! Å Ð", define the
rectangle RJ over è, V Üó

RJ~ (un!-l(0))x(vn!-l(l)).

Let
,èè) ~ rk(ARI) .

òàõ rk(AR)
RE'R.c&n (è, V)

ÒÜåîãåø 1 à) ,è is à submodular complexity measure;
Ü) if!(U) = 0, !(V) = 1 then ,è(!) equals the right-hand side î! (5).

Proof : à) We have to check (1) and (4). (1) trivially follows from the

definitions because if! = xi then RJ = R;,l-f Å 'R.can(U, V). For proving (4)

consider the linear space kU with the set è embedded into it as the basis.
Using the matrix À we ñàï also òàð v to kU (v Å v goes to the corresponding
column of À). For W ~ UUV, denote Üó p(W) the dimension of the subspace
generated in kU Üó the image of W via the mapping described. Then ð is the
rank function of à (linear) matroid on è u v and hence is submodular. Now,
rk(ARI) ñàï Üå expressed in the form

rk(AR/) = ð ( (è u V) n !-1(1) ) -IU nf-1(1)1.
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ÒÜå submodularity of rk(AR,) (and hence Jl,(!)) follows from the submodu.
larity of ð.

Ü) is trivial. D

Similar results hold for the monotone case if we place on è, v ~ Âï the
restriction

\lu Å U\lv Å V3i (è-- = O&vi = 1)

(which is stronger than just è n V = 0) and replace ncan(U, V) Üó

Rmon(U,V) ~ {ßî1,ßî2,...,ßîï}.

It was shown in [13] that any 0-1 matrix À for which the rank lower bound
of Mehlhorn and Schmidt [10] gives à superlinear gap between DCC(A) and
òàõ (NCC(A),NCC(-,A)) (DCC(A) and NCC(A) are deterministicand non-
deterministic communication complexities of À respectively), can Üå used to
construct à monotone Boolean function for which the monotone analogue
of Proposition 1 gives à supe11Jolynomial lower bound on its monotone
formula size. In particular , the matrices presented in [10] lead to the bound
ïÙlog n/log log ï) and the matrices from [8] and [13] lead to the bound n{}(log ï) .

Applying the monotone analogue of Theorem 1, we obtain

Corollary 1 There exist submodular complexity measures îï F::'°n which
take îï values î! size at least n{}(log ï) .

3. Main result

ÒÜå reader is invited to compare thec following theorem (which is the main
result of this paper) with Corollary 1 above and the proof of this theorem
with the proof of Lemma 3.1 in [14].

Theorem 2 For each submodular complexity measure Jl, (îï Fn) and each
!ï Å. Fn we have Jl,(fn) ~ O(ï).

ÐãîîÑ: Let gd Üå à random Boolean function in variables Õl, ..., Xd. We are

going to prove Üó induction on d that

Å [Jl,(gd)] ~ d+ 1 (6)

Base. d = 1. Here we have Jl,(9(Xl)) ~ 2 for àïó 9(Õl). This follows from (1)
if 9 = xi. Âó (4) and (1) we have Jl,(0) + Jl,(1) ~ Jl,(Xl) + Jl,(-'Xl) ~ 2 which

proves Jl,(9(Xl)) ~ 2 in the remaining case, when 9 is à constant.
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Inductive step. Assume that (6) is already proved for d. Let the symbol ~

mean that two random functions are equally distributed. Note that

gd+l ~ (g~ t\ X~+l) v (g~ t\ X~+l) (7)

where g~ and g~ are two independent copies of gd. Âó duality,

gd+l ~ (g~ v X~+l) t\ (g~ v X~+l) (8)

From (7) and (2) (remember that the latter is à consequence of (4)!) we have

Å [JL(gd+l)] ~ Å [JL (g~ t\ X~+l)] + Å [JL (g~t\ X~+l)] (9)

and similarly from (8) and (3),

Å [JL(gd+l)] ~ Å [JL (g~ v X~+l) ] + Å [JL (g~ v X~+l)] .(10)

Summing (9), (10) and applying consecutively (4), (1) and the inductive

assumption (6), we obtain

2. Å [JL(gd+l)] ~ Å [JL (g~ t\ X~+l)] + Å [JL (g~ v X~+l)] +

Å [JL (g~ t\ X~+l)] + Å [JL (g~ v X~+l) ]

~ Å [JL(g~)] + JL(X~+l) + Å [JL(g~)] + JL(X~+l)

~ 2 .Å [JL(gd)] + 2
~ 2d + 4.

The inductive step is completed and (6) is proved.

Now the given function f" Å F" can Üå expressed in the form

f" = (g" t\ (g" ffi f" ffi 1)) v ((g" ffi 1) t\ (g" ffi f")). (11)

But g" ~ g"ffif"ffi1 ~ g"ffi1 ~ g"ffif". So, applying to (11) the inequalities
(2) and (3), averaging the result over g" and applying (6) with J = ï, we

prove the desired bound JL(J") ~ Î(ï). D

Theorems 1, 2 lead to the following result which shows the uselessness of

Proposition 1 (unlike its monotone analogue!) for obtaining even superlinear
lower bounds for the formula size over the standard basis with negations and

resolves in the negative an open question from [13]:

Corollary 2 For àïó è, v ~ Â" such that è n v = (2J and àïó non-zero

matrix À over è, v ( over àï arbitrary field) , the inequality

rk(A)
òàõ rk(AR) ~O(ï)

RE1l.c&D(U,V)

holds.
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We conclude thiB paper with the following remark which i â in à BenBe oppoBite
to Corollary 2. Define à partial matrix oyer è, v to Üå an ordinary matrix
oyer è, v with the exception that âîøå entrieB ñàï Üå left empty. The rank
of à partial matrix À i â the minimal rank of all poBBible full extenBionB of the

partial matrix À. PropoBition 1 ñàï Üå Btrengthened Üó letting the matrix
À Üå partial. ReBultB contained in Bection 3 of the paper [13] imply that in

thiB ñàâå the Bituation changeB dramatically. Namely, the bound proyided Üó
the new verBion of PropoBition 1 Üåñîøåâ almoBt uniyerBal in the context of

graph complexity. If we prefer to Btay in the Boolean framework, then we
ñàï claim (at least when the underlying field k i â finite) that PropoBition 1,
applied to partial matriceB À defined in the Btatement of Theorem 3.1 from
[13], muBt proyide exponentiallower boundB for the formUla Bize of almoBt
all Boolean functionB. Surely, the problem of getting actuallower boundB for

rk(A) Üåñîøåâ extremely diffi.cult in thiB context.
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