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1. Introduction

In recent years several methods have been developed for obtaining superpoly-
nomial lower bounds on the monotone formula, and circuit size of explicitly
given Boolean functions. Among these are the method of approximations (3,
4,1, 7,15, 2], the combinatorial analysis of a communication problem related
to monotone depth |9, 12] and the use of matrices with very particular rank
properties [13]. Now it can be said almost surely that each of these methods
would need considerable strengthening to yield nontrivial lower bounds for
the size of circuits or formulae over a complete basis. So, it seems interesting
to try to understand from the formal point of view what kind of machinery
we lack.

The first step in that direction was undertaken by the author in [14]. In
that paper two possible formalizations of the method of approximations were
considered. The restrictive version forbids the method to use extra variables.
This version was proven to be practically useless for circuits over a complete
basis. If extra variables are allowed (the second formalization) then the
method becomes universal, i.e. for any Boolean function f there exists an
approximating model giving a lower bound for the circuit size of f which is
tight up to a polynomial. Then the burden of proving lower bounds for the
circuit size shifts to estimating from below the minimal number of covering
sets in a particular instance of “MINIMUM COVER”. One application of
an analogous model appears in (5] where the first nonlinear lower bound
was proven for the complexity of MAJORITY with respect to switching-and-
rectifiers networks.

R. Raz and A. Wigderson in [11, 12] gave an indication that the communi-
cation problem of Karchmer and Wigderson [9] over the standard basis with
negations also behaves very differently from its monotone analogue. Namely,
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they showed that the probabilistic complexity of this problem for any spe-
cific Boolean function is O(log n) whereas the probabilistic complexity of the

problem related to the monotone depth of “PERFECT MATCHING” is §}(n).

In the present paper we study in this fashion the third method among those
listed in the first paragraph, i.e. the method which relies upon constructing a
matrix whose rank is much bigger than the ranks of certain submatrices of this
matrix. We show that this method cannot even give nonlinear lower bounds
over the standard basis with negations. This answers an open question from
[13]. On the other hand we observe that if the matrix is allowed to be partial,
then the method becomes very powerful.

Actually, we can treat a natural class of methods which contains the one
from [13]. To say exactly what this class is, we recall (see e.g. [16, §8.8]) the
notion of a formal complexity measure. Namely, a nonnegative real-valued
function x defined on the set of all Boolean functions in n variables is a formal
complezity measure® if

p(z) <1, ploe) <1 (1<i<n) (1)

u(fVg) < u(f)+p(g) for each f,g; (2)
and '

p(f Ag) < p(f) +u(g) for each f,g. (3)

Restricting the domain of x and arguments in (1-3) to the set of monotone
functions, we obtain the definition of a formal complezity measure on
monotone functions. Obvious induction shows that for any formal complexity
measure g we have p(f) < L(f) (L(f) is the formula size of f) and similarly
for the monotone case. Actually, proofs of many known lower bounds on
L(f) can be viewed as inventing clever formal complexity measures which
can be nontrivially bounded from below at some explicitly given Boolean
functions (see e.g. the re-formulation of the Khrapchenko bound [6] given by
M. Paterson [16, §8.8]).

We will see that the matrix method from [13] can also be easily reformulated
in terms of formal complexity measures. Moreover, it turns out (Theorem 1
below) that the resulting measures p satisfy the submodularity condition

p(FAg)+u(fVg) <u(f)+u(g) foreachf,g (4)

which is stronger than both (2) and (3). We call a formal complexity measure
p submodular if (4) holds and similarly for the monotone case. The results

1] this definition we have removed several unnecessary conditions from [16].
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from [13] imply the existence of submodular formal complexity measures on
monotone functions which take on values of size n®og n),

The main result of this paper (Theorem 2) says that all values of any
submodular formal complezity measure (on the set of all Boolean functions in
n variables) are bounded from above by O(n).

It is worth noting that the proof of Theorem 2 makes use of the same random
circuit C which was previously used in the proof of Lemma 3.1 from (14]
for breaking down the restrictive version of the method of approximations.
It seems that this circuit can act as a hard test for different ideas aimed at
proving lower bounds on the size of circuits or formulas over a complete basis.

2. Definitions and example of submodular complexity
measures

Throughout the paper B" denotes an n-dimensional Boolean cube and F,
[F2o"] the set of all Boolean functions [the set of all monotone Boolean
functions respectively] in n variables. For v € B", 1 < i < n, u' means
the ¢* bit in u. Let X{ = {u € B*|u' = e} for 1 < i < m, € € {0,1}.
Given a variable z;, set z} = z;; 20 = (-2;). Given f € F,, U C B,
€ € {0,1}, the statement Vu € U (f(u) = ¢€) will be written in the simplified
form f(U) = e. By a formula (over the standard basis) we mean an
expression of the propositional calculus constructed (following the usual rules
and conventions) from variables z1, 23, ..., £, with connectives V, A, —; every
formula ¢(z1,2,,...,2,) computes in a natural way some function from F,.
The size s(¢) of a formula ¢ is the total number of occurrences of variables
in ¢. Using de Morgan’s laws we can transform every formula into a formula
with tight negations (i.e., a formula in which negations occur only in the form
(—z;)) without increasing its size. Given f € F,, the formula size L(f) is
min {s(¢)|¢ computes f}. A formula is monotone if it contains no negations
at all; the monotone formula size Lyon(f) of an f € Fn is defined by
analogy with L(f). '

We say that a function p : F, — R* is a submodular formal complexity
measure (or submodular complezity measure for short) if it satisfies (1) and
(4) (and hence also satisfies (2) and (3)). A function u : Fr — Rt isa
submodular complezity measure on F™°" if it satisfies the first condition in (1)
and satisfies (4) whenever f,g € F™", In the rest of the section we consider
an example of submodular complexity measures.

Let UV C B", UNV = @. A rectangle (over U, V) is an arbitrary subset
of the Cartesian product U x V which has the form Us x V; where Uy C U,
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Vo C V. Every set R of rectangles such that UR = U x V will be called a
covering (over U, V). The canonical covering R..n(U, V) is defined as follows:

Rean(U, V) = {Ro1, Ro2, ..., Ron, R11, R12, ..., Rin}
where R.; = (UNX{) x (VﬂX,-l_‘) (1<i<n,e€{0,1}).

By a matriz over U,V we mean a matrix over a field k¥ whose rows are indexed
by elements of the set U and columns by elements of the set V. Given a
rectangle R, we denote by Agr the corresponding submatrix of a matrix A.
The following result was proved in [13].

Proposition 1 [13] For any U,V C B" and f € F, such that f(U) = 0,
f(V) =1 and any non-zero matrizc A over U,V (over an arbitrary field k),

the inequality
rk(A)
>
Lf) 2 max  tk(Ag) (5)
Re‘vaa.n(U»V)

holds.

Let us understand that this lower bound is essentidlly the bound provided
by a submodular complexity measure y. For arbitrary f € F,, define the
rectangle Ry over U,V by

Ry= (Unf0))x (Vvnsi).
Let K(Ar))
wif) = m;x R;k(AR) )

R€Rcan(U,V)

Theorem 1 a) y is a submodular complexzity measure;

b) if f(U) =0, f(V)=1 then u(f) equals the right-hand side of (5).

Proof : a) We have to check (1) and (4). (1) trivially follows from the

definitions because if f = z{ then Ry = R;1_c € Rcan(U, V). For proving (4)
consider the linear space kV with the set U embedded into it as the basis.
Using the matrix A we can also map V to kU (v € V goes to the corresponding
column of A). For W C UUV, denote by p(W) the dimension of the subspace
generated in k¥ by the image of W via the mapping described. Then p is the
rank function of a (linear) matroid on U UV and hence is submodular. Now,
rk(Ag,) can be expressed in the form

tk(Ar,) = (U U V)N D)) -UN ).



80 RAZBOROV : ON SUBMODULAR COMPLEXITY MEASURES

The submodularity of rk(Ag,) (and hence pu(f)) follows from the submodu-
larity of p.

b) is trivial. o

Similar results hold for the monotone case if we place on U,V C B" the
restriction

Vue UVv e VIi(u =0&v' =1)
(which is stronger than just U NV = @) and replace Rean(U, V) by

Rlnon(Uy V) = {R017 RO?, sy ROn}-

It was shown in [13] that any 0-1 matrix A for which the rank lower bound
of Mehlhorn and Schmidt [10] gives a superlinear gap between DCC(A) and
max (NCC(4),NCC(~A)) (DCC(A) and NCC(A) are deterministic and non-
deterministic communication complexities of A respectively), can be used to
construct a monotone Boolean function for which the monotone analogue
of Proposition 1 gives a superpolynomial lower bound on its monotone
formula size. In particular, the matrices presented in [10] lead to the bound
nfleg n/log log 1) and the matrices from [8] and [13] lead to the bound n®0es =),
Applying the monotone analogue of Theorem 1, we obtain

Corollary 1 There ezist submodular complezity measures on Eon which
take on values of size at least n®0os )

3. Main result

The reader is invited to compare the following theorem (which is the main
result of this paper) with Corollary 1 above and the proof of this theorem
with the proof of Lemma 3.1 in [14].

Theorem 2 For each submodular complezity measure p (on F,) and each

fn € F, we have u(f,) < O(n).

Proof: Let g, be a random Boolean function in variables z,, wey Zg. We are

going to prove by induction on d that

Elu(gl)] <d+1 (6)

Base. d = 1. Here we have pu(g(;)) < 2 for any g(z1). This follows from (1)
if g = 25. By (4) and (1) we have p(0) + p(1) < u(z1) + u(~z1) < 2 which
proves u(g(z1)) < 2 in the remaining case, when g is a constant.
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Inductive step. Assume that (6) is already proved for d. Let the symbol =~
mean that two random functions are equally distributed. Note that

Bat1 & (gg A $g+1) v (gcli A $}i+1) (7)
where g$ and g} are two independent copies of g;. By duality,
Bt & (gg v -’”3+1) A (g}i Vv x‘ll+1) (8)
From (7) and (2) (remember that the latter is a consequence of (4)!) we have
E [H(gd+1)] <E [.“ (gg A x2+1)] +E [M (gtli A z}d+1)] (9)
and similarly from (8) and (3), .
€ [1(gas)] SE [u (83 V olr)] +E [ (83 V 2hia)] - (10)

Summing (9), (10) and applying consecutively (4), (1) and the inductive
assumption (6), we obtain

2-E [/‘L(gd+l)] < E [.“ (gg A "33+1)] +E [I‘ (gg v zg+1)]
E [l‘ (g}i A lei+1)] +E [,“ (g}i v $¢11+1)]
E [u(g)] + #(2%) +E [u(gd)] + nleis)

2-Efu(gy)] +2
2d + 4.

+

IAIN A

The inductive step is completed and (6) is proved.

Now the given function f, € F,, can be expressed in the form

Fa= (B A (8 ® Fn @)V (8 D 1) A(8n D fn))- (11)

Butg, ~ g,0fn®l ~g,d1 = g, ® fa So, applying to (11) the inequalities
(2) and (3), averaging the result over g, and applying (6) with d = n, we
prove the desired bound p(f,) < O(n). O

Theorems 1, 2 lead to the following result which shows the uselessness of
Proposition 1 (unlike its monotone analogue!) for obtaining even superlinear
lower bounds for the formula size over the standard basis with negations and
resolves in the negative an open question from {13]:

Corollary 2 For any U,V C B" such that UNV = & and any non-zero
matriz A over U, V (over an arbitrary field), the inequality

rk(A)
rk(AR) -

max
ReRcan(U,V)

holds.
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We conclude this paper with the following remark which is in a sense opposite
to Corollary 2. Define a partial matriz over U, V to be an ordinary matrix
over U, V with the exception that some entries can be left empty. The rank
of a partial matrix A is the minimal rank of all possible full extensions of the
partial matrix A. Proposition 1 can be strengthened by letting the matrix
A be partial. Results contained in section 3 of the paper [13] imply that in
this case the situation changes dramatically. Namely, the bound provided by
the new version of Proposition 1 becomes almost universal in the context of
grdph complexity. If we prefer to stay in the Boolean framework, then we
can claim (at least when the underlying field k is finite) that Proposition 1,
applied to partial matrices A defined in the statement of Theorem 3.1 from
[13], must provide exponential lower bounds for the formula size of almost
all Boolean functions. Surely, the problem of getting actual lower bounds for
rk(A) becomes extremely difficult in this context.
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